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Abstract—Ghost targets are targets that appear at wrong
locations in radar data and are caused by the presence of
multiple indirect reflections between the target and the sensor.
In this work, we introduce the first point based deep learning
approach for ghost target detection in 3D radar point clouds.
This is done by extending the PointNet network architecture
by modifying its input to include radar point features beyond
location and introducing skip connetions. We compare different
input modalities and analyze the effects of the changes we
introduced. We also propose an approach for automatic labeling
of ghost targets 3D radar data using lidar as reference. The
algorithm is trained and tested on real data in various driving
scenarios and the tests show promising results in classifying real
and ghost radar targets.

I. INTRODUCTION

The field of autonomous driving is of an ever rising impor-
tance in the automotive industry. To achieve higher levels of
autonomy, it is essential to be able to robustly detect and track
obstacles and other road users such as pedestrians, cyclists, and
other motorists. For this reason, vehicles are being equipped
with an increasing number of sensors to learn more about
their surroundings. Radar sensors have been an integral part
of driver assistant systems but are now being tasked in adding
more autonomy to vehicles and detect more complex driving
scenarios. Radar sensors are desirable not only because of their
robustness to different weather conditions and low production
costs, but also for their ability to instantly measure the radial
velocity of detected targets.

A radar sensor emits a signal and parts of it are reflected
and returned as an echo upon hitting a target. From the echo,
the distance (range) to the detected target can be calculated
based on the time of flight, and the angle of arrival (azimuth
angle) is calculated by having multiple receiving antennas with
a known distance and calculating the time delay of receiving
the echo at each antenna. The relative radial velocity (Doppler
velocity) of the target is measured using the frequency shift
between the incident and reflected waves [1], [2].

Since a radar sensor usually emits waves in all directions
within its field of view, and since target locations are calculated
based on the angle of arrival of the echos, the possibility that
the reflected signal takes an indirect path between the sensor

and the target arises. Such an indirect reflection path leads
to detections at wrong positions either with a different range,
azimuth, or both. Those detections are commonly referred to
in the literature as ghost targets or multi-path reflections. It
is essential to detect the ghost targets to ensure a reliable
and robust performance of automotive radars. Fig. 1 shows an
example where radar waves are reflected off the target vehicle
to the ego vehicle over the guardrail, thus resulting in the
detection of a ghost target on the opposite side of the rail.

Fig. 1. The ego vehicle equipped with the radar sensor (blue), detects a ghost
target (red silhouette) on the wrong side of the guardrail due to the indirect
reflection of the radar signals off the target vehicle (red)

The presence of ghost targets in radar data reduces the
reliability of the sensors and the robustness of its detections.
Robust radar detection is essential for the safe operation of
autonomous and highly automated vehicles.

The unpredictability of modern driving scenarios lead to a
complexity in the ghost target problem, especially in urban
environments where numerous and unknown reflecting sur-
faces are present. This has made it extremely challenging to
solve ghost target problem using conventional, model based



methods that either require the model of the target [3] or the
environment as done in through-wall radar imaging [4]-[6].

Furthermore, labeling radar data for ghost targets is a chal-
lenging task because many surfaces can reflect electromagnetic
waves and it can become a more daunting and error prone task
the more complex the scenario is, and the more densely the
data is acquired.

Due to the ability of deep learning algorithms to recognize
hidden patterns in data, and taking into consideration that
ghost target detection is a challenging and unsolved problem,
we present in this paper the following contributions:

o the first point based deep learning approach for ghost
target detection in dense 3D radar point clouds to the
best of our knowledge

e an automatic labeling approach that uses lidar for
real/ghost target estimation to overcome the problem of
missing data annotations

« an evaluation of different network architectures and input
modalities to solve the problem

In Section II we present the literature review concerning
the ghost target detection problem. Then in Section III the
proposed approach is presented, including the network archi-
tecture, dataset, and the reference calculation method. The
experiments and results are explained in Section IV followed
by the conclusion in Section V.

II. RELATED WORK
A. Ghost Target Detection

To classify ghost targets in radar data, a model based
approach was proposed by Roos et al. [3]. The measured
velocity vector orientation is compared to the orientation in
the vehicle model fit to the data where a mismatch between
the orientations indicates a ghost target. The method however
requires at least two radars to properly estimate the complete
orientation vector. Model based approaches can be very robust
in detecting ghost targets when the measurement fits the
model, but the complexity of multipath reflection scenarios
and the accuracy of the models can limit the effectiveness of
those approaches.

As opposed to model based approaches, data driven ap-
proaches are less restricted by the measurement scenarios and
can tackle more complexity. Ryu et al. [7] placed a radar at an
intersection to measure the traffic. Different features of detec-
tions such as track lifetime, displacement, and velocity were
used to train a multilayer perceptron for ghost target detection.
The measurements however, coming from a fixed radar, are too
simplistic and unrepresentative of a real automotive scenario
with changing environment and driving conditions.

Prophet et al. [8] tested different machine learning based
methods for ghost target classification. The authors concluded
that random forests classifiers outperformed support vector
machines and k-nearest neighbor algorithms for this task.
Garcia et al. [9] furthered their work by using a deep convolu-
tional neural network with an encoder-decoder architecture to
classify ghost targets in 2D. The results show the effectiveness

of data driven techniques in detecting ghost targets in radar
data. The methods applied are limited to moving ghost targets
in 2D data, low resolution radars, and with no elevation
information considered.

B. Point-Based Deep Learning

For object detection and point-wise segmentation in 3D
point clouds, several network architectures have been pro-
posed. PointNet by Qi et al. [10], uses spatial information
and optionally other local or global features, to process point
clouds. The network can process on unordered data, is in-
variant to transformations, and can capture interactions among
points. The authors extended their work in PointNet++ [11] by
allowing the network to process point clouds at multiple scales,
to capture more details in the data. VoxelNet by Zhou et al.
[12] processes point clouds as voxels using 3D convolutions,
and Lang et al. [13] built on the ideas from PointNet and
VoxelNet by treating the point space as vertical voxels, or
pillars, each processed using a PointNet.

Schumann et al. [14] based their work on PointNet++ to
perform semantic segmentation on 2D radar point clouds. The
work showed promising results for detecting different classes
of road users in hand-labeled data. They also showed that using
more features from the sensor measurements improved the
overall performance of the algorithm. In another work by [15]
the PointNet architecture is used to detect objects in sparse
2D radar data. The authors used the same classification and
segmentation networks in PointNet and augmented them with
a 2D bounding box estimation network.

C. Non-Line-of-Sight Radar Approaches

Scheiner et al. [16] use the phenomenon of multipath in
radar to track targets around corners in automotive scenarios.
The work focuses on the detection of pedestrians to improve
road safety. A lidar sensor is used to measure the reflecting
surface and thus identify candidate multipath points. The
authors demonstrate in this paper the importance of identifying
ghost targets in automotive scenarios.

Other applications for non-line-of-sight radar is through-
wall tracking of people. Setlur et al. [4], [5] tackle this problem
using ultra-wideband radar while knowing the dimensions of
the lab environment and the possible reflections that can occur.
While this technology uses the physical phenomenon of mul-
tipath reflections, it is only limited to controlled environments.

In contrast to the existing work described, we present a
solution that classifies 3D radar points using a point-based
deep neural network that works on unordered point cloud
data.

III. PROPOSED APPROACH

In section III-A we describe our proposed a deep neural
network architecture for ghost target detection in 3D radar
point clouds. We also discuss different variations of the
network. The dataset used is explained next in section III-B.
And finally, we present our suggestion to tackle the labeling
problem and the approach we used in section III-C.



A. Network Architecture

For the classification of real and ghost targets, a neural
network designed for processing of point cloud data was
trained. The network used is based on PointNet architecture
[10] and modified to the problem at hand as can be seen in
Fig. 2. We selected PointNet as our base architecture because
unlike VoxelNet [12] and PointPillars [13] which are more
suited for object detection problems, PointNet processes points
individually and thus can learn individual point features that
are needed for the identification of ghost targets. It is also
able to learn global scene features and append them to the
local point features, thus allowing for the use of both local
and global features for point segmentation.

Since no scene classification is required, the classification
output of the network from the original implementation is
removed and the network is reduced to the point by point
segmentation part only. The original implementation took as
input a vector of size n x 3 where n corresponds to the number
of input points and 3 corresponds to the point dimensions
(x,y, 2). In our version we extended the input dimensions to
n X 10 where the first 3 dimensions are (x,y, z) similar to the
original implementation. The second 3 dimensions correspond
to the spherical coordinates per point (p, ¢,6). The inputs 7
through 10 are the Doppler velocity per point v,., the reflection
magnitude mag, the velocity of the ego vehicle v, and the
turn rate of the ego vehicle yaw respectively.

The spherical coordinates are included to allow the network
to learn connections between points that can be easier to
represent in the spherical coordinate system. For example two
points with the same azimuth and elevation would only differ
in depth, such a relationship is linear and easier to earn, unlike
in the cartesian system where this relationship is a function of
the square root of the sum of squares.

An additional input transformation network is added to
modify the spherical inputs similar to the cartesian inputs. The
outputs of the transformation networks are then concatenated
with the non-spatial inputs (v,., mag, vs,yaw) and an n x 10
input vector is formed. The dimensions of the shared multi-
layer perceptron layers are increased to take into consideration
the increase in input dimensions and thus allow for better
encoding of features. As a result, the feature transformation
network dimensions are also increased.

A skip connection is introduced from the input until after
the feature transform as can be seen in Fig. 2. The non-spatial
inputs (v, mag, vs, yaw) are appended to the n x 128 feature
vector thus increasing its dimensions to n x 132. The reasoning
behind this skip connection is to allow for a bigger influence
of the non-spatial inputs as differentiating features. Due to the
use of batch normalization for each mlp, no dropout was used.
The output of the network was reduced to n x 1 since we are
tackling a binary classification problem (real vs ghost).

The most important features of the network are the transfor-
mation networks (T-Net) which learn different transformations
and apply them to the input point clouds and the features. This
helps the network generalize to different rotations and orien-

tations of point cloud features. The skip connection allows
for a bigger influence of the inputs on the final classification
output. Then the global feature vector is appended to the local
features to use both local and global features in the point
feature extraction and ghost target detection as can be seen
in Fig. 2.

B. Dataset

The data used is measured by an Astyx 6455 HiRes radar
sensor, a sample of which is provided by Meyer et al.
[17]. The radar has a 110 degrees by 10 degrees horizontal
by vertical field of view respectively, and a range of 100
meters. For reference, a 64 beam lidar sensor is provided. The
dataset comprises of 9,321 frames divided over 5 measurement
sequences each recorded on different roads. The sequences
cover various scenarios and include both urban and highway
environments, as well as open roads and tunnels.

Each measurement sequence contains the radar data
(z,y, z,v.,mag), the lidar measurements, and vehicle state
measurements such as the speedometer value vs and the turn
rate yaw.

Astyx 6455 HiRes radar sensor measures around 1000 3D
points per frame on average, as opposed to 100 2D points per
radar frame provided by other types of series production radar
[17].

C. Ground Truth Generation

Since there are not many public datasets for automotive
radar, and because the existing datasets do not label ghost
targets and rather only have labels for visible objects [17], [18]
or ego motion ground truth [19], [20], it is very challenging to
obtain labeled data for the ghost target detection problem. Tak-
ing into account that manually labeling thousands of frames
for ghost targets is very time consuming and error prone due
to the complexity of driving scenarios, we devise an approach
to generate the required annotations to our unlabeled dataset.

As lidar is a directed time of flight sensor, it is much less
susceptible to the reflections problem; that is the light being
reflected off multiple surfaces before returning to the lidar.
Thus it can be used to reliably measure objects and surfaces
around the ego vehicle.

We propose to use lidar as a reference for automatic labeling
of the radar data to be used as ground truth for training the
deep neural network. We project the lidar points to the 2D
image space and use depth completion based on Ku et al. [21]
to obtain a dense depth map of the scene. We then project
the radar data to 2D image space and compare with the lidar
data as follows: if the depth value of the radar point/pixel is
within a certain threshold of a lidar depth pixel, it is considered
to be real, however if the radar depth value is outside the
specified threshold, or no corresponding lidar data exists, it
is then considered to be a ghost target. The algorithm is
summarized in Fig. 3. Fig 4 shows a sample output of the
labeling algorithm.

The concept stems from the fact that since ghost targets
are measured over an indirect reflection path, their depth
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Fig. 2. The architecture of the deep neural network based on PointNet. The input is a ten dimensional vector of points split into 3 groups (z,y, 2), (p, ¢, 6),
and (vr, mag, vs,yaw). The first 2 groups are spatial features in cartesian and spherical coordinates passed through an input transform network, while the
non-spatial features are forwarded down the network. The output is a vector of per-point binary classification as real or ghost targets.
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Fig. 3. A flowchart summarizing the main steps for the automatic labeling
approach suggested.

value will place them behind the obstacle that causes the
last reflection. The threshold is chosen based on the sum of
errors expected in the radar and lidar measurements and on the
maximum resolutions in azimuth and range. The error value
was estimated to be between 0.2 to 1.8 meters in the 5 to 50
meters range, thus a fixed threshold value of 1 meter is chosen
for the selection of real and ghost targets.

In our experiments, we manually labeled a selection of
frames from multiple sequences and compared the output of
the algorithm to the manually labeled frames, the resulting
accuracy was 93%.

IV. EXPERIMENTS AND RESULTS

We trained a deep neural network to detect ghost targets in
3D radar point clouds. Data annotation for the radar data is
done by our suggested labeling approach using lidar data as
reference. The evaluation of the network is done using cross
validation where the data is split into 4 parts and the network
is trained 4 times each with different split and then results are
averaged.

A. Implementation and Training

The network has been trained and evaluated using cross
validation. Since the dataset is provided in different sequence
measurements, in each training run, one sequence is used for
validation while the rest of the sequences are used for training.
The accuracy results are calculated based on the weighted
average of all the sequences since they have different lengths.
The inputs are normalized to zero mean and unit standard
deviation over the whole training set, and the values from the
training set are used for the normalization of the validation
set.

The input to the network was fixed to 2500 radar points
chosen randomly and with repetition from each frame. The
network was trained using a batch size of 32, over 250 epochs,
and using a learning rate of 10~ reduced by half every 125
epochs.

To tackle imbalances between the classes, we used the
algorithm proposed by Cui et al. [22] for a class-balanced
loss based on the effective number of samples and calculated
the loss with a 8 = 0.999. The algorithm uses a weighting
scheme that utilizes the effective number of sample per class
to re-balance the loss.

To evaluate the effectiveness of the changes introduced, we
do an ablation study on different network architectures with
the unmodified PointNet as a baseline. A PointNet with the
inputs extended to a 5 dimensional (z,y, z,v,,mag) point
vector is trained and all subsequent changes are compared to
the results of this network.

We tested three modifications of the original PointNet
architecture

e A network with n x 10 input. This network show the
importance of using additional input features.

o A network with nx 10 input and a skip connection. This is
the network architecture presented in Fig. 2 and evaluates
the usefulness of the skip connection.



(a)

(b)

Fig. 4. (4a) The dense depth map calculated based on the lidar data with an overlay of a sample of radar points. The light-colored squares correspond to radar
points labeled as “'real” based on their depth value, conversely the dark-colored triangles correspond to the points labeled as “ghost”. (4b) The 3D perspective
showing the points labeled as “real” in blue, coinciding with surfaces detected by the lidar. The “ghost” points are in green and can be seen behind lidar

surfaces or missing a reference lidar measurement.

o A network with n x 7 input and a skip connection. In this
architecture we removed the spherical coordinates input
to evaluate their impact on the overall result.

B. Results

Evaluating our results compared to other approaches was

not possible due to the following:

e our approach is tackling 3D data, while the other ap-
proaches are tackling 2D data [8], [9].

« the density complexity of the data used in our work makes
it a not possible to be reduced to 2D.

o due to the unavailability of the data being used in other
approaches, it was not possible to evaluate it on our
approach.

For the evaluation of the results, we used the intersection

over union JoU metric.

TP |
TP+ FP+FN )
where T'P is the true positives of a class, F'P and F'N are
the false positives and false negatives respectively. The overall
performance is then the mean intersection over union mloU.
Using those metrics allows us to both evaluate the per class
and overall performance of the network.

As seen in table I, the added number of the input features
had a significant impact on the output of the classification. The
addition of a skip connection slightly improved the results.
And the inclusion of the spherical spatial features improved
the results as well. We can attribute the biggest improvement
to the vehicle velocity v and the vehicle turn rate yaw. The
detection of real data benefited more from the implemented
changes, this can indicate that they are easier to learn than the
ghost targets.

The high contribution of the vehicle information is expected
due to the compensation effects that can be learned from the
inclusion of those features.

During the training, we noticed that some data sequences
were more challenging than others, and in some cases there
was less similarity between the validation and training data.
We are interested in applying our proposed architecture to
more diverse data.

IoU

Fig. 5 shows some results of the detection algorithm on
validation data in comparison to the lidar data as reference. A
qualitative analysis shows the effectiveness of the algorithm
in detecting ghost targets in complex reflection scenarios such
as in tunnels as seen in Fig. 5c and 5d.

As can be seen in the data, the radar points exhibit a column
like distribution visible in Fig. 4, 5a, and 5c, This might be
caused by the degraded resolution in the elevation direction,
or an artifact of the signal processing. It is worth noting that
the network was also successful at removing those column
structures since they do not represent a physical structure and
thus have no lidar reflections.

In our observations we noticed that the network is effective
at removing ghost targets caused by the ground and thus they
fall below the ground level. We also observed that it is more
successful at detecting ghost targets that fall behind bigger
surfaces such as walls, busses, or transport vehicles. Since the
data has more real targets than ghost targets, we expect the
prediction accuracy to improve the more balanced the data is,
and the more data is used.

V. CONCLUSION

In this paper, we presented the first point based deep neural
network for classification of real and ghost targets in 3D radar
data. We extended the PointNet architecture with expanded
inputs and input forwarding to make it more suitable for
the radar detection problem. We also presented an approach
for automatic radar data labeling using lidar data. The work
has shown promising results in complex real measurement
scenarios. We achieved a mean detection score of 65%, a
significant improvement over the baseline, and evaluated the
effect of different modifications over the original network.
It would be interesting to investigate further changes to the
architecture. Data from previous time steps could be used to
add temporal information, deeper and more complex network
architecture can help reveal more relationships between the
data, and improved ego vehicle information could lead to more
reliable features. To investigate the suggested improvements
more data is needed to train the neural networks while higher
radar data frequency could also prove beneficial as well.



TABLE I
NETWORK CLASSIFICATION PERFORMANCE

Network mloU IoU Ghost | IoU Real | F1 Ghost
Baseline 61.41% | 55.91% 66.90% 71.72%
n X 10 input 65.13% | 58.53% 71.73% 73.84%
n X 10 input with skip | 65.38% | 58.63% 72.13% 73.92%
n X 7 input with skip 64.52% | 57.76% 71.29% 73.23%

(d)

Fig. 5. The network output shows real targets (in blue) and ghost targets (in green), lidar data is shown for reference (in red). (b) and (d) show the point
cloud after removing the detected ghost targets in (a) and (c) respectively.
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