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Marcel Köster*1, Julian Groß1, and Antonio Krüger1
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Abstract. Graphics Processing Units (GPUs) are widely spread nowa-
days due to their parallel processing capabilities. Leveraging these hard-
ware features is particularly important for computationally expensive
tasks and workloads. Prominent use cases are optimization problems
and simulations that can be parallelized and tuned for these architec-
tures. In the general domain of simulations (numerical and discrete), the
overall logic is split into several components that are executed one after
another. These components need step-size information which determines
the number of steps (e.g. the elapsed time) they have to perform. Small
step sizes are often required to ensure a valid simulation result with re-
spect to precision and constraint correctness. Unfortunately, they are
often the main bottleneck of the simulation. In this paper, we introduce
a new and generic way of realizing high-performance simulations with
multiple components using adaptive time steps on GPUs. Our method
relies on a code-analysis phase that resolves data dependencies between
different components. This knowledge is used to generate specially-tuned
execution kernels that encapsulate the underlying component logic. An
evaluation on our simulation benchmarks shows that we are able to con-
siderably improve runtime performance compared to prior work.

Keywords: Simulations, parallel computing, adaptive time steps, graphics pro-
cessing units, GPUs

1 Introduction

There have been many distinct time-step adaption methods for completely dif-
ferent domain-specific problems. Such adaption techniques are particularly well
investigated in the field of fluid and/or particle-based simulations. Prominent
examples are SPH (Smoothed Particle Hydrodynamics) [10,21,22] and Position
Based Dynamics (PBD) [23] simulations. Even sophisticated optimization prob-
lems are often modeled with the help of underlying rule-based and simulation
like programs or code fragments [11–13]. Regardless of the use case and the do-
main, a simulation always consist of several phases that have to be evaluated
one after another1. Executing those parts in an iterative manner yields the final

? PREPRINT
1 A single simulation iteration is commonly referred to as a simulation step.
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simulation result in the end [16,24]. An essentially required piece of information
in this context is the actual time-step size which is used to execute each simu-
lation step. Choosing this step size is very important with respect to simulation
correctness and performance at the same time: Small time-step sizes often yield
the best precision but are much more expensive since the simulation has to ex-
ecute more steps until it reaches a final state. Since many parts of a simulation
step have to be executed sequentially, the time-step size is often considered to
be the primary performance-critical part.

Today, the mentioned simulations are often run on GPUs to benefit from
their parallel computation capabilities. This allows to realize large-scale simula-
tions which are even well suited for real-time applications [17,19]. In order to use
these massive processing features, algorithms (as well as their surrounding appli-
cations) have to be specifically tuned for these architectures. From a high-level
point-of-view, each simulation consists of a set of components which describe a
specific module of the whole simulation logic.

In this paper, we present a new method to realize component-based simula-
tions on GPUs using adaptive time steps. Our method is generic in respect of the
application domain, as it does not rely on specific knowledge about the internal
structure of the components. Instead, we use a static program analysis to deter-
mine a data-dependency graph. Based on this graph, we are able to compute the
next adaptive step size. In this scope, we also allow developers to include their
domain-specific knowledge with respect to time-step constraints. Our concept is
based on the well-known idea to interpolate certain values at specific points in
time [3]. We use this principle to simulate an intermediate component execution
that has not happened in order to reduce the overall runtime of the simulation.
Using our approach yields speedups between 12% (a smaller gravity-like simula-
tion) and 22% (a larger PBD-like simulation) on our non-optimistic evaluation
scenarios. Furthermore, we do not suffer from slowdowns in comparison to more
conservative time-stepping approaches. This makes it a perfect extension for
modern GPU-based simulation systems.

The remainder of this paper, summarizes and discusses related work from the
fields of adaptive (fluid/particle) simulations to improve performance. We give a
high-level introduction into the modeling of simulations in Section 3. This section
also describes the major challenges in terms of adaptive time steps that we can
solve using our new approach. Section 4 presents our generic concept and gives
in-depth information about all design considerations and implementation details
on GPUs. The evaluation section covers two designed benchmark scenarios. They
are inspired by real-world simulation models to measure realistic performance
numbers.

2 Related Work

From a theoretical point-of-view, using interpolation functions to adapt time
steps is a well known concept [2, 3, 9, 27]. There have been many different ap-
proaches from the field of numerics (solving partial differential equations, for
example). They also leverage interpolation functions to resolve intermediate val-
ues. This contribution has a different view on adaptive time steps without having
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explicit domain knowledge about the components. As outlined above, we focus
on practical and pragmatic aspects of realizing fast and efficient simulations (see
Section 5). To the best of our knowledge, we consider the following papers to be
related to this subject.

Adams et al. [1] present an adaption approach for particle-based fluids. They
define a domain-specific criterion to decide which region of the fluid simulation
is more important and needs more computational resources. In contrast to our
method, they are not adapting the actual time-step sizes, but focus on adaptive
particle sizes to reduce the computational complexity.

Predictive-Corrective Incompressible SPH (PCISPH) [29] is a well known
fluid-computation model that essentially predicts forces to enable larger time
steps in order to overcome the severe time-step restrictions of previous papers.
Ihmsen et al. [8] add support for adaptively computed time steps in the context
of PCISPH. They use domain-specific properties of the underlying PCISPH algo-
rithm and combine them with knowledge about maximum time-step restrictions
of these simulations.

Further adaptive fluid simulations are the ones by Hong et al. [6] and Zhang
et al. [30]. They basically split and merge particles in order to reduce the num-
ber of elements to process. The split- and merge-criteria are based on a set of
scenario-dependent properties. It is regrettable that these methods essentially
modify the underlying data to be evaluated by several components. This re-
quires domain-specific knowledge about the underlying structure of the problem
and its associated optimization possibilities which cannot be easily generalized
to work with black-box components.

Solenthaler et al. [28] and Horvath et al. [7] use a custom solution to enable
adaptive computations in the scope of fluid simulations. They are achieving this
purpose by coupling a set of differently scaled simulations. This avoids splitting
and merging of particles. As before, these methods are limited to their particular
field of application and cannot be applied to generic components.

Macklin et al. [18] use a PBD-based algorithm and add support for density
constraints in order to model fluids. Since PBD simulations are very robust,
they relax time-step restrictions of previous approaches significantly. Koester et
al. [14] present an adaption scheme for these simulations. Like Macklin et al. [18],
they are using an iterative constraint solver to move particles into the right
positions to satisfy a fluid-density constraint. During solving, some particles can
be considered less important than others. The more important a particle is, the
more particle-position adjustments will be performed in upcoming iterations of
the constraint solver. This significantly reduces the overall computational effort,
since less important particles will not be considered in further solver iterations.
This idea is similar to our high-level concept of interpolated values at certain time
steps: Some values loaded from memory are not available at particular points in
time and can be reconstructed using interpolation functions. In contrast to the
original paper by Koester et al., we can provide intermediate values at specific
time steps, whereas the related algorithm uses out-dated information without
interpolation.

Garcia et al. [4] describe an adaptive time-stepping method that computes
common step sizes using global reduction kernels. They estimate the time-step
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size in each iteration and synchronize the resolved time-step value with the
CPU part of the application. We follow their approach by applying all time-step
estimation methods of all components prior to the execution part of each com-
ponent: We still rely on a synchronization step with the CPU side to exchange
information about the computed time-step size. In addition, our method requires
further logical steps to compute a common step size across all components (see
Section 4).

Mayr et al. [20] leverage an iterative computation of the time-step size based
on certain error calculations in the field of fluid-interaction solvers. From a high
level point-of-view, this is closely related to our method: We compute the time-
step size for each component and search for a compatible step size that is ac-
ceptable for all components. However, their adaption method relies on specific
domain knowledge (which is tightly coupled to their application domain) that
cannot be reused in a generic and portable way.

3 Component-Based Simulations on GPUs

This section covers a brief introduction into the general modeling of simulations
on GPUs consisting of several components C0 to Cn−1. Every component real-
izes a certain part of a simulation loop and is supposed to compute a separate
piece of the overall puzzle that we want to put together. Figure 1 shows a sample
simulation loop consisting of several components. Note that the overall execu-
tion order is usually determined by the domain expert/application programmer
that has to take all data dependencies into account. Moreover, many simulations
leverage the concept of double buffering to simplify data dependencies. Double
buffering allows to read the same source data in each component while writing
simulation updates into a separate target buffer. This ensures that each compo-
nent is able to work on a consistent state without having to worry about possible
changes by other components. Alternatively, some applications work on a single
buffer only. This exposes all value updates to the components executed after-
wards. The developers have to take special care to create a consistent logical
component model that is compliant with the actual buffering approach used.

Fig. 1. A simple simulation loop with five components C0 to C4 in a sequential order.
The back edge from C4 to C0 models the jump to the initial component C0 of the next
simulation step. Furthermore, it visualizes the data dependency between two steps.

Each component is applied to a set of items (e.g. particles or other data
elements) from a set of source buffers. A state in memory thereby consists of
all items in all buffers that the components can operate on. To implement this
functionality on a GPU, each component C needs to have a separate GPU ker-
nel that iterates over all items (referred to as the range of C). Algorithm 1
shows a straight-forward kernel implementation for an arbitrary C. It uses grid-
stride loops to realize an efficient way to iterate over all items in the range of
C. However, depending on the computational complexity and the performance
characteristics of C, it can be beneficial to apply loop unrolling at this point [15].
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Algorithm 1: Simple application kernel algorithm for component C

/* Perform a grid-stride loop over the padded value range of C */

1 for i := global index; i < range(C); i += grid size * group size do
/* Initialize component by loading relevant information */

2 c := C.Init(i);
/* Evaluate component */

3 c.Evaluate(∆t);

4 end

Applying components in the presence of adaptive time steps means that need
to retrieve information about the potential step size of each component. The es-
timated step sizes also include domain-specific time-step constraints to satisfy
correctness/stability requirements. Figure 2 shows the high-level difference be-
tween a workflow using fixed vs. adaptively computed time steps. In the adap-
tive setting, all components estimate their intended time-step size they could
potentially, assuming that all necessary information is available (optimistic as-
sumption). Afterwards, the minimum time step of all potential time steps (from
the first phase) can be used safely (sound assumption). Finally, the computed
step size from the previous phase can be used for all components in the actual
simulation step. Consequently, we need to create additional kernels that compute
the possible number of steps to execute all components.

Although this approach is perfectly sound with respect to time-step con-
straints, it does not solve all performance issues. The time-step computation
kernels require an additional iteration over all items in the state which causes
an overhead compared to the fixed-step version. The latter can only be outper-
formed by the adaptive one if it is possible to skip many simulations steps. From
now on, we consider a step size of 1 as the reference and default fixed step size
that satisfies all constraints. Since we have to use the minimum common step
size, the overall probability that we have to perform a simulation step of size 1 is
P = 1−pn, where p is the probability that a single component needs to perform
a step of 1 and n is the number of components. Even in small examples, P can
easily become close to 1. This in turn can also lead to a performance degradation
(see Section 5).

4 Our Method

Figure 3 visualizes our high-level concept to determine intermediate item values.
Formally, we apply a component Ci (i ∈ [0, . . . ,num components − 1]) to the
current state S. More precisely, the component works on a part of the state Si.
Taking the current simulation time T and the next time step of size ∆t into
account yields a new state at time step T +∆t that is given by

Si(T +∆t) = Ci (Si(T ), ∆t) . (1)
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Fig. 2. A visualization of five components C0 to C4 and their executed step sizes (black
arrows). A fixed step size that is uniform across all components (left, 1). A two-phase
approach to compute a compatible step size (the minimum of all possible step sizes)
across all components (right, 2). Grey arrows indicate the intended step sizes which
could not be used for an actual simulation step.

Fig. 3. Two components C0 and C1, where C1 has a data dependency to the items in
B0. C0 performs a large time step while reading from its source buffer and writing into
its target buffer B0. Our idea is to enable C1 to do the same large time step, even if its
dependencies only allow two small steps. This requires an interpolation of the values
in B0 (gray arrow) at the intermediate time step of C1.

We then use a problem- and domain-specific interpolation function I (see
Section 5) to approximate the state S at time T +∆k in the future using

Si(T +∆k) ≈ I∆k (Si(T ), Si(T +∆t)) , ∆k ∈ [0, . . . ∆t], (2)

where ∆k is a limited time offset that has to be smaller or equal to ∆t. Consider
a case in which a component Cj accesses interpolated information provided by
another component Ci, where i 6= j (for example in Figure 3). Further, let us
assume that we have to perform two small steps ∆l > 0 and ∆o > 0 that sum
up to the intended step size ∆t = ∆l +∆o. This can be formally expressed via

Sj(T +∆l) = Cj (Si(T ), Sj(T ), ∆l) , (3)

Sj(T +∆t) = Cj (Si(T +∆l), Sj(T +∆l), ∆o) (4)

= Cj (I∆l (Si(T ), Si(T +∆t)) , Sj(T +∆l), ∆o) . (5)

These equations demonstrate that a single use of an interpolation function can
cause a simulation deviation that easily propagates to all other components.
However, potential differences in terms of the simulation results depend on a
huge variety of different factors. For instance, the actual interpolation being
used, the number of components that can access interpolated information and
even the application scenario. In comparison to related approaches, this is not a
novel limitation that only applies to our method. Other methods rely on domain-
specific time-step computations that also introduce simulation deviations. We
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support domain- and even scenario-specific time-step computations to model
the required knowledge in the scope of our method (see also Section 4.2).

In order to apply interpolation properly to the right buffers, we have to
identify locations that allow us to interpolate between items in the source and
items in the target buffer. Therefore, we conceptually always rely on the idea of
double buffering. However, if we execute a component an even number of times,
while others have been executed an odd number of times, the items in the source
and target buffers are mixed with respect to the different iteration steps. This
issue is visualized in Figure 4: Since component C1 is executed an even number
of times, its originally used source buffer contains the finally written information.
To circumvent this problem, C1’s kernel has to copy the contents of the memory
buffers into its intended target buffer to make C1’s updates visible to all other
components. Unfortunately, the problem is even worse: If another component
needs to interpolate the values written by C1, we need its original source-buffer
data. Consequently, we have to copy all items that can potentially be used for
interpolation into a separate memory buffer at the beginning of the simulation
step.

Fig. 4. Component C1 from Figure 3 performing two small steps in order to reach C0’s
larger time step. First, C1 performs its initial step and writes its computed items into
its associated target buffer (1). Afterwards, C1 is applied again and performs the next
step. In this case, C1 reads its source values from the originally intended target buffer
and writes into its original source buffer (2). To ensure that the finally written values
will end up in the correct target buffer, we have to copy the updated items from the
source into the target after execution of the second step (3).

Finding locations to safely apply interpolation to already computed items
is based on a static program analysis. It essentially resolves a data-dependency
graph induced by view accesses in the program (see Figure 5). Note that the
decision on the back-edge dependency (or in other words: the first component in
the schedule) is usually done by a domain expert. He or she is conceptually able to
split the resolved dependency graph into semantically separate simulation steps.
Although it is possible to use topological sorting of this graph to determine
an execution order, it can happen that we encounter multiple possibilities to
schedule a component. These cases require domain knowledge to decide on the
actual component order.

Once the actual schedule is available and the component dependencies have
been resolved, we can focus on the adaptive time-step size computation (see Fig-
ure 6). First, we perform a step estimation by querying all components (using
ComputeNumSteps from Listing 1.1) that depend on immediate buffer informa-
tion from a previous iteration (components that are reachable via back edges). In
the case of multiple components that are reachable by following all back edges,
we have to compute the minimum step size of all of them. Based on the actual
domain, our approach is applied to, it may be totally fine to use the maximum
possible time-step size from all components without explicit data dependencies.
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Fig. 5. A set of components C0 to C4 (from Figure 1) along with some imaginary
read and write dependencies to intermediate buffers B0 to B3. The read dependency of
component C0 from buffer B3 is highlighted in purple, since it is also implicitly given by
the back edge of the simulation loop. Note that it is possible to automatically compute
a component schedule by applying topological sorting. In this example, this could yield
the schedule C0, C1, C2, C3, C4. Note further that the back-edge dependency of C0

to buffer B3 separates multiple simulation steps from each other, since C0 is the first
component is this schedule.

Fig. 6. Our approach to compute the next time-step size for components C0 to C4

from Figure 5. Imagine that we perform an initial step estimation (1, the minimum
step size is denoted by a dotted line). Consider further that we use the maximum
possible step size of C2 to be the next step size for all components (2). Although this
seems to be feasible at first sight, we have to take all data dependencies into account.
This reveals that we cannot interpolate an intermediate value for C0, since it depends
on buffer information from the previous iteration. Therefore, the maximum step size is
computed using all components that are directly reachable via back edges (3).

Note that we must always have access to the source item values at the beginning
of the time step in order to interpolate between the source and target values.
If the application does not use double buffering by default, we have to copy
all relevant values that have to be considered during interpolation into separate
global-memory buffers.

4.1 Leveraging Shared-Memory Caches

Depending on the computational load induced by an interpolation function, it
can be advantageous to cache already interpolated values in shared memory.
This frees up resources in terms of required bandwidth and ALUs and makes
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them available to the underlying component implementation. This can reduce the
overhead of our method in the case of expensive interpolations (see Section 5).
Without explicit modeling of such a cache, the GPU will have to recompute the
interpolation function for each item access (see Figure 7). Furthermore, this will
trigger two additional loads from global memory for each item access. In this
scope, L1 and L2 caches help to reduce the actual number of global-memory
transfers automatically on modern GPUs [26] (see also Section 5).

Figure 8 visualizes several access patterns of an imaginary component in the
scope of a single thread group. In our implementation, each thread just caches its
associated item value(s) that will be accessed in the scope of the component in
shared memory (1-to-1 thread-item mapping). Components in our scope are al-
ready programmed while having GPU-like architectures in mind. Therefore, they
typically perform coherent memory accesses that are very close in global mem-
ory with respect to the current thread index (local access window). These cases
can be covered by our shared-memory cache without the need for sophisticated
program transformations. Unfortunately, we have to check that a certain access
to a particular item is included in our cache (via an if-branch), which imposes
additional runtime overhead. More advanced static program analyses can help
to determine the actual access pattern(s) in order to realize more efficient caches
in the future. This can even help to avoid on-the-fly cache-boundary checks that
can be expensive with respect to thread divergences and register usage.

Fig. 7. An imaginary thread group of 8 threads accesses items from a bufferB0 in global
memory (left). Using an interpolation function triggers two loads from global memory
(from the source and target buffers respectively) for each access (right). Furthermore,
the loaded values need to be interpolated to get the actual item value at a specific
point in time.

4.2 Hiding Different Access Patterns using Views

From a practical point-of-view, every component can be modeled as a spe-
cific object-oriented class that implements a particular interface. An abstract
pseudo-code interface definition we use for our components is shown in List-
ing 1.1 to get a better understanding about the general functions a component
needs to provide. We propose this generic interface definition that distinguishes
between component-data and item-data views. This allows us to clearly sepa-
rate component-specific (uniform for each component type C) and item-specific
(varies from item to item) information. Since the functions ComputeNumSteps
and Evaluation work on abstract data views, it is easily possible to replace an
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Fig. 8. Different access patterns for an imaginary thread group of 8 threads. Coherent
memory accesses with respect to each thread while accessing a shared-memory cache
(top). Random memory accesses that are not coherent (bottom). The vertical bars
indicate the boundaries of the shared-memory cache. Accesses that cross these bound-
aries will be cache misses and have to be resolved via expensive global-memory loads
and interpolation-function applications.

item access with an interpolated value (that is even cached in shared memory)
without touching the component implementation. Another advantage of having
separate views is the improvement of static-program-analysis results with respect
to potential aliases. This is due to the fact that each view has a very limited
scope that is it only accessible within a single function. We do not allow storing
views of any kind within member fields of a component to reduce the risk of
bugs and to limit potential aliases in practice.

Listing 1.1. An abstract component interface definition used in our implementations
in pseudo C# code. Generics in C# (or templates in C++) allow us to hide the actual
data-view implementation from each component realization.

1 interface IComponent <TComponentImplementation >
2 where TComponentImplementation :
3 IComponent <TComponentImplementation >
4 {
5 // Initializes internal fields by loading data from global memory.
6 static TComponentImplementation Init(int index , ComponentView source);
7

8 // Computes the number of steps that this component can perform.
9 // Required information is loaded from the provided source data view.

10 int ComputeNumSteps <TDataView >( TDataView source);
11

12 // Evaluates this component by applying the given number of simulation
steps.

13 // Computes results are written to the provided target data view.
14 void Evaluate <TDataView >( TDataView target , int numSteps);
15 }

4.3 Algorithm

The main kernel that wraps the actual functionality of a component C is shown in
Algorithm 2. It is designed to be specialized by a compiler (via meta-programming
techniques or code generation) to generate an individually instantiated GPU
program. The first lines allocate all required shared-memory resources based on
knowledge from the dependency graph. Afterwards, we perform a padded grid-
stride loop (to avoid thread divergences) over the whole range of C. The body of
the outer loop is another loop that performs the required small steps in the scope
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of a larger ∆t time step. Important to mention is the group-wide computation of
the next step size that will be applied to all threads in the group. This is required
since all threads can access our shared-memory caches and need to have access to
consistent interpolated information. If the presented shared-memory caches are
not suitable for the application scenario, several parts of the algorithm are not
required (like the lines 1–3 and 10). This even affects the computation of the up-
coming local step-size consisting of several reductions and group barriers. These
operations will be no longer required in such a case. Further optimizations (like
loop unrolling, multiple components per kernel or even thread compaction) can
be applied based on the actual component implementation to increase occupancy
and to improve runtime performance.

4.4 Implementation Details

We have implemented our algorithm in C# using the ILGPU2 compiler for all
GPU kernels. Regarding code generation, we used a custom pre-compilation step
to gather all data dependencies between all components. Afterwards, we gener-
ate all required C# kernels for each component and the whole adaptive-time-
stepping driver code to execute all components in a specialized simulation loop.
Each component will be wrapped in a particularly specialized time-stepping al-
gorithm based on Algorithm 2. This includes the generation and allocation of
shared-memory caches and inlining of all interpolation functions. The adaptive
time-step sizes for each component are realized with the help of specialized ker-
nels using efficient warp reductions and atomic operations [25,26].

5 Evaluation

The evaluation section covers two different application scenarios inspired by
particle-based simulations. Each scenario is described with the help of a com-
ponent dependency graph to give detailed insights into the modeled simulation
structure. In order to avoid hard-to-reproduce benchmarks, we use component
implementations that are based on matrix-matrix multiplications to generate
computational load per item. Moreover, memory-accesses to neighboring par-
ticles (that are often accessed in SPH-based simulations [5]) always consider
9 neighboring items. We used two different interpolation functions (linear and
cubic-spline) to emulate less- and more-expensive interpolation computations.
Similarly, we used a varying number of items |R| (the range, particles in these
scenarios) to analyze the scaling behavior of our adaptive time-stepping ap-
proach. Most important for the evaluation are the number of steps we can adap-
tively perform. In order to be close to application scenarios, we vary the number
of steps continuously (computed using a uniform random distribution) for all
components from the intervals [1, . . . 3]. We have not included larger intervals to
show realistic performance measurements that do not assume optimistic prop-
erties of the underlying simulation. This emulates common scenarios in which
we can sometimes perform larger steps, while other situations require small step
sizes to satisfy all domain-specific simulation constraints.
2 www.ilgpu.net



12 Koester et al.

Algorithm 2: Our adaptive time-stepping algorithm for component C

Input: maxNumSteps, source, originalSource, target
1 nextStepSize := shared memory int[1];

/* Shared memory allocations for all intermediate values */

2 sharedMemoryCache0 = shared memory Type0[group size];
/* ... */

/* Perform a grid-stride loop over the padded value range of C */

3 for i := global index; i < padded range(C); i += grid size * group size
do

/* Optional: synchronize group members to improve the memory

access pattern on some GPU architectures */

/* group barrier */

4 localSource, localTarget := source, target;
5 numPerformedIterations := 0;
6 for stepIdx := 0; stepIdx < maxNumSteps; do
7 view := new CachedDataView<Interpolation Function>(
8 localSource, localTarget, originalSource, i,
9 maxNumSteps / (stepIdx + 1) as float,

/* References to shared memory allocations */

10 sharedMemoryCache0, . . .);
/* Wait for all cached values to be available and initialize

the next maximum step size */

11 if is first thread of group then
12 nextStepSize := maxNumSteps - stepIdx;
13 end
14 group barrier;

/* Check component precondition for the current value */

15 instanceStepSize := max(int);
16 C c := ⊥;

/* Compute next common step size for all group threads */

17 if i < range(C) then
18 c := C.Init(i);
19 instanceStepSize := c.ComputeNumSteps(view);
20 warpWideStepSize := warp reduce min(instanceStepSize);
21 if is first lane of warp then
22 atomic min nextStepSize, warpWideStepSize;
23 end

24 end
25 group barrier;
26 stepSize := nextStepSize;

/* Apply component with the next common step size */

27 if i < range(C) then
28 c.Evaluate(view, stepSize);
29 end

/* Advance step index and wait for all threads */

30 stepIdx += stepSize;
31 numPerformedIterations++;
32 Swap localSource, localTarget;
33 group barrier;

34 end
35 if numPerformedIterations is even then
36 Perform a parallel group-wide copy operation of affected information

from source to target buffers;

37 end

38 end
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We measured four different algorithms: Simple (fixed step size of 1), Trad.
Adaptive (adaptive time stepping based on prior work, see Section 3), HIP-
NoCache (our method without shared-memory caches) and HIP (our method
with caches enabled). Every setup has been evaluated using two GPUs from
NVIDIA for all benchmarks (a GeForce GTX 980 Ti and a GeForce GTX 1080
Ti). Furthermore, every performance measurement is the median execution time
of 100 simulation runs, each performing a maximum number 100 simulation
steps (when using a time-step size of 1). All execution times are measured in
milliseconds (ms).

5.1 Gravity-like Simulation

This evaluation scenario covers a gravity-like simulation that leverages three
components C0, C1 and C2 (see Figure 9). The first component conceptually
computes particle-specific information, whereas the second one iterates over
neighboring particles in memory and prepares accumulated results for C2. The
last component accesses neighboring information from B0 and B1 and computes
item updates.

Fig. 9. Component dependency-graph of the first evaluation scenario.

Table 1 shows the performance measurements for the discussed configura-
tions. In the presence of a small range |R|, the traditional method cannot im-
prove performance significantly. It can only improve performance of about 4.5%
to 7% in the case of 64k items. Using our approach allows us to increase the
performance approx. 12% to 17% in comparison to the traditional adaption ap-
proach. Adding shared-memory caches does not hurt in most cases and is able
to improve the runtime by approximately 2% on average using cubic-spline in-
terpolation. However, modern GPU architectures do not seem to benefit from
the explicit caching method in the case of simple linear interpolation functions.

Table 1. Performance measurements of the first evaluation scenario.

|R| I Algorithm 980 Ti σ 1080 Ti σ
16384 - Simple 136.36 18.21 83.45 9.24

* - Trad. Adaptive 135.49 4.14 82.67 1.16
* Linear HIP-NoCache 118.02 5.44 72.32 3.62
* Spline2 * 121.63 5.14 74.02 3.21
* Linear HIP 116.48 4.22 72.16 2.91
* Spline2 * 117.25 6.60 72.97 2.53

65536 - Simple 399.47 13.62 245.88 0.68
* - Trad. Adaptive 381.34 23.13 229.36 0.51
* Linear HIP-NoCache 340.04 1.74 203.84 0.12
* Spline2 * 342.30 3.87 209.74 0.03
* Linear HIP 332.88 1.65 204.35 0.09
* Spline2 * 335.36 4.16 205.74 0.12
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5.2 PBD-like Simulation

This evaluation scenario is inspired by a PBD-like simulation that involves seven
different components. C0 computes basic information per particle. This can be
seen as a more expensive position-prediction step derived from PBD. As before,
C1 prepares accumulated neighborhood information that is used for an imaginary
collision-detection step in C2. C3 and C4 use SPH-based calculations across all
neighboring particles to simulate a reasonable workload per item. Afterwards,
C5 iterates over all neighbors while accessing items in B4 and B3. C6 computes
final item updates using B5.

Fig. 10. Component dependency-graph of the second evaluation scenario.

Table 2 depicts the performance numbers for the discussed evaluation con-
figurations. In all cases, the traditional adaption approach performs slower than
the non-adapted version. This is due to the fact that the probability is lower
than in the previous scenario to execute a larger time step (see also Section 3)
as we are using more components. However, we are able to improve the perfor-
mance approx. 16% to 22% in comparison to the non-adapted version. Again,
shared-memory caches can help to improve the runtime (in this scope of up to
6%) on older GPU architectures.

Table 2. Performance measurements of the second evaluation scenario.

|R| I Algorithm 980 Ti σ 1080 Ti σ
16384 - Simple 327.50 82.33 200.95 11.43

* - Trad. Adaptive 346.83 11.32 212.75 6.59
* Linear HIP-NoCache 282.70 26.43 171.10 3.78
* Spline * 293.63 16.05 175.12 13.57
* Linear HIP 282.88 19.57 172.27 10.72
* Spline * 284.50 12.92 178.05 18.46

65536 - Simple 1006.99 85.99 602.42 2.49
* - Trad. Adaptive 1016.65 0.23 615.63 8.23
* Linear HIP-NoCache 826.18 16.77 503.14 2.94
* Spline * 878.80 18.51 516.66 0.50
* Linear HIP 825.83 18.62 504.14 0.19
* Spline * 827.86 19.63 510.84 3.24

6 Conclusion

We present a new approach to realize generic and domain-independent time-step
adaptive GPU-based simulations. Our concept is based on several components
that define the actual simulation loop. A static program analysis resolves data
dependencies between read/write accesses of all components. The determined
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dependency graph is then used to generate specialized kernels that access in-
terpolated values at intermediate time steps. In this scope, our generic compo-
nent model allows to hide the actual memory-access implementation logic. This
enables us to integrate our shared-memory-based caching concept and domain-
specific interpolation functions touching the component implementations.

Our approach scales perfectly with the complexity of the underlying simu-
lation model. Even in non-optimal use cases consisting of a few components,
our approach was able to outperform fixed step sizes and the traditionally used
conservative step-adaption method. However, our integrated caching concept is
only beneficial if the simulation uses computationally expensive interpolation
functions. This should not be necessary on modern GPUs when using linear or
cubic-spline value-estimation methods. In case of more sophisticated simulations,
we were able to significantly improve performance in comparison to prior work
of up to 22% on non-optimistic benchmarks for our idea. If we assume more op-
timistic scenarios, we will be able to achieve impressive performance speedups in
particular on large-scale simulations involving many different components. This
makes our method a perfect extension to every modern GPU-based simulation
that wants to benefit from adaptive time steps.

Probably the primary downside of our approach is the fact that we might
introduce simulation errors with respect to adaptively adjusted time steps. As in
all related papers, the actual time-step size calibration itself is tightly coupled to
the domain and is usually adjusted by a domain expert. Therefore, we argue that
this is not a disadvantage that has been introduced by our method. Furthermore,
we have the ability to express domain-specific criteria to limit the step size.

In the future, we would like to extend the concept to support more advanced
program analyses. This would allow us to simplify shared-memory-cache accesses
considerably. In addition, we want to experiment with different caching concepts
that even works on the warp-level in register space and in shared memory.
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