
LIGHTWEIGHT AND FRAMEWORK-INDEPENDENT COMMUNICATION LI-
BRARY TO SUPPORT CROSS-PLATFORM ROBOTIC APPLICATIONS AND HIGH-
LATENCY CONNECTIONS

Virtual Conference 19–23 October 2020

Leon Danter1, Steffen Planthaber1, Alexander Dettmann1, Wiebke Brinkmann1, Frank Kirchner1,2

1Robotics Innovation Center (RIC), German Research Center for Artificial Intelligence (DFKI),
Robert-Hooke-Str. 1, 28359 Bremen, Germany, E-mail: forename.surname@dfki.de

2Robotics Lab, University of Bremen, Bremen, Germany

ABSTRACT

Modular design of software stacks and hardware
components is indispensable for efficient, robust and
scalable projects in many fields. Modularity enables
independent parallel development and facilitates
large cooperative projects. On the downside commu-
nication is slowed down extensively, if a number of
different frameworks is of use. To overcome this
drawback, the paper at hand introduces a lightweight
communication library, specifically designed for ro-
botic applications. It is framework and OS indepen-
dent and intended to provide a unified communica-
tion layer. While being generic, the library is also
flexible, offering individual channels for reliable
command transfer and non-blocking telemetry data.
The provided communication sockets are config-
urable to use any implemented transport protocol,
while not being limited to ethernet based ones. By
default the transport is using the networking library
ZeroMQ1 (ZMQ), which provides various patterns,
e.g. publish/subscribe, and supports many-to-many
connections. An additional protocol implementation,
UDT2, is offered for high-latency connections. Con-
ducted benchmark tests demonstrate that the library,
especially the UDT transport implementation, pro-
vides a faster and more reliable middleware than
what is currently used in native ROS3. This is particu-
larly the case for network setups with an emulated
delay (2 s) or package loss (20%) and large chunks of
telemetry data, which emphasizes the suitability of
the library for space applications and high-latency
scenarios.

1 INTRODUCTION

Most robotic systems implement their control by
means of Robot Control and Operating Systems
(RCOS), e.g. ROS or ROCK [1]. They provide stan-

1 zeromq.org
2 udt.sourceforge.io
3 ros.org

dards for modeling and implementing control archi-
tectures by defining building blocks, interfaces and
communication channels. While this approach facili -
tates and speeds up the development and implementa-
tion process, it is bound to limitations in multi-robot
cooperation scenarios. Most notably when a variety
of project partners is involved, a diversity of RCOS
may be of use. Consequently, the communication be-
tween involved software stacks is complicated and
the often time-consuming type conversion at many
communication nodes can result in a significant set-
back regarding latency and update frequency, which
already pose great challenges in space scenarios.
Hence it is advantageous to use a common, light -
weight and configurable communication library, that
transforms the RCOS specific communication mes-
sages into a mutual communication protocol. This ap-
proach supersedes the need for customized frame-
work-dependent solutions for each connection and
enables all components to effortlessly interact with
each other, while being adaptive to task specific con-
strains like high-latency.

The introduced Robot Remote Control library4

(RRC) is an open-source solution that is specifically
designed for robotic multi-agent applications. It of-
fers a fast and reliable, framework-independent inter-
face to connect multiple instances through inter-
changeable transport protocols. Individual channels
for telemetry data and commands enhance the ability
to tailor the communication channels with different
parameterizations or even completely independent
protocols. This allows for reliable transfer of com-
mands, while at the same time offering fast and non-
blocking telemetry updates. In general the message
transport is implemented as an open interface, where
the default can easily be replaced with other proto-
cols, while not being limited to ethernet based imple-
mentations. By default the implemented transport
layer is based on the high-level networking library
ZeroMQ (ZMQ) and Google's language- and plat-

4 github.com/dfki-ric/robot_remote_control

form-neutral protocol buffers protobuf5 for serializa-
tion. With special regard to space applications, which
by nature have to deal with high signal delays, a reli -
able UDT based point-to-point protocol option is im-
plemented in order to support high-latency connec-
tions.

In this paper, section 2 elaborates on the concept
and implementation of the library. Section 3 de-
scribes and discusses setup and results of benchmark
tests performed with the library in comparison to
ROS. Section 4 concludes the paper and briefly de-
picts a number of use-cases.

2 METHOD AND IMPLEMENTATION

2.1 Concept and Class Structure

The introduced Robot Remote Control library is a
lightweight, pure C++ library compiled with CMake.
Only OS dependencies are the protobuf, protobuf-
compiler and ZMQ libraries, which run on most OS
systems and support a broad scope of languages.

In order to communicate using the presented li-
brary, two entities have to exist. On the one hand the
ControlledRobot class (CR), which is receiving com-
mands and sharing telemetry updates. On the other
hand the RobotController class (RC), which is send-
ing commands and receiving telemetry data. While
the chosen names might seem limiting, each robot or
network node can define an arbitrary amount of both
available objects and send as well as receive com-
mands or telemetry to as many entities as required.
Thereby commands are getting acknowledged upon
retrieval. The receipt of telemetry data on the other
hand is not confirmed by default. Both classes are
compiled into individual shared libraries during the
build process.

Fundamental to these two classes is the transport
implementation, which by default uses the ZMQ net-
working library. During transport initialization the IP
address and port number for connecting the sockets
are defined. The generated transports are handed to
the CR and RC in their constructor. Thus offering
endless opportunities to configure the command and
telemetry channels to best accommodate the needed
requirements for any setup.

Both classes, CR and RC, implement the abstract
update function from their UpdateThread base class,
which handles the periodic call of the update method
in its own thread. Both, commands and telemetry
buffers are immediately sent via the respective com-

5 developers.google.com/protocol-buffers

munication sockets of one class object and are evalu-
ated and processed in the update method of the other
class. In an effort to make the last telemetry message
available for reliable requests over the command
transport channel, the most recent telemetry entry is
also stored in a buffer on the CR side.

The library provides a rich set of message types in -
cluding e.g. Twist, JointState and Wrench. Additional
types can easily be defined in the proto3 formatted
RobotRemoteControl.proto6 file. However a more en-
during way to extend the libraries functions and mes-
sage types is offered via inheritance. The library can
act as a base library and enables encapsulation of ad-
ditional features and types in form of another shared
library (as shown in the examples on github7). This
approach allows to comfortably accommodate task
specific requirements, while profiting from a seam-
less integration of developments and updates from
the main library. Besides the extended library re-
mains compatible with the base one.

2.2 Message Types

The table below (Tab. 1) lists all currently imple-
mented command and telemetry types. At this point it
shall be emphasized that the presented set serves as a
generic foundation and can easily be extended with
the methods described in the previous sub-section.

Table 1: Available command and telemetry types

Commands Telemetry

Pose Pose

JointState JointState

GoTo WrenchState

Twist SimpleSensor

SimpleAction RobotState

ComplexAction Map

LogLevel LogMessage

2.3 Serialization

The afore mentioned .proto file contains the basic
message description with a straight forward syntax:

message Position {
 double x = 1;
 double y = 2;
 double z = 3;
}

6 github.com/dfki-ric/robot_remote_control/blob/
master/src/Types/RobotRemoteControl.proto

7 github.com/dfki-ric/robot_remote_control/tree/mas-
ter/examples/extending

Making use of the protobuf compiler library pro-
toc8, this file is processed into a header and imple-
mentation file, handling de-/serialization of all de-
scribed message types. The generation of these files
is triggered by Cmake during the build process of the
library.

2.4 Transport

By default the libraries transport layer is using
ZMQ. ZMQ is an open-source, high-performance,
asyncronous messaging library, which can run with-
out a message broker. It offers a number of messag-
ing patterns like publish/subscribe, request/reply or
fan-out/fan-in. Thus offering reliable and non-block-
ing message transfer as well as the opportunity for
many-to-many connections.

As an alternative transport a UDT implementation
is included as part of the library. UDT is a reliable
UDP [2] based transport protocol, with its own relia-
bility and congestion control algorithm. It establishes
a point-to-point connection, is highly configurable
and specifically designed for data intensive applica-
tions. Furthermore UDT is able to use unlimited
bandwidth at least within terrestrial areas [3].

Next to the implemented transport option, any
transport, even satellite or radio communication can
be added to the library, as long as it provides reliable
send() and receive() functions and implements the
Transport.hpp interface.

3 PERFORMANCE TESTS

3.1 Experimental Setup

In order to benchmark the library, an experiment is
set up to classify its performance in comparison to
the commonly used ROS framework. In an effort to
minimize disturbances due to general network traffic
an independent local wireless network is setup using
an Alice Modem WLAN 1421 fabricated by Ar-
cadyan. Two hosts, Dell Inspiron 15 7000 running
Ubuntu 18.04, and Samsung R519 running a docker
image of Ubuntu 18.04, are connected to the network
and each launch an executable in the scope of the ex -
periment. The two testing entities can act as ROS
nodes using the Melodic Morenia distribution, but
they can also provide independent communication
sockets using the presented library. The executables
are run as sender or repeater, while the latter is re-
turning the received message (telemetry) or an ac-

8 manpages.ubuntu.com/manpages/focal/en/man1/
protoc

knowledgment (commands) back to the sender. Thus
the round trip or transmission time can be measured
reliably without error-prone time synchronization of
the host systems.

Before each experiment the network properties are
analyzed as described in 3.2. For each test the round
trip time of telemetry data or transmission time of
commands is measured over 200 consecutive runs,
while the final results are composed by three com-
plete tests, conducted on different days. Communica-
tion over the telemetry channel is evaluated by send-
ing a random strings of defined byte size forth and
back using topics (ROS) or non-blocking telemetry
transport (RRC). Commands, in the form of a random
twist message, are send from one executable and re-
ceive a uint16 formatted acknowledgment in return.
Per default the command transfer implemented by the
RRC library gets acknowledged with an uint16 upon
retrieval. For ROS this reliability feature is induced
as a service call with a twist command as request and
an uint16 as response. While UDT communication is
always point-to-point, the ZMQ transport is config-
ured to transfer telemetry data via publish/subscribe
and commands using the request/reply pattern.

With special regard to space applications in orbital
and planetary environments, which by nature have to
deal with high signal delays, an additional round of
tests is conducted with an artificial delay. The delay
is emulated on the senders hosts network interface
using netem9. This allows to provide a reproducible
high-latency scenario. Netem is an enhancement of
the linux traffic control facilities and is configured to
replicate a fixed delay of 2000 ms. Furthermore it is
used to emulate a package loss of 20 % for another
set of command transfer time measurements.

3.2 Network properties

To ensure reproducibility the local wireless net-
work is characterized before each conducted test. The
network latency and packet loss is measured through
an ICMP echo request using the commonly known
ping10 command over 100 consecutive runs. In order
to quantify the available tcp bandwidth and latency
variation (jitter) the iperf311 tool is used. The follow-
ing table (Tab. 2) lists the mean network properties
for each network setting.

9 manpages.ubuntu.com/manpages/bionic/man8/tc-
netem

10 manpages.ubuntu.com/manpages/cosmic/man8/ping
11 manpages.ubuntu.com/manpages/focal/en/man1/iperf3

Table 2: Average network properties of the three
network configurations

Default package loss
(20 %)

Delay
(2000 ms)

Latency (ms) 9.6 13.1 2012.5

Bandwidth
(Mbits/sec)

10.45 0.78 3.35

Jitter (ms) 3.26 25.8 6.4

Loss (%) 0.0 20.8 1.6

3.3 Results

Since the wireless network that was used for testing
is a local router the following section will focus on
qualitatively comparing round trip and transmission
times of the different communication implementa-
tions. Since establishing a connection does require
some additional time, all initial time measurement
values are sliced off the plotted data to enhance visi -
bility.

3.3.1 Command Transfer

The following figure (Figure 1) shows boxplots for
the transmission time of randomly generated twist
commands averaged over three experiments with 200
runs each. Over the y-axis the ROS communication,
using a ROS service call, is compared to two trans-
port implementations of the RRC library, namely
ZMQ and UDT.

Over the course of all network configurations (de-
fault, package loss and delay) ZMQ consistently
achieves the fastest command transfer. UDT clocks
in at around twice the speed for all runs without an
emulated delay. With the two seconds of latency, the
comparably small transfer time of 4-8 x10 ³ s for⁻³ s for
ZMQ and UDT respectively is overshadowed. This
makes ZMQ and UDT almost indistinguishable in
transfer time for the network configuration with arti-
ficial delay (bottom row). Using the same network
configuration, ROS needs three times as long as
ZMQ or UDT to receive an acknowledgement
(uint_16) about the successful command transfer.

Figure 1: Comparing transmission times (s) for ran-
dom twist commands using ROS or one of two trans-
port implementations of the RRC library, based on

either ZMQ or UDT. Results are obtained on a local
wireless network in different configurations: default
(top row), emulated package loss of 20% (mid row)

and artificial delay of 2 000 ms (bottom row). Results
are plotted on a logarithmic x-axis.

3.3.2 Telemetry Transfer

In Figure 2 and 3 measurements of round trip time
for telemetry data are displayed. Telemetry data is
constructed as a random string of specified size (1
and 10 MB) and transmitted via either ROS commu-
nication (topics) or with the ZMQ or UDT transport
implementation of the RRC library.

For telemetry data with a size of 1MB all tranport
options deliver in a similar round trip time. ROS
transfers the random string forth and back in an aver-
age of 1.7 seconds, while ZMQ and UDT perform the
same task in 1.16 and 1.45 seconds respectively. For
telemetry data with 10 MB the difference in round
trip time becomes more evident. ROS transport
amounts to an average of 18.16 seconds, while ZMQ
performs the round trip transfer in 11.4 seconds.
UDT takes an average of 3.8 second. Even though the
initial and usually longest round trip time is sliced
away of all plotted data, ZMQ and ROS show a num-
ber of significant outliers, while UDTs outlier are
much more contained and not even visible for large
telemetry.

Figure 2: Round trip time of telemetry transfer using
ROS topics and the two transport implementations
ZMQ and UDT of the RRC library. The two rows

compare transfer of 1MB (top row) and 10MB (bot-
tom row) respectively.

From the three transport options only ROS and
UDT are able to handle an emulated delay of 2000
ms. ZMQ is not able to successfully transfer data,
even though a connection is established. On average
ROS (17.6 s) takes more than 3.5 times longer than
UDT (4.8 s) to transfer 1 MB of data. For larger
telemetry data (10MB) this factor decreases to 1.4.

However UDT takes about 15 seconds less (44.7 s)
than ROS (61.6 s).

Figure 3: The two plots above show the round trip
time of telemetry data (1 MB – top row, 10 MB – bot-

tom row). The performance of ROS is compared to
the UDT transport implemented by the RRC library.
Both in a network with an emulated delay of 2000

ms. The ZMQ implementation cannot transfer data in
networks with such high latency and is therefore ex-

cluded.

3.4 Discussion

While all transport protocols show similar perfor-
mance on the default network, a disadvantage of ROS
becomes evident for transfer of commands or data on
a network with high delays or package loss. For the
acknowledged commands this may be due to the fact
that the ROS service calls are based on ROS topics.
Therefore two seperate connections are used to trans-
fer the request and response. This may result in the
measured delays in comparison to the point-to-point
connection of UDT or the immediate request and re-
ply sockets of ZMQ.

In terms of telemetry transport UDT outperforms
the other two transport implementations especially
for higher loads and for high latency. This explicit
advantage of UDT is based on the comparably small
over-head and the connection-less character of the
underlying UDP protocol in comparison to the con-
nection-oriented heavy-weight TCP protocol. By de-
sign the UDT protocol is especially suited for data in-
tensive applications, which proves well in the pre-
sented results and becomes even more evident in the
experiments with emulated delay.

5 CONCLUSION

The library acts as an alternative communication
layer to existing RCOS solutions. It is shown in the
scope of this paper that especially the configurable
UDT transport implementation of the presented RRC
library can serve as a more reliable and fast commu-
nication library than what is currently being used in
native ROS. While already being able to compete
with state of the art middleware, the most prominent
advantage of the library is that it provides config-
urable communication sockets to tailor the communi-
cation to task specific requirements and use custom
protocols. The configurable and modular character of
the communication sockets is further enhanced
through the availability of reliable, acknowledged
transfer via the command channel or non-blocking
data transmission over the telemetry sockets. More-
over the provided transport options are configurable.
ZMQ allows for a number of messaging patterns and
UDT offers control over reliability and congestion al-
gorithms.

Due to the lightweight and framework independent
character of the library, it is already being used ex-
tensively in several projects, e.g. the EU funded,
space robotics project PRO-ACT [4]. Providing a
common communication layer between multiple ro-
bots for cooperative manipulation, sockets for inde-
pendent control of base and manipulators, robust
monitoring for mission planning and even a common
message definition for sensor fusion between differ-
ent frameworks. At this point it should be highlighted
that control or monitoring instances do not need to be
compatible with the framework of the entity that is
running the CR. They solely have to wrap the RRC
library or even just the RC one. Both being frame-
work and OS independent.

In addition the library can be used as a config-
urable, generic communication interface for arbitrary
purposes not only for actual hardware applications. It
could even be used as a common interface for ex-
changing simulation engines or for realizing compu-
tation in distributed setups. Due to the support of
C++ libraries in many other programming languages
like Java, python or Go the presented library can
even serve as an adapter between various program-
ming languages.

Acknowledgement

The work presented is part of several projects. The
project Mare-IT (grant no. 01|S17029A) is funded by
the German Space Agency (DLR Agentur) with fed-
eral funds of the Federal Ministry of Economics and
Technology in accordance with the parliamentary
resolution of the German Parliament. The project
ROBDEKON (grant no.13N14675) is funded by the
Federal Ministry of Economics and Technology in
accordance with the parliamentary resolution of the
German Parliament. PRO-ACT is funded under the
European Commission Horizon 2020 Space Strategic
Research Clusters - Operational Grants number
821903.

References

[1] Sylvain Joyeux, Jakob Schwendner and Thomas
M. Roehr (2014) Modular Software for an Autono-
mous Space Rover. In Proceedings of the 12th Inter-
national Symposium on Artificial Intelligence, Robot-
ics and Automation in Space (i-SAIRAS), Montreal,
Québec, Canada: pp. 1–8.

[2] Postel, Jon (1980) RFC0768: User Datagram Pro-
tocol.

[3] Gu, Y. and Grossman, R. L. (2007) UDT: UDP-
based data transfer for high-speed wide area net-
works. Computer Networks 51(7):1777-1799.

[4] Brinkmann W., et al. (2020) Enhancement of the
six-legged robot Mantis for assembly and construc-
tion tasks in lunar mission scenarios within a multi-
robot team. In Proceedings: International Symposium
on Artificial Intelligence, Robotics and Automation
in Space.

