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ABSTRACT In this article, a series of convolutional-type predictive neural networks are proposed for the
issue of fading channel forecasting for orthogonal frequency-division multiplexing (OFDM) transmission
systems in a multiple-input and multiple-output (MIMO) mode via a noisy channel. The proposed neural
networks all employ convolutional connections that operate in a translation-invariant manner in the frequency
domain of the time-varying channel transfer function, which effectively tackles the essential challenges of
high dimensionality and denoising. Each of the proposed convolutional-type neural networks is built on
a specific overall network architecture and functions as an independent predictor that offers advantages
regarding a specific aspect such as accuracy over a certain prediction span or computational effort.
Comparative evaluations against common prediction methods such as the Kalman filtering scheme and the
standard long-short term memory units (LSTMs) are provided on the basis of transmission simulations over
dispersive fading channels with Rayleigh components according to the well-established 3GPP Long Term
Evolution (LTE) standards.

INDEX TERMS Wireless communications, deep learning, convolutional neural networks, LSTMs, time
series analysis, fading channel forecasting, MIMO.

I. INTRODUCTION
Dynamic radio resource management and adaptive modula-
tion and coding schemes are essential parts of modern cellular
networks. In order to maximise spectral efficiency, it is nec-
essary for these schemes to be adapted to the current channel
transmission properties. Since scheduling and coding have to
be performed before the actual transmission, it is necessary to
anticipate the channel quality ahead of time. In the presence
of multipath propagation and moving receivers, time variance
in the channel transfer function and frequency selective fad-
ing significantly increase the complexity of the issue of chan-
nel quality forecasting which requires a powerful predictive
model.

The central objective of this article is to predict future states
of a noise-corrupted fading channel under certain propagation
conditions for transmitting orthogonal frequency-division
multiplexing (OFDM) symbols, operating in a multiple-input
and multiple-output (MIMO) transmission mode. A big chal-
lenge when forecasting noisy time series in such a context
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consists in the high dimensionality issue arising in the
multi-subcarrier setting. This work aims to design predictive
models that are parsimonious but still complex enough to
capture the essential characteristics of such high-dimensional
noisy time series.

A. BACKGROUND AND RELATED WORK
From a mathematical point of view, the vast majority of
previous contributions to fading channel forecasting employ
stochastic methods or machine learning techniques. The
mathematical ingredients of these techniques and their rela-
tionships are briefly summarised below, followed by their
applications to wireless communications.

Most of the classical approaches to time series fore-
casting arise from the general framework of stochastic
filtering in a state-space setting. Here, the conditional dis-
tribution of a Markovian latent variable, called hidden state,
is estimated and used as the key object to relate the past
and current observations to the best future forecasts [1].
Among the general state-space models, the theoretically
best-understood case in terms of explicit optimal estimator
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and asymptotic behaviour of suboptimal solutions is the lin-
ear setting with Gaussian white noise, for which the well-
known Kalman filter (KF) [1], [2] operating as a recursive
predictor is derived. Another common prediction scheme
from the field of parametric statistics is provided by the
autoregressive integrated moving average (ARIMA) method-
ology which is based on spectral theory [3]. In partic-
ular, the autoregressive (AR) model for stationary time
series is an instance of ARIMA models. Each ARIMA
model with Gaussian disturbance has an equivalent linear
state-space model representation with associated Kalman fil-
tering scheme. In the context of fading channel prediction,
the application of AR models with associated Kalman fil-
tering scheme has been well studied, both for flat fading
scenarios, e.g. by Duel-Hallen [4] and Duel-Hallen et al. [5],
and for frequency-selective fading in OFDM systems, e.g.
Schafhuber and Matz (2005) [6], as well as in noisy chan-
nels, e.g. Sharma and Chandra (2007) [7]. Stochastic filter-
ing approaches are powerful and noise resistant, provided that
the mathematical modelling is reasonable. However, when
applying the most common of these techniques, the KF,
the underlying linear model assumption restricts its capability
of forecasting time series of more complex nature.

Apart from state-space models, more specialised statistical
models such as sinusoidal models and corresponding spectral
algorithms have also been employed for the task of fading
channel prediction through spectral methods as in Zoltowski,
Haardt, and Mathews (1996) [8]. While these methods pro-
duce impressive results when evaluated on comparatively
simple simulated radio channels such as those devised
from the classical Jakes model (1974) [9], Semmelrodt and
Kattenbach (2003) [10] found that they appear less powerful
when faced with more complicated radio channel models or
real-world physical measurements.

In recent years, with the massive increase of available
computational power, machine learning approaches making
use of predictive neural networks have seen increased popu-
larity in time series forecasting. In general, machine learning
techniques aim to extract essential information from complex
and extensive datasets. Such an information extraction task
can be formulated as a function estimation problem which
is studied more theoretically in non-parametric statistics
(e.g. [11]). Neural networks are nonlinear systems with inter-
mediate steps (layers) that combine affine transformations
(inter-layer connections) and fixed nonlinearities (activation
functions), where the coefficients of the affine transforma-
tions serve as model parameters that are to be fitted through
training. The architecture of most neural networks can be
classified according to the direction of data flow as either
recurrent or feedforward. The most representative recurrent
predictive neural networks are the standard recurrent neu-
ral networks (RNNs) as introduced in Elman (1990) [12]
and the standard long-short term memory units (LSTMs)
by Hochreiter and Schmidhuber (1997) [13], both employ-
ing full connections. Functioning as recursive predictors,
recurrent neural networks resemble the stochastic filtering

schemes in the sense that they also incorporate both the
ongoing observations and the updated hidden states into the
future forecasts. Among the feedforward neural networks,
convolutional neural networks (CNNs), e.g. as introduced
in [14], provide a powerful class of predictors, e.g. van den
Oord et al. (2016) [15]. The core components of CNNs are
the so-called convolutional layers which operate as tunable
finite impulse response filters followed by fixed nonlineari-
ties in a translation-invariant manner. Functioning as predic-
tors, CNNs resemble the finite-order AR models in the sense
that the forecasts depend on the temporal evolution of a fixed
number of observations from the past (local receptive field in
time). In wireless communications, machine learning meth-
ods employing neural networks have been applied to a wide
range of problems related to the physical layer of radio trans-
mission [16], [17], including transmitter and receiver design,
e.g. Aoudia and Hoydis (2018) [18], Felix et al. (2018) [19],
and fading channel modelling, e.g. Ye et al. (2018) [20].
On the issue of fading channel prediction, standard predictive
neural networks with full connections have been evaluated in
various contexts in single-subcarrier settings, e.g. Ding and
Hirose (2014) [21], Liao et al. (2018) [22], Jiang and Schotten
(2019, 2020) [23], [24], and Yuan et al. (2020) [25], with
[25] employing an extra CNN channel classifier to identify
patterns in the autocorrelation function of the channel prior
to applying the actual predictor. Overall, while the Kalman
filtering scheme is based on linear models and parametrised
probability assumptions, predictive neural networks incor-
porate nonlinearities and no specific interpretation (such as
Kalman gain or conditional state variance) is imposed on their
model parameters. In fact, the tunable parameters of a neural
network only provide the means for general function approx-
imation. Therefore, more complex mathematical models may
emerge.

B. CONCEPT OF THIS PAPER
In this work, a series of non-standard convolutional-type
predictive neural networks are proposed for multi-step ahead
fading channel forecasting in wireless communications.
In contrast to the majority of previous contributions that
focused on single-subcarrier settings, this work considers
the more complex multi-subcarrier setting and provides
a solution to the associated high dimensionality problem.
As opposed to [6] where a multi-subcarrier setting was con-
sidered and the actual channel forecasting is conducted in
the time domain after inverse Fourier transformation of the
channel transfer functions, the predictors proposed herein
work directly in the frequency domain where the channel
state information is processed through shift-invariant convo-
lutional layers. This approach is motivated by the following
consideration:

In [6], it is shown that when forecasting the impulse
response of a fading channel in the time domain via a lin-
ear minimum mean square error predictor, the values of
the impulse response for each of the different delay times
can be forecast separately, as they are pairwise uncorrelated
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in a wide-sense stationary uncorrelated scattering channel.
However, separate predictors with separate model parame-
ters have to be used for each different delay time. In con-
trast, when working in the frequency domain, considering
the correlation between adjacent subcarriers, an accurate
prediction of the transfer function at a single subcarrier
requires the consideration of its neighbouring subcarriers,
which increases the complexity of the prediction. However,
when considering common mobile communication channels,
the utilised bandwidth is always significantly smaller than the
carrier frequency, which leads to the time varying transfer
function behaving very similarly across the entire bandwidth.
This suggests the feasibility of working in the frequency
domain and choosing a shift-invariant predictive model that
applies to all subcarriers. As introduced in Section I-A, when
applied to the frequency axis of the channel state information,
the convolution operation as used in CNNs provides a suitable
component for devising such a shift-invariant predictor.

In this work, not only one but multiple variants of such
a convolutional-type predictor are designed. The reasons
for this are as follows: First, when producing multi-step
ahead predictions, the performance of a neural network
varies over the total prediction span, depending on the over-
all neural network architecture (e.g. recurrent or feedfor-
ward). According to previous observations, e.g. as remarked
by Mathieu et al. (2016) [26], CNN predictors (feedforward)
excel in long-term forecasting, whereas LSTM predic-
tors (recurrent) are more favourable in short-term forecasting.
Moreover, experimental results show that manipulating the
receptive field of a predictive neural network may also have
an impact on the performance. Accordingly, four classes
of convolutional-type predictors are designed herein, with
distinctive characteristics of each stated in the following:
Partially dilated CNN predictor

The frequency and time axes of the channel
state information are processed jointly through
two-dimensional convolutional layers, where dila-
tion factors are applied to the time axis so as to
incorporate long-term dependency in time.
The current version of this type of predictor gener-
alises the original one introduced in Ahrens et al.
(2019) [27] to a MIMO setting and uses extra skip
connections to achieve performance improvement.

Convolutional LSTM predictor
The frequency and time axes of the channel
state information are processed separately through
one-dimensional convolutional layers and LSTM
units, respectively. Basically, one-dimensional con-
volutional layers are encapsulated in an LSTM
architecture.

F0-convolutional LSTM predictor
The original network architecture of the convo-
lutional LSTM predictor is augmented with an
extra initial transformation that partitions the obser-
vation series of channel states into overlapping
segments, each covering a pre-determined amount

of subcarriers. In doing so, the size of the receptive
field in the frequency domain is made a tunable
hyperparameter of the corresponding predictor.

Combined neural network predictor
A final convolutional layer is attached to the
best long-term predictor (partially dilated CNN)
and the best short-term predictor (F0-convolutional
LSTM). By training this extra final layer, the overall
performance is improved.

Among these four classes of predictors, the first two are com-
putationally most efficient and the last three are introduced
in order of ascending prediction accuracy. Such progressive
performance improvement, however, comes at the price of
additional computational complexity. The two aspects of per-
formance and computational effort are considered separately
in the evaluation.

To the best of the authors’ knowledge, this is the first
time that such an extensive variety of specifically designed
convolutional-type predictive neural networks are applied to
the task of fading channel forecasting in wireless communi-
cations. All of the proposed predictors share the following
advantages over previously proposed methods:
• While most of the previous contributions to fading chan-
nel forecasting focused on single-subcarrier settings,
the proposed convolutional-type predictive neural net-
works apply to the more complex multi-subcarrier set-
ting (OFDM transmission).

• Compared to existing methods employing the KF for
AR model, standard RNN, or LSTM, including both the
direct adaption of previous single-subcarrier predictors
to the present setting and the time-domain approach
in [6] for OFDM transmission, the proposed predictors
deliver significantly better performance. This in particu-
lar shows the benefit of working in the frequency domain
and incorporating non-trivial receptive fields into the
predictor in a multi-subcarrier setting.

• Even though previous single-subcarrier predictors can
be made more powerful by incorporating multiple adja-
cent subcarriers as extra dimensions into the input time
series, the computational complexity of such an ap-
proach is significantly higher than that of the proposed
predictors. This in particular demonstrates the computa-
tional efficiency of employing convolutional layers for
processing high dimensional channel transfer functions.

• Traditional multi-step ahead prediction schemes rely on
iterative one-step ahead prediction, which is tedious and
susceptible to inherited errors. In contrast, the proposed
predictors deliver future channel states over the entire
horizon simultaneously, with higher prediction accu-
racy. Here, each prediction time step is treated as a sepa-
rate channel in the output layer so that prediction errors
over the entire horizon are incorporated concurrently
into the loss function and minimised jointly through
training.

• Although this work only addresses some of the
issues encountered in more complex MIMO settings,
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the experiments performed herein reveal a non-obvious
finding concerning neural network architectures: In
a MIMO setting, it is more effective to initially
keep the channel state information related to differ-
ent transmitter-receiver antenna pairs separate and only
combine the intermediate results in a final layer rather
than allowing inter-antenna connections throughout the
entire neural network.

The remainder of the paper is organised as follows. The
aforementioned four families of predictive neural networks
designed for the fading channel prediction task are presented
in Section II, followed by their common training algorithm
using supervised learning described in Section III. Section IV
introduces the evaluation datasets which are generated via
simulated channel transmission. A detailed specification of
the data generation scheme is provided as supplementary
material. In Section V, the proposed predictive neural net-
works are evaluated and compared with some of the com-
mon reference predictors whose descriptions are provided
in Appendix A. As an outlook, a possible way to extend
the current approach to a setting with time-variant channel
conditions is discussed in Section VI. Section VII concludes
the paper.

II. CHANNEL PREDICTION MODELS
Henceforth, let F denote the total number of subcarriers for
which channel state information is available and let P and
Q denote the total number of transmitter antenna ports and
receiver antennae, respectively. For the multi-step ahead pre-
diction task, let R denote the total number of desired predic-
tion time steps (total prediction span). One of the most useful
properties of a properly designed OFDM transmission system
is that the impact of the channel on the signal can be charac-
terised by a C(P×Q)×F -valued time-series, H true

= {H true
t }t

withH true
t = {H true (p,q)

t [f ]}(p,q),f ∈ C(P×Q)×F for all t , called
the time-varying channel transfer function or the channel
state information. As shown by Peled and Ruiz (1980) [28],
this characterisation is possible even in the case of a multipath
fading channel as long as the cyclic prefix used in the OFDM
transmission is longer than the maximum delay spread of
the channel. In practice, it is impossible to exactly measure
the actual channel transfer function. However, using refer-
ence signals embedded in the transmitted signal as specified
in 3GPP TS 36.211 [29], the channel transfer function can
be estimated from the received signal. In the sequel, the esti-
mated channel transfer function (observation series), which is
a slightly distorted and noise-corrupted approximation of the
actual channel transfer function, will be denoted by H est

=

{H est
t }t with H

est
t = {H

est (p,q)
t [f ]}(p,q),f ∈ C(P×Q)×F for all t .

The resolution of the time series H est and H true used in this
specific exposition of the method is given in Section IV.

The channel forecasting problem consists in finding an
appropriate mathematical model, 0, called predictor, such
that for any t , given observations {H est

t ′ }t ′≤t up to time t ,
0({H est

t ′ }t ′≤t ) delivers a reasonable forecast of the actual chan-
nel transfer function up to R steps ahead, {H true

t+r }r=1,...,R.

In this section, a variety of predictors employing predictive
neural networks are derived for the task of multi-step ahead
channel prediction. Each predictive neural network represents
a family of predictors 0(·, ξ ) parametrised by a real-valued
vector of parameters ξ ∈ R4.

Since the neural networks employed herein use real-valued
tensors as their inputs and outputs, data transformations that
convert the complex-valued channel state information into
real-valued tensors and vice versa are required before and
after invoking the neural network, respectively. The notion
of tensor used in this work is that of an indexed family
x = {xi0 , . . . , xid−1}i0∈I0,...,id−1∈Id−1 where the index sets Ij
are finite sets of integers. The total number of indices, d ,
is referred to as the dimension of the tensor x and the positions
of the indices, 0, . . . , d − 1, are referred to as the axes of the
tensor x. In this article, all of the proposed neural networks
have in common that they first process the channel state
information related to different pairs of antennas (p, q) ∈
P × Q separately and combine the intermediate informa-
tion in the final layer of the neural network. Accordingly,
the observation seriesH est is first converted into (P ·Q)-many
three-dimensional tensors x in (p,q) by setting

x in (p,q)t,0,f := ReH est (p,q)
t [f ]

x in (p,q)t,1,f := ImH est (p,q)
t [f ] (1)

for all p, q, t , and f . The tensors x in (p,q) for all pairs (p, q) form
the input of the neural network. The output of the predictive
neural network is again a three-dimensional tensor yout of the
form {youtt,λ,f }t,λ,f , with the index λ combining the antenna pair
indices (p, q), a real or imaginary part flag, and the prediction
step r . More precisely, the value

youtt,((p·Q+q)·2+0)·R+r−1,f + iy
out
t,((p·Q+q)·2+1)·R+r−1,f

=: 0({H est
t ′ }t ′≤t , ξ )

(p,q)
r [f ] (2)

is the prediction for H true (p,q)
t+r [f ] available at time t . (Here,

i denotes the imaginary unit.) In the subsequent presentation
of the proposed neural networks, all operations are expressed
in terms of tensor transformations and each neural network
layout describes the transformation from the input tensors
x in (p,q) for all (p, q) to the output tensor yout.

A. d-DIMENSIONAL CONVOLUTIONAL LAYERS
The cornerstone of the predictive neural networks pro-
posed in this work is the d-dimensional convolutional layer
which in turn is based on the d-dimensional convolution
operation. To simplify notation so that there is no need
to distinguish between different dimensions, in the sequel,
multi-index notation will be used, i.e., for a d-dimensional
tensor x = {xu0,...,ud−1}u0,...,ud−1 , its indices u0, . . . , ud−1
will be regarded as a vector u = (u0, . . . , ud−1) and its
entries will be referred to as xu. Let now d ∈ N be a
fixed dimension and let x = {xu0,...,ud−1}u0,...,ud−1 = {xu}u
and k = {kv0,...,vd−1}v0,...,vd−1 = {kv}v be d-dimensional
tensors. The d-dimensional convolution of x with k , denoted
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by x ∗ k = {(x ∗ k)u}u, is defined as

(x ∗ k)u :=
∑
v

xu−vkv (3)

for all multi-indices u, where the sum is formed over all
multi-indices v for which the terms xu−v and kv are defined.
When performed in the convolutional layer of a neural net-
work, the tensor k consists of tunable parameters of the
neural network and is called the convolution kernel. Note
that, while the right-hand side of (3) is technically defined
for all multi-indices u, it can only be of non-zero value if
there exists at least one multi-index v in the index set of the
convolution kernel k such that u−v lies within the index set of
the tensor x. In the following, it will always be assumed that
0 = (0, . . . , 0) is contained in the index set of the convolution
kernel and the result of the convolution operation x ∗ k will
be restricted to the index set of the tensor x.

A d-dimensional convolutional layer maps a (d + 1)-
dimensional input tensor x to a (d + 1)-dimensional output
tensor y. The first index of the tensors x and y is referred
to as the channel index. Correspondingly, the sizes of the
corresponding index sets are referred to as the total number
of input channels and the total number of output channels
of the convolutional layer. The transformation performed by
the convolutional layer consists of an affine transformation
called the convolutional connections, followed by a fixed
and typically nonlinear activation function. More precisely,
the convolutional connections map the input tensor x to an
intermediate tensor yint via

yintj,? =
∑
i

xi,? ∗ ki,j,? + bj (4)

where k is a (d + 2)-dimensional tensor used as a matrix of
d-dimensional convolution kernels and b = {bj}j is a bias
vector. Together, k and b form the free parameters of the
convolutional layer. In (4), the convolution operations are per-
formed along the d-dimensional multi-indices in the position
of ? and the indices i and j range over all input and output
channel indices of the convolutional layer, respectively. The
output tensor y is then obtained by applying the activation
function α of the convolutional layer to each of the entries of
the intermediate tensor yint, i.e.,

yj,u := α(yintj,u) (5)

for all output channel indices j and all multi-indices u.

1) CAUSALITY
In the case where one of the axes of the tensor x represents
time, the operation of convolving with a convolution kernel
k is a causal operation if the index set of k that corresponds
to the temporal axis consists only of non-negative integers.
In other words, if all valid temporal indices of k are non-
negative, the value of x ∗ k at time step t depends only on the
values of x up to time t . As the aim of this work is to design
a predictor, it is important that all operations used in the
prediction scheme are causal. Accordingly, temporal indices

of convolution kernels will always be chosen to consist purely
of non-negative integers in order to ensure causality of the
convolution operation. Frequency axis indices will always
be chosen as symmetrical ranges, i.e., ranges of the form
{−n, . . . , n}.

2) TRANSLATION INVARIANCE AND LOCAL RECEPTIVE FIELD
Two important properties of convolutional layers can be
inferred from equations (3), (4), and (5), which are essential
to the design of the proposed predictors.

First, convolutional layers are translation invariant, i.e.,
if any of the non-channel indices of the input tensor x are
shifted by fixed offsets, this will result in the same shifts
appearing in the output tensor y.

Second, each convolutional layer has a local receptive
field, i.e., the value of each entry of the output tensor y
depends only on a finite number of entries of the input tensor
x located at fixed offsets from the index of the output tensor
entry. More precisely, if V is the finite set of multi-indices
such that the convolution kernels ki,j,∗ are defined on −V ,
then, for a given multi-index u, the value yj,u depends only
on the values xi,u′ with u′ − u ∈ V and the convolu-
tional layer is said to have local receptive field V . Observe
that, if L-many convolutional layers with local receptive
fields V (0), . . . ,V (L−1) are stacked, i.e. applied in succes-
sion, the resulting total transformation has a cumulative local
receptive field of V (0)

+ · · ·+V (L−1), that is, the value of the
transformed tensor yj,u depends on the value of the input ten-
sor xi,u′ only if there exist offsets v(0) ∈ V (0), . . . , v(L−1) ∈
V (L−1) such that u′− u = v(0)+ · · · + v(l−1). As the cumula-
tive local receptive field determines the amount of historical
information available for forecasting, it is a key characteristic
of a predictive neural network and will be discussed in more
detail for each of the predictors introduced below.

B. PARTIALLY DILATED CNN PREDICTOR
The notion of a partially dilated convolutional neural net-
work (CNN) was originally introduced in [27] for multi-step
channel forecasting in a single-input and single-output
(SISO) setting under a different environmental condition,
incorporating some of the ideas from [15]. The layout of
the CNN presented in this section is designed for the more
challenging general MIMO setting and can be considered as
a refined version of that in [27] in the sense that performance
is improved by incorporating skip connections that link all
hidden layers directly to the output layer.

Most CNNs employ convolution kernels that are indexed
by ranges of integers with step size one, usually of the form
{0, . . . , n − 1}. By replacing these ranges with index sets of
the form {0, δ, 2δ, . . . , (n − 1)δ}, where δ ∈ Z≥1 is an addi-
tional hyperparameter called the dilation factor, the actual
convolution kernel is effectively spread out (dilated) along
the corresponding axis without altering the number of free
parameters. From (3) (note in particular, how the multi-index
v affects the weighting of the tensor x) and the discussion on
local receptive fields in Section II-A.2, incorporating dilation
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into the convolution kernels of a CNN drastically increases
the size of its local receptive field. For the task of multi-step
ahead channel prediction, the proposed partially dilated CNN
encapsulates two-dimensional convolutional layers that oper-
ate simultaneously on the temporal and frequency axes of the
observation series H est, that is, in (4), let d = 2 and let ?
represent the t- and f -axes, with dilation factors applied to
the t-axis.

FIGURE 1. Layout of partially dilated CNN predictor.

1) NETWORK LAYOUT OF PARTIALLY DILATED CNN
PREDICTOR
The network layout of the proposed partially dilated CNN
predictor is displayed in FIGURE 1, with the corresponding
data flow described in the following. First of all, since convo-
lutional layers assume the first index of their input tensors to
be the channel index (recall Section II-A), the first two indices
of the tensors {x in (p,q)t,λ,f }t,λ,f and {youtt,λ,f }t,λ,f introduced in
equations (1) and (2) have to be interchanged prior to and after
being processed through the CNN, respectively. The partially
dilated CNN predictor employs (P · Q)-many independent
sub-CNNs that are connected in a final layer, where each
sub-CNN is related to a different antenna pair (p, q) and
takes the tensor x in (p,q) as input. Each antenna pair-specific
sub-CNN consists of 4 consecutive residual blocks, l =
0, 1, 2, 3, with 2 initial input channels as determined by the
shape of x in (p,q), followed by 12 output channels per block.
Each residual block (labelled CNN(p,q),(l) in FIGURE 1) is
composed of 2 initially separate two-dimensional convolu-
tional layers (recall (4) and (5) with d = 2): one with kernel
size 4×5, dilated by a factor of δ×1with δ = 4l and using the
hyperbolic tangent activation function, tanh, the other with a
kernel size of 1 × 1 and using no activation function. The
outputs of these convolutional layers are then added together.
The outputs of each of the residual blocks from all of the
antenna pair-specific sub-CNNs are concatenated along the
channel axis into a single tensor and then processed through
a final convolutional layer with (P · Q · 2 · R)-many output
channels and kernel size 1× 1, using no activation function.
The above neural network layout, in particular the choice

of layer sizes, is adapted to the evaluation datasets used in the
present exposition of the method (cf. Section IV). In general,

hyperparameter choice should always be adjusted to the
nature of the underlying data. Note that incorporating residual
blocks is a common technique used in many modern CNN
architectures, which aims to improve the backpropagation
of the gradient, thereby speeding up the training process as
demonstrated by He et al. (2016) [30]. The residual connec-
tions in the present work are applied in the same manner as
the ones in [15]. As a refinement over the neural network
architecture proposed in [27], the introduction of the so-called
skip connections, e.g. as introduced in Graves (2013) [31],
in the current neural network, i.e., using the outputs from
all the residual blocks as the input to the final layer instead
of only the output from the last block of each sub-CNN,
increases the prediction accuracy and further contributes to
speeding up convergence [15].
Remark: A straightforward treatment of a general MIMO

setting would be to employ a joint predictive neural network
that takes all of the tensors x in (p,q) concatenated over all
antenna-pair indices (p, q) as a whole as input. Compared to
such an approach, the proposed architecture of separating the
channel state information associated with different antenna
pairs in the early layers turns out to be more feasible in
experiments. This applies to all predictive neural networks
and all types of MIMO correlation considered in this article.
To some extent, the transformation performed in the final
layer is trained to mimic the MIMO correlation of the under-
lying transmission channel. This layout aids greatly in low
MIMO correlation scenarios where the connections between
the different transmitter-receiver groups are expected to be
weak, whereas in high MIMO correlation scenarios, only
allowing inter-antenna pair connections in the final layer still
proves to be more effective than allowing such connections
throughout the entire neural network.

2) LOCAL RECEPTIVE FIELD OF PARTIALLY DILATED CNN
PREDICTOR
As stated in Section II-A.1, the kernels of the convolutional
layers are causal along the temporal axis and centred on
the frequency axis. Therefore, for each residual block l =
0, 1, 2, 3 introduced in Section II-B.1 (recall CNN(p,q),(l) in
FIGURE 1), the local receptive field V (l) (recall the definition
in Section II-A.2) is given by

V (l)
= {−3 · 4l,−2 · 4l,−4l, 0} × {−2,−1, 0, 1, 2}.

The cumulative local receptive field of the partially dilated
CNN predictor then amounts to

V (0)
+ V (1)

+ V (2)
+ V (3)

= {−255, . . . , 0} × {−8, . . . , 8}.

This is illustrated by the green asterisk-filled box in
FIGURE 2, where the receptive fields of each of the proposed
predictors are displayed superimposed onto a plot of a typical
observation seriesH est. Notice the oblong shape of the recep-
tive field of the partially dilated CNN predictor that results
from dilating only along the temporal axis.
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FIGURE 2. Receptive fields of different predictive neural networks.

C. CONVOLUTIONAL LSTM PREDICTOR
In contrast to the partially dilated CNN using a feedforward
architecture, the convolutional LSTM to be introduced in
this section is a recurrent predictor. An LSTM processes
the input data time step by time step, retaining a hidden
state that contains a so-called cell value and is carried over
between time steps. The output of the current time step
is computed from the current input and the previous hid-
den state. In a convolutional LSTM, all connections linking
these values to the current output are convolutional layers
that operate in a translation-invariant manner along one or
more axes (e.g. Shi et al. (2015) [32]). In the present setting,
one-dimensional convolutional layers are used to process the
frequency axis of the observation series H est, that is, in (4),
let d = 1 and let ? represent the f -axis.

FIGURE 3. Layout of convolutional LSTM predictor.

1) NETWORK LAYOUT OF CONVOLUTIONAL LSTM
PREDICTOR
The layout of the proposed convolutional LSTM predictor is
illustrated in FIGURE 3, with the corresponding data flow
described in the following. Like the partially dilated CNN,
the convolutional LSTM predictor employs (P · Q)-many
separate subnetworks that are connected in a final convolu-
tional layer, where each subnetwork takes one of the antenna
pair-specific tensors x in (p,q) in (1) as input. The antenna
pair-specific subnetworks (blocks labelled conv-LSTM(p,q)

in FIGURE 3) are themselves convolutional LSTMs, each

consisting of 4 one-dimensional convolutional layers (recall
(4) and (5) with d = 1), 3 gates (input, forget, and output
gate), 1 auxiliary activation function, and 2 feedback lines
(indicated by z−1 in FIGURE 3). The operation of each
sub-convolutional LSTM proceeds as follows: For each index
pair (p, q), let c(p,q)t = {c(p,q)t,λ,f }λ,f and h(p,q)t = {h(p,q)t,λ,f }λ,f
denote the tensors of cell value and remaining hidden state at
time step t , respectively, which are two-dimensional tensors
with 12 channels (λ-axis) and initialised to zero for t = −1.
For each time step t ≥ 0, the current input tensor x in (p,q)t
is concatenated with the previous hidden state h(p,q)t−1 along
the channel axis, resulting in a tensor with 2 + 12 channels.
This tensor is then processed in parallel through 4 separate
one-dimensional convolutional layers with 12 output chan-
nels and kernel size 5. Three of these convolutional layers are
associated with gates and use the sigmoid activation function,
sigm, which is defined by

sigm(x) :=
1

exp(−x)+ 1
,

with output tensors denoted by ψ (p,q)
in t , ψ (p,q)

fo t , and ψ (p,q)
ou t and

referred to as input, forget, and output gate, respectively. The
remaining convolutional layer uses the hyperbolic tangent
activation function, tanh, with output tensor denoted by y(p,q)t .
Following these 4 convolutional layers, the current cell value
c(p,q)t and hidden state h(p,q)t are computed in a recurrent
manner via

c(p,q)t := y(p,q)t � ψ
(p,q)
in t + c

(p,q)
t−1 � ψ

(p,q)
fo t

h(p,q)t := tanh(c(p,q)t )� ψ (p,q)
ou t

where � denotes the Hadamard product and the addi-
tional tanh activation function is applied entry-wise as
usual. Finally, the output tensors of the antenna specific-
subnetworks, h(p,q)t for all indices p and q, are concatenated
along their channel axes and passed through a final convolu-
tional layer with (P·Q·2·R)-many output channels and kernel
size 5, using no activation function.

As with the partially dilated CNN predictor, the above
network layout, in particular the hyperparameter choice,
is adapted to the evaluation datasets introduced in Section IV
and should be adjusted in a data-adaptive manner in general.
As noted in the remark at the end of Section II-B.1, sepa-
rating the channel state information associated with different
antenna pairs near the input layer of the neural network
improves the performance in a general MIMO setting.

2) RECEPTIVE FIELD OF CONVOLUTIONAL LSTM PREDICTOR
Analysing the receptive field of the convolutional LSTM pre-
dictor requires unfolding the network architecture. Unfold-
ing is basically performed by creating a countably infinite
number of copies of the network, one copy per time step,
and replacing each delay loop inside any of these copies
by a connection to the corresponding point in the pre-
ceding copy. For a more formal description of unfolding,
see Zhang et al. (2016) [33]. This essentially converts the
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convolutional LSTM into an infinite stack of convolutional
layers, each receiving an input from a different time step
along with the hidden state of the preceding layer. Performing
the above analysis reveals that the cumulative receptive field
of the convolutional LSTM predictor is cone-shaped, expand-
ing along the frequency axis whenmoving backwards into the
past until the entire spectrum is covered. This is illustrated in
FIGURE 2 by the blue area filled with vertical lines.

The shape of the receptive field differs significantly from
that of the partially dilated CNN predictor which is much nar-
rower in the frequency domain. In experiments, the partially
dilated CNN predictor exhibits better performance than the
convolutional LSTMpredictor, which suggests that localising
the receptive field in the frequency domain may boost perfor-
mance. In the following section, a modification of the current
convolutional LSTM predictor will be devised, where the size
of the receptive field in the frequency domain is reduced to
that of the partially dilated CNN predictor.

D. F0-CONVOLUTIONAL LSTM PREDICTOR
Based on the discussion in Section II-C.2 on the receptive
field of the preceding predictors, a modified version of the
convolutional LSTM predictor with smaller receptive field is
presented in this section. In the sequel, the total number of
subcarriers covered by the receptive field of such a predictor
is denoted by F0, with F0 < F , and the corresponding
predictor is referred to as F0-convolutional LSTM predictor.

FIGURE 4. Operation of F0-convolutional LSTM predictor.

The prediction scheme of the F0-convolutional LSTM is
illustrated in FIGURE 4 and described in the following.
First, each of the original input tensors x in (p,q) in (1) is
partitioned into F-many overlapping segments, x in (p,q),(m) for
m = 0, . . . ,F−1, where the frequency axis f of each segment
x in (p,q),(m) = {x in (p,q),(m)t,λ,f }t,λ,f ranges from m − (F0 − 1)/2
to m+ (F0 − 1)/2. (Here, for simplicity F0 is assumed to be
odd.) In the case where one of these bounds falls outside of
the originally considered spectrum, the corresponding entries
are filled with zeros. For eachm, the tensors x in (p,q),(m) for all
indices (p, q) are processed through the convolutional LSTM
from Section II-C and the neural network output tensor is
denoted by yout (m) = {yout (m)t,λ,f }t,λ,f . The final neural network

output of the F0-convolutional LSTM, yout = {youtt,λ,f }t,λ,f ,
defined in accordance with (2), is obtained by taking those
entries of each segment yout (m) that are located on the central
subcarrierm and concatenating them along the frequency axis
over all m, i.e.,

youtt,λ,f := yout (f )t,λ,f

for all t , λ, and f (substituting m = f ).
Note that, in the actual algorithm, for each m, the output

layer of the convolutional LSTM only consists of connections
that directly link to the values yout (m)t,λ,f with f = m, as only the
central subcarrier m of each segment yout (m) is relevant for
the computation. This allows for a reduction of the number
of operations required for the prediction when implementing
this type of predictor.

Note that by transforming the original convolutional
LSTM predictor into the F0-convolutional LSTM predictor,
the size of the receptive field in the frequency domain, F0,
is made a tunable parameter. Following the discussion in
Section II-C.2, F0 is set to 17 which leads to a predic-
tor whose receptive field more closely matches that of the
partially dilated CNN predictor. The receptive field of this
F0-convolutional LSTM predictor is illustrated in FIGURE 2
by the red area filled with horizontal lines.

E. COMBINED NEURAL NETWORK
Experiments in SectionV show that among the preceding pre-
dictors, for long-term predictions (i.e. for r near R), the par-
tially dilated CNN predictor is advantageous over both of the
LSTM-based predictors, whereas for short-term predictions
(i.e. for r near 1), the F0-convolutional LSTM delivers the
most accurate results. This suggests a possibility of over-
all performance improvement by seeking appropriate linear
combinations of the outputs from the best predictors.

FIGURE 5. Layout of combined neural network predictor.

As illustrated in FIGURE 5, the combined neural net-
work predictor consists of the partially dilated CNN pre-
dictor, the F0-convolutional LSTM predictor, and an extra
one-dimensional convolutional layer. For each time step t ,
the two-dimensional output tensors {youtt,λ,f }λ,f of the partially
dilated CNN predictor and the F0-convolutional LSTM pre-
dictor are concatenated along the channel axis λ and passed
through the extra one-dimensional convolutional layer con-
volving along the frequency axis f , that is, in (4), let d = 1
and let ? represent the f -axis, with (P ·Q · 2 ·R)-many output
channels and kernel size 5, using no activation function.
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Since the combined neural network is based on two exist-
ing predictors, these two preceding predictors can be trained
separately prior to being combined. For training the combined
neural network, it then suffices to adjust only the parameters
of the final convolutional layer, which is a much less time
intensive task than simultaneously training all of the param-
eters and also allows for a more memory-intensive training
algorithm (e.g. L-BFGS) to be used (cf. Section III).

III. TRAINING ALGORITHM
Recall that each of the neural networks introduced in
Section II defines a predictor 0(·, ξ ) parametrised by a vector
of neural network parameters ξ ∈ R4. The vector ξ consists
of all the entries appearing in the convolutional kernels and
bias vectors of the neural network. In supervised learning,
the free parameters of a predictor are adjusted to all avail-
able labelled training examples (i.e. training inputs paired
with training targets) by minimising the average distance
between the predictions and the corresponding target values
across all training inputs. Such distance is measured by the
so-called loss function. The loss function used in this work
is the mean squared error of the multi-step ahead predictions
delivered by the predictor. Given time seriesH est andH true as
introduced in the beginning of Section II, the mean squared
error η0((H est,H true), ξ ) of the predictor0(·, ξ ) on these time
series can be computed via

η0((H est,H true), ξ )

:= mean
p,q,t,r,f

∣∣0({H est
t ′ }t ′≤t , ξ )

(p,q)
r [f ]− H true (p,q)

t+r [f ]
∣∣2 (6)

where the indices p, q, r , and f range over all available trans-
mitter antenna ports, receiver antennae, prediction time steps,
and subcarriers, respectively. (Recall the data transformations
between the complex-valued time series and the real-valued
neural network input and output tensors in (1) and (2).) In (6),
for the temporal index t , only indices that are at least as large
as a specified initial period T0 are used to form the mean,
so that the predictor is given enough historical information to
produce meaningful predictions. In the present case, a value
of T0 = 255 is chosen, which coincides with the size of the
cumulative local receptive field of the partially dilated CNN
predictor along the temporal axis. The total prediction span R
is set to 10.

The parameters of the proposed neural networks are
adjusted by means of refined versions of the stochastic gra-
dient descent (SGD) algorithm. In SGD, the loss values
η0((H est,H true), ξ ) are averaged over a certain amount of
training examples in each update step and improved by mov-
ing the parameter vector ξ ∈ R4 locally in direction of
the negative gradient of the averaged loss. More specifically,
the training dataset X containing pairs of training inputs
and targets (H est,H true) is randomly partitioned into disjoint
subsets {X batch

i }i∈I called mini-batches that are passed suc-
cessively through the neural network being trained. Each
pass through the entire training dataset X is called an epoch.
At the beginning of each epoch, a new random partition

X =
⋃̇

i∈I X batch
i into mini-batches is chosen. In order to

includemore variety in each of the mini-batches, each record-
ing of the time series (H est,H true) in the training dataset X
is subdivided into 8 overlapping segments. These segments
overlap in such amanner that the available prediction for each
time step of the form t + r with t ≥ T0 and r = 1, . . . ,R is
included exactly once in an epoch in the calculation of the loss
value. Now, beginning with a randomly initialised parameter
vector ξ ∈ R4, the parameter update rule for each mini-batch
reads as

ξ ← ξ − γ · mean
(H est,H true)∈X batch

i

∇ξη
0((H est,H true), ξ )

where γ > 0 is a scaling factor called learning rate and
∇ξ refers to the gradient operator with respect to the param-
eter vector ξ . The gradient value ∇ξη0((H est,H true), ξ ) is
computed in an efficient manner via reverse-mode automatic
differentiation, more specifically, via the backpropagation
algorithm [14], which basically relies on the application of
the chain rule of multivariable calculus.

All of the proposed neural networks except for the com-
bined neural network are trained for 48 epochs using the
Adam training algorithm by Kingma and Ba (2015) [34]
which is a refined version of the SGD method. The learn-
ing rate γ is set to 0.01. The mini-batch size #X batch

i is
increased gradually during the training and is set to 2, 4,
or 8 during the 16 epochs in the beginning, middle, or end
of the training, respectively. The combined neural network
is trained for 48 epochs using the quasi-Newton L-BFGS
algorithm of Liu and Nocedal (1989) [35] which, being a
second-order method, generally exhibits faster convergence
at the cost of high memory requirements. As the training of
the combined neural network only requires the adjustment
of a relatively low number of parameters (final convolutional
layer), the L-BFGS algorithm is feasible for this task.

All computations are performed using the PyTorch
machine learning framework developed by Paszke et al.
(2019) [36].

IV. EVALUATION DATASETS
For training and evaluating the predictive neural networks,
simulated transmissions over dispersive fading channels
with Rayleigh components, cf. Barsocchi (2006) [37] and
Schulze (1989) [38], are performed according to the refer-
ence measurement procedures defined in the well-established
3GPP Long Term Evolution (LTE) standards TS 36.101 [39]
and TS 36.211 [29]. Accordingly, the estimated and actual
transfer functions H est,H true over a certain period of time
are recorded and collected into the training and test datasets.
The simulation is implemented in theMatlab computing envi-
ronment, partially making use of the LTE Toolbox [40]. The
data generation scheme and the resolution of the time series
H est,H true used herein are summarised below and described
in more detail in the supplementary material.

Throughout the simulation, OFDM symbols distributed
across 600 subcarriers (i.e. 50 resource blocks) spanning
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TABLE 1. Mean squared errors of proposed and reference predictors in dB.

a bandwidth of 10 MHz are transmitted in a SISO
or MIMO transmission mode, following the LTE stand-
ards [29], [39]. Normal cyclic prefix is used, which cor-
responds to a symbol rate of 14 OFDM symbols per
millisecond (i.e. 7 OFDM symbols per slot). For each
antenna configuration, the channel transmission is simu-
lated in a first step independently for each of the indi-
vidual transmitter-receiver antenna pairs, following the
stochastic model for dispersive fading with Rayleigh com-
ponents [37], [38] approximated by the generalised method
of exact Doppler spread by Pätzold et al. (2009) [41], with
amplitudes, path delays, and maximum Doppler frequen-
cies chosen according to [39, B.2.1, B.2.2]. Subsequently,
the transmitter-receiver antenna pairs are mixed according to
one of the three reference examples of MIMO correlation
matrices given in [39, B.2.3]. On top of that, for a given
target signal to noise ratio (SNR), Gaussian white noise with
corresponding variance is added to each transmitted signal.
The training algorithm presented in this work uses the actual
channel transfer functionH true as ground truth. In the simula-
tion, H true is obtained by transmitting an impulse train from
each of the transmitter antennas in separate copies of the same
simulation environment and recording the received noise-free
signals. For training a predictor using data originating from
a real-world system, H true can be replaced by H est which
slightly decreases the prediction accuracy.

For each seed of the simulation, a transmission period of
400 ms (i.e. 40 frames) in total is recorded and cell-specific
reference signals according to [29] are used for the channel
estimation. Due to the nature of the prescribed reference
signals, the estimated channel transfer function is evaluated
slot-wise and every 3 subcarriers. This results in 800 time
steps and F = 200 subcarriers in total for each recording of
the time series H est and H true. With this temporal resolution,
the total prediction span of R = 10 time steps corresponds to
a time period of 5 ms (i.e. one half-frame).

Overall, for each simulation setting specified in terms of
SISO or MIMO setting, MIMO correlation, delay profile,
maximum Doppler frequency, and target SNR, 12 seeds in
total are used to generate the random transmission chan-
nel along with the recordings (H est,H true) for training one

predictive neural network. Here, the cell IDs used for deter-
mining the cell-specific reference signals are chosen such that
each equivalent class of cell ID corresponding to the same
set of resource elements assigned to the reference signals
appears twice. Accordingly, another 6 seeds and an extra
single seed are used for generating the test and validation
data, respectively.

V. RESULTS
In this section, the predictive neural networks presented
in Section II are evaluated on the datasets introduced in
Section IV and compared to some of the common ref-
erence predictors. In the methodical comparative studies
in Sections V-A and V-B, a default channel configuration,
with 4 × 2 antenna configuration, EVA70 propagation
conditions (cf. [39, B.2.1, 2.2]), medium MIMO correlation
(cf. [39, B.2.3]), and an SNR of 9 dB, is used for both training
and evaluating the predictors. In the cross-scenario tests in
Section V-C, a fixed class of predictors corresponding to
different antenna configurations are trained and tested across
a variety of channel configurations.

In accordance with the loss function defined in (6) which is
optimised through training, the performance of each consid-
ered predictor is measured by the mean squared error (MSE)
of the prediction. The MSE is reported in decibels (dB); as
the time-varying transfer function H true is normalised to an
expected power of 1, this value coincides with the relative
squared prediction error.

A. PERFORMANCE COMPARISON
The subsequent comparative evaluation includes a per-
formance analysis of the proposed convolutional-type
neural networks and comparisons with three classes of
reference methods: a straightforward adaption of exist-
ing single-subcarrier predictors, the OFDM-specific time-
domain approach proposed in [6], and an alternative
(non-convolutional) solution to the multi-subcarrier problem.
A brief description of the reference methods is provided in
Appendix A. The results of the comparative study are pre-
sented in TABLE 1, illustrated in FIGURE 6, and interpreted
in the following.

193084 VOLUME 8, 2020



L. Ahrens et al.: Convolutional-Type Neural Networks for Fading Channel Forecasting

FIGURE 6. Performance comparison of proposed and reference
predictors.

1) PERFORMANCE OF PROPOSED NEURAL NETWORKS
The performance evaluation of the proposed convolutional-
type neural networks is presented in Part A of TABLE 1. Over
the total prediction span of R = 10 time steps, the partially
dilated CNN predictor is superior to both the regular and the
F0-convolutional LSTM predictors in the later steps r � 1.
Vice versa, both of the convolutional LSTM predictors per-
form better than the partially dilated CNN predictor in the
earlier steps r � R. Among the two LSTM-based predictors,
the F0-convolutional LSTM outperforms the convolutional
LSTM in each prediction step r by around 0.2 dB (5%) on
average. Overall, the combined neural network exhibits the
highest prediction accuracy among all predictors across all
prediction steps.

Note that for the first 7 prediction steps, all proposed neural
networks achieve prediction errors that are below the noise
level of the input signal, i.e., MSE < −SNR = −9 dB, which
displays the intrinsic denoising capability of these predictors.

2) COMPARISON WITH PREVIOUS SINGLE-SUBCARRIER
PREDICTORS
As stated in the introduction Section I-A, previous con-
tributions to fading channel forecasting mainly focused
on single-subcarrier settings and employed common pre-
dictors such as the Kalman filter (KF) for autoregressive
(AR) channel modelling, the standard recurrent neural
network (RNN), the nonlinear autoregressive exogenous
model (NARX) RNN, and the standard LSTM. In the
present evaluation, each of these single-subcarrier predictors
is straightforwardly adapted to the present OFDM setting
by treating each subcarrier f = 0, . . . ,F − 1 sepa-
rately and passing each single-subcarrier observation series
of the form {H est

t [f ]}t through the same predictor with
F0 = 1 (cf. Appendix A-A, A-C, A-D, A-E formore details).
From Part B of TABLE 1, with the standard LSTM

with F0 = 1 performing the best among all considered
single-subcarrier predictors, all of these predictors deliver
significantly lower prediction accuracy than any of the pro-
posed convolutional-type neural networks over the entire pre-
diction span.

Evidently, employing a joint single-subcarrier predictor
shared across the entire bandwidth in the spectrum is not
an appropriate approach for treating OFDM transmission
systems. As more advanced alternatives, the subsequent ref-
erence predictors either operate in the time domain and
employ separate predictive models associated with different
delay times in the channel impulse response or incorporate
more subcarriers into the receptive field of the predictor
(i.e. F0 > 1).

3) COMPARISON WITH PREVIOUS TIME-DOMAIN
APPROACH
In [6], a method that uses AR channel models in the time
domain was designed specifically for fading channel fore-
casting in OFDM transmission systems. The method is
based on inverse Fourier transforming the observed chan-
nel transfer functions into observation series in the time
domain and employing separate AR models for different
delay times in the time series of channel impulse responses
(cf. Appendix A-B for more details). The key observation
motivating such a method is that, by passing to a time domain
representation of the available channel state information,
the interdependencies between different subcarriers in the
frequency domain (correlation bandwidth) disappear. As pre-
sented in [6], the method does not take into account the
presence of noise in the observations and uses a technique
for fitting the AR models which is not directly applicable in
the present case. As remarked in Section I-A, each ARIMA
model with Gaussian disturbance has an equivalent linear
state-space model and thus, a natural extension of the method
is the application of a Kalman filtering scheme using the
prediction error method for fitting the parameters.

From Part C of TABLE 1, for one-step ahead prediction
r = 1, the time-domain AR/KF method of [6] performs
better than any of the single-subcarrier reference predictors
(compare Part B of TABLE 1), yet worse than any of the
proposed predictors (Part A of TABLE 1); for later prediction
steps r � 1, however, the method appears to be unstable
and the MSE explodes when increasing the prediction span r .
A potential cause of the unstable behaviour in the later steps is
the unequal distribution of power over the impulse response,
which entails the presence of large values at delay times
near zero. Considering the fact that power is distributed more
uniformly across the spectrum, such problem does not affect
predictors that work directly in the frequency domain as
proposed in this work.

4) COMPARISON WITH ALTERNATIVE MULTI-SUBCARRIER
APPROACH
In order to achieve more comparable reference performance
and as a representative natural extension of the existing
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single-subcarrier methods, the best among them, the standard
LSTM predictor (recall V-A.2), is now endowed with higher
input dimension which is associated with larger receptive
fields in the frequency domain, F0 = F = 200 or F0 = 17.
Accordingly, the resulting fully-connected LSTM is referred
to as standard LSTM predictor with F0 = 200 or F0 = 17
(cf. Appendix A-C for more details). The evaluation of this
type of predictor is presented in Part D of TABLE 1.

Compared to the single-subcarrier predictors, the standard
LSTM predictor with F0 = F = 200 performs even worse
and is heavily overfitted, which results from the huge num-
ber of parameters required in the fully-connected layers for
treating the entire bandwidth F = 200 as a whole. This
particularly contrasts with the proposed convolutional LSTM
predictor that uses the same size of receptive field F0 = F in
the frequency domain but requires significantly fewer param-
eters by employing shared weights in the frequency domain.

Among all reference predictors, the standard LSTM pre-
dictor with F0 = 17 exhibits the best performance which
is nearly as good as the overall performance of the pro-
posed F0-convolutional LSTM predictor with the same local
receptive field. However, the high performance of such a
fully-connected LSTM is achieved at the price of much
higher computational effort compared to all of the proposed
convolutional-type neural networks (see Section V-B for
more details).
Remark: It is worth noting that as an advantage over the

traditional iterative procedure for multi-step ahead predic-
tions as used in the KF and NARX, the predictive neural net-
works proposed in this work are able to deliver all multi-step
ahead predictions over the entire horizon R simultaneously
and avoid inherited errors. In fact, by employing separate
channels associated with different prediction time steps r =
1, . . . ,R in the output layer of the predictive neural network,
the prediction errors over the entire horizon R are included
simultaneously in the loss function and minimised jointly
during the training. Note that such network layout is also
implemented in all of the reference predictors except for KF
and NARX. Therefore, the benefit of the proposed treatment
of multi-step ahead predictions can be observed when com-
paring all reference predictors withF0 = 1 (as it would be fair
to compare predictors with the same level of performance):
In FIGURE 6, the plots of MSEs over r = 1, . . . ,R for the
KF and NARX with F0 = 1 exhibit higher slopes than those
for the RNN and LSTM with F0 = 1.

B. COMPUTATIONAL COMPLEXITY
TABLE 2 displays information regarding the computational
complexity of the proposed predictors and the reference pre-
dictors considered in Section V-A. The number of multiplica-
tions is given per time step and per subcarrier and relates to
the naïve implementation without any fast convolution or fast
matrix multiplication algorithms which could be used in an
application requiring higher efficiency. For the time domain
KF approach, the number of multiplications (marked by *)
does not include the multiplications performed in the two

TABLE 2. Computational complexity of proposed and reference
predictors.

required Fourier transforms, whose number depends approx-
imately logarithmically on the total number of subcarriers F
and is low compared to the effort of the remaining parts of the
algorithm. The number of additions required by the predictors
is very similar to the number of required multiplications and
therefore not included in the table. All activation functions in
the considered neural networks are either hyperbolic tangent
or sigmoid activations which require almost the same com-
putation time, ensuring the comparability of the results.

According to Part A of TABLE 2, among the proposed
predictors, the partially dilated CNN predictor and the convo-
lutional LSTM predictor are computationally most efficient.
Note that even though the convolutional LSTM predictor
requires the fewest number of parameters andmultiplications,
its sequential nature limits the degree of parallelisation of
computation that can be performed during training, which
makes the training process more time consuming than that
of the feedforward CNN predictor. Compared to the regular
convolutional LSTM predictor, the F0-convolutional LSTM
predictor uses a computation scheme that maintains separated
states for each objective subcarrier, which accounts for the
higher computational effort required during inference. This
also applies to the combined neural network predictor, given
its nature of combining both the performance-wise advan-
tages and the computational disadvantages of the preced-
ing predictors. Overall, the numbers indicate that running
the proposed predictors in real-time is indeed possible on
modern hardware. More precisely, an entry-level graphics
processing unit (GPU) (as of September 2020) such as the
Nvidia GeForce GTX 1650 with roughly 2.5 T floating point
operations per second (FLOPS) can perform the computa-
tions required for the combined predictor at about 20% load,
even without further optimisation of the operations involved
and more energy efficient implementations on dedicated
hardware, possibly using fixed-point arithmetic, are certainly
possible.

Considering Part B of TABLE 2, among the single-
subcarrier reference predictors considered in Section V-A.2,
the methods employing RNN, NARX, and LSTM with
F0 = 1 require much less computational effort compared
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to the proposed predictors. Such computational efficiency,
however, relies on the single subcarrier modelling which
is, according to the performance evaluation in Part B of
TABLE 1, not complex enough for treating OFDM transmis-
sion systems. The computational complexity of the KF-based
single-subcarrier predictor is close to that of the proposed
F0-convolutional LSTM.
According to Part C of TABLE 2, the OFDM-specific

time-domain method considered in Section V-A.3 has the
same complexity as the single-subcarrier KF (not including
the computational effort of the Fourier transforms, which is
minor) and is therefore comparable to the F0-convolutional
LSTM in respect of computational complexity. However,
as displayed in Part C of TABLE 1, the method only achieves
high accuracy across low prediction spans which does not
justify the relatively high computational complexity.

According to Part D of TABLE 2, among the multi-
subcarrier reference predictors considered in Section V-A.4,
the standard LSTM predictor with F0 = 200 requires an
extremely large number of parameters, which translates to a
very high memory requirement, resulting from the fact that
such a fully-connected network does not efficiently share
parameters across subcarriers. Finally, the performance-wise
most competitive reference predictor, the standard LSTM
predictor with F0 = 17 (cf. Part D of TABLE 1), requires
more computational resources than any of the proposed pre-
dictors. In particular, it uses more than 15 times as many
parameters and 3 times as many multiplications as the
F0-convolutional LSTM with the same size of receptive field
in the frequency domain.

C. CROSS-SCENARIO PERFORMANCE
While in Sections V-A and V-B, different prediction schemes
are evaluated on the same dataset related to a default chan-
nel configuration, in this section, a representative class of
predictors are trained on and tested across different datasets
associated with different channel configurations. Conducting
such cross-scenario tests aims to verify the general appli-
cability of the proposed neural networks and assess the
impact of the channel parameters on the predictor perfor-
mance. Considering the computational effort required during
the extensive tests, in particular during the training phases,
the partially dilated CNN predictors, which are the fastest
to train, are used as the representative predictors. In accor-
dance with [39, B.2.1-2.3] (recall the data generation scheme
introduced in Section IV), the simulation settings considered
herein include the following channel parameters: antenna
configuration, delay profile, maximum Doppler frequency,
MIMO correlation, and SNR, with available values sum-
marised in TABLE 3. Each time varying one of these channel
parameters, the others are set to their default values as used
in Sections V-A and V-B (highlighted in TABLE 3).

Generally, the cross-scenario tests verify that the proposed
predictors are compatible with all of the considered simula-
tion settings. As a common result, the predictor performance
increases with rising similarity between the training and test

TABLE 3. Simulation settings for cross-scenario tests with default
configuration highlighted in bold.

FIGURE 7. Performance of predictors trained on and tested across
datasets with different SNRs.

channel configurations. Such behaviour is clearly observed in
the evaluationwith varying SNRs, as illustrated in FIGURE7,
where the different color lines represent predictors that are
trained on datasets associated with different SNRs. Similar
observations apply to the tests with varying MIMO corre-
lations, with the main difference being that the precision of
predictors trained on lower MIMO correlation levels does
not increase when tested on a dataset with higher MIMO
correlation. Concerning the propagation conditions, while
the prediction accuracy varies substantially across the three
different delay profiles, the choice of delay profile for the
training data does not seem to have a large impact on the
resulting predictor. More specifically, the predictors trained
on the EPA5 and EVA5 datasets could both be used almost
equally well in both of these propagation conditions and
the same applies to the EVA70 and ETU70 propagation
conditions.

Finally, the results of the tests across different antenna
configurations are displayed in TABLE 4. Note that the pre-
diction error decreases by 0.7 dB for the higher antenna count
configurations, which indicates that the predictor is able to
utilise the correlation of MIMO channels.

VI. DISCUSSION
In order to assess and compare the capability of different pre-
dictors, in this work, each of the proposed predictive neural
networks is treated as a time-invariant model and trained
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TABLE 4. Mean squared errors of convolutional predictor across different
antenna configurations.

offline on a dataset associated with certain propagation condi-
tions, which implicitly assumes a weak form of homogeneity
in time of the observation and target time series H est,H true.
According to the results of the cross-scenario tests from
Section V-C, slight deviations in the channel parameters do
not pose a significant problem to the predictors. Since the
channel parameters usually do not experience abrupt changes,
multiple predictors can be used to bridge the transition time
between different settings. Thus, one possible way to adapt
the proposed approach to a setting with time-variant channel
conditions would be to train preliminarily a set of predictive
neural networks, each associated with a relevant class of
fading channels (e.g. with graded maximum Doppler fre-
quencies, MIMO correlations, and SNRs within a certain
range), and estimate or categorise in the test phase the actual
ongoing channel parameters at regular intervals by employing
either well-established classical methods (e.g. Hansen et al.
(1999) [42]) or machine learning-based clustering or classifi-
cation schemes (e.g. Ahrens et al. (2019) [43] or Yuan et al.
(2020) [25]), so that the forecasts can be delivered by com-
bining outputs from predictors that are trained for the most
closely matching channel classes. This idea resembles that
of [25] where a CNN is used as a channel classifier that
assigns a pre-trained predictor with matching channel char-
acteristics to the observation series.

VII. CONCLUSION
In this article, modern machine-learning techniques are
adopted for the issue of multi-step fading channel fore-
casting in OFDM transmission systems. By exploiting the
translation-invariance property of the convolution operation,
a variety of predictive neural networks that incorporate con-
volutional layers for processing the channel state informa-
tion in the frequency domain are proposed for the task,
which provides an effective approach to the more complex
multi-subcarrier setting. The comparative evaluation of both
the traditional stochastic approach employing the Kalman
filtering scheme and standard machine learning methods
employing well-established predictive neural networks con-
firms the advantage of the proposed approach.

APPENDIX A
This section provides a brief description of the refer-
ence predictors considered in the performance analysis in
Section V-A. Here, let F0 with F0 ∈ {1, 17,F = 200}

again denote the size of the receptive field of the considered
predictor in the frequency domain. In case of F0 ∈ {1,F},
the time series H est,H true are considered as F/F0-many
RP·Q·2·F0 -valued time series. In case of F0 = 17, analogously
to the input data transformation used in the F0-convolutional
LSTM predictor as introduced in Section II-D, the original
observation seriesH est is transformed into F-manyRP·Q·2·F0 -
valued overlapping time series, {H est (f )

}f<F , each covering
F0-many subcarriers and being processed through the consid-
ered predictor for forecasting H true on a single subcarrier f .

A. KALMAN FILTERING FOR AR CHANNEL MODELLING
When considering relatively short time spans (hundreds of
milliseconds) with no abrupt changes in the propagation
conditions, the time series of the perfect channel transfer
function can be assumed to follow a multivariate AR model
(cf. e.g. [4]). For F0 = 1, the corresponding observation
model can be formulated as

H true
t [f ] =

P∑
k=1

φkH true
t−k [f ]+ v

f
t

H est
t [f ] = H true

t [f ]+ wft (7)

for all t and f , where φk ∈ RP·Q·2×P·Q·2 for each k and
{vt }t , {wt }t areRP·Q·2×F -valued independent white noise pro-
cesses, each consisting of independent and identically dis-
tributed (i.i.d.) zero-mean Gaussian random tensors with i.i.d.
entries. Transforming (7) into an equivalent linear state-space
model analogously to [2, Ch. 4.3] and estimating the param-
eters by means of the prediction error method (cf. e.g. [3,
Ch. 7.4]), the Kalman filtering scheme (cf. e.g. [2, Ch. 4.5]
or [3, Ch. 5.5]) delivers the one-step ahead prediction ofH true

which is for each time step t the conditional expectation of
H true
t+1 given observations H est up to time t . The multi-step

ahead predictions are computed iteratively. For the default
antenna configuration P × Q = 4 × 2, considering the
computational effort and memory intensity, the order P is set
to 13.

B. KALMAN FILTERING FOR AR CHANNEL MODELLING IN
TIME DOMAIN
The method presented in [6] proceeds by first applying
an inverse Fourier transform to the channel transfer func-
tions H est,H true, resulting in the channel impulse responses
hest, htrue, i.e.,

ht [1τ ] =
1
F

F−1∑
f=0

Ht [f ] exp
(
2π1τ

f
F

)
(8)

for all t , 1τ = 0, . . . ,F − 1, and for h = htrue, hest and
H = H true,H est, respectively. For each delay time 1τ =
0, . . . ,F − 1, a separate AR model in the form of (7) is
employed where H est,H true, and f are replaced by hest, htrue,
and 1τ , respectively. Then, the predictions are computed
in the time domain and transferred back into the frequency
domain via a Fourier transformation.
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C. STANDARD LSTMs
Note that in a fully-connected neural network, each layer
connection can be expressed in terms of a one-dimensional
convolutional layer connection with kernel size 1 (recall (4))
by relating the dimension of the input or output vector of
the former to the number of the input or output channels of
the latter, respectively, and adding an extra axis of size 1
to the original input vector. Using the same terminology
as in Section II, for F0 ∈ {1, 17} or F0 = F = 200,
the corresponding comparative predictor employing a stan-
dard (i.e.f̃ully-connected) LSTM [13] is endowed with 6 · P ·
Q · 2 ·F0× 1- or 2 ·P ·Q · 2 ·F × 1-dimensional hidden states
and designed with architecture analogous to that introduced
in Section II-D or Section II-C, respectively. Note that in
these reference predictors, the treatment of MIMO channels
and the computation of multi-step ahead predictions are in
accordance with those implemented in the proposed neu-
ral networks, which again performs better than comparable
alternatives.

D. STANDARD RNN
Standard (i.e. fully-connected) RNNs can be seen as fully-
connected LSTMs without gates and cell values [12]. The
comparative predictor employing a standard RRN is designed
and trained in the same manner as the standard LSTMs
introduced above.

E. NONLINEAR AUTOREGRESSIVE EXOGENOUS
MODEL (NARX) RNN
In [25], Yuan et al. present a channel forecasting scheme
consisting of a channel classifier followed by a pre-trained
predictor. While the article mainly focuses on the chan-
nel classification part (using a CNN) along with the sup-
porting channel estimation scheme, the included predictors
are interesting in their own right and can be evaluated as
single-subcarrier predictors on the dataset used in this article.
The two proposed predictors in [25] employ an AR model on
the one hand and a modified RNN forming a NARX model
as introduced in Lin et al. (1996) [44] on the other hand.
While the AR approach using Kalman filtering scheme has
already been considered above, the NARX RNN is adapted
to the present setting as described below. The NARX RNN is
a single subcarrier predictor whose hidden state dimension
is the same as the input dimension. The hidden state is a
nonlinear function of the current input and the last P-many
hidden states. The architecture allows for a particularly low
parameter count and relatively low computational effort. For
comparison, the delay time P is set to 13 which matches
the hyperparameter choice for the AR approach above and is
experimentally confirmed to be a reasonable choice. In the
present setting, the treatment of MIMO channels is per-
formed in accordance with other neural networks considered
in this article, i.e., by first performing forecasts for each
antenna pair separately and then mixing these forecasts in

a final output layer. As required for the NARX predictors,
the multi-step ahead predictions are computed iteratively.
Remark: Note that in the present setting, in particular

in the comparative study in Sections V-A, V-B, the pro-
posed and reference predictors are trained and evaluated on
a dataset associated with a pre-determined channel config-
uration. In particular, fixed channel conditions are assumed
throughout the evaluation, so that no channel classifier as
proposed in [25] is required prior to applying the actual
predictor. Since the channel classifier is incorporated as a
core component into the entire prediction scheme in [25],
the comparative study in Sections V-A, V-B merely provides
the net predictor performance, but not an assessment of the
overall approach proposed in [25] compared to the approach
proposed in this work. In Section VI, a possibility of combin-
ing a channel classifier such as that proposed in [25] with the
more powerful predictive neural networks proposed herein
is discussed for the more complex case with time-varying
channel conditions.
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