
Demand-based Sensor Data Gathering
with Multi-Query Optimization

Julius Hülsmann
Technische Universität Berlin

Jonas Traub
Technische Universität Berlin

Volker Markl
Technische Universität Berlin

ABSTRACT
In the Internet of Things, billions of sensors provide data
streams to applications. The data are predominately ac-
quired from devices with constrained computational capa-
bilities, often serving multiple queries simultaneously. Sen-
sor nodes, are typically oblivious to the specific needs of
applications. The potential requirements of diverse appli-
cations force them to push data at a higher rate than re-
quired by a specific, currently running application. That
is suboptimal due to 1. constraints in the network band-
width, 2. expenses for transmissions, and 3. limited com-
putational power. However, decreasing data gathering fre-
quency may reduce the applications’ accuracy. In this paper,
we demonstrate a technique for minimizing the number of
network transmissions while maintaining the desired accu-
racy. The presented algorithm for read- and transmission-
sharing among queries goes hand-in-hand with state-of-the-
art machine learning techniques for adaptive sampling. We
1. implement the technique and deploy it on a sensor node,
2. replay sensor-data from two real-world scenarios, 3. pro-
vide an interface for submitting custom queries, and 4. present
an interactive dashboard. Here, visitors observe live statis-
tics on the read- and transmission savings achieved in re-
al-world use-cases. The dashboard also visualizes optimiza-
tions currently performed by the read scheduling procedure
and hence conveys real-time insights and a deep understand-
ing of the presented algorithm.

PVLDB Reference Format:
Julius Hülsmann, Jonas Traub, Volker Markl. Demand-based
Sensor Data Gathering with Multi-Query Optimization. PVLDB,
12(xxx): xxxx-yyyy, 2020.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
The continued growth of the Internet of Things (IoT) [12]
enables the development of disruptive applications in a va-
riety of different domains [1, 3]. Such applications share a
need for input data, typically provided as data streams and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

gathered from distributed sensor nodes. Each sensor node
possibly provides data points required for several different
queries. In this demonstration, we present two different real-
world use-cases, which share the same input data: Appli-
cation 1 learns driving profiles of vehicles and assesses the
driver’s aggressiveness. Application 2 tracks the number
of vehicles in a specific area. Both applications process the
velocity of public transport vehicles in Berlin[14].

The two applications differ in their data-demand, i.e., the
minimum number of data points required for answering in-
volved queries with the desired precision. Especially in Ap-
plication 1, the velocity of observed vehicles determines the
data demand; it requires a high sampling frequency for vehi-
cles moving at a high pace and fewer data records from slow
vehicles. Current stream processing engines (SPEs) [2, 9]
are demand-oblivious; they gather, transmit, and process as
much data as possible. Running multiple queries for the
same sensor opens up for the possibility to share reads and
transmissions among them, e.g., by serving multiple requests
with one single sensor read. This opportunity is regularly
left unexploited when gathering data from distributed sen-
sor nodes. The resulting unnecessary data transmissions
impose scalability issues or unnecessary charges for network
traffic and system scale-out [10]. On the other hand, delayed
or infrequent input can harm the output precision.

Designing a demand-based processing pipeline that ad-
heres to requirement specifications from data consumers is
challenging. It warrants (i) a flexible way of specifying a
query’s data-demand, which also (ii) has to allow for shar-
ing reads among queries.

The specification of the data-demand has to be flexible
enough to embrace diverse data-demands. For instance,
in Application 1, the data-demand depends on previously
gathered data. This dependency has to be reflected in the
demand-specification. We express data-demands as stateful
user-defined functions, which continuously determine when
to schedule sensor reads. Sharing reads and transmissions
among queries builds on top of demand-based scheduling. If
Applications 1 and 2 run concurrently, the system needs to
be able to determine whether sharing a sensor read among
the two associated queries complies with the queries’ data-
demands. To efficiently share sensor reads and transmissions
among queries, the data-consumer can specify tolerated de-
viations from the demand. We then use this information to
compute a suitable time to perform a single read for multiple
queries, whenever in accordance with the data-demand.

We demonstrate a demand-based technique for sensor data
gathering, that shares sensor reads and data transmissions

1

pre
pri

nt



Figure 1: An SPE receives queries from the user
and conveys their data-demand to sensor nodes.
The nodes schedule sensor reads and share them
among queries. The dashboard provides live insights
into the internals of the Read Scheduler.

among queries [10]. Therefore, we provide an interac-
tive demonstration with configurable queries and associated
data-demands that we execute on a sensor device.

We implemented the presented technique as a feature of
NebulaStream [14], and offer real-time insights into the op-
timization process. We use an open-source framework for
replaying data from two real-world datasets on the sensor
node [5]: The first dataset, on which we execute queries
for the introduced example applications, contains telemetry
data of vehicles. The data stems from an integrated the pub-
lic transport system of Berlin [14]. We replay the velocity
of different vehilces (i.e. taxis, buses, subways). The second
dataset is provided by the DEBS’13 Grand Challenge and
contains the speed of a football [7].

The audience can define custom queries on the datasets
and monitor the read- and transmission-savings our algo-
rithm achieves in a realistic scenario. Our dashboard deep-
ens the understanding of the proposed techniques by provid-
ing live insights into the performed optimizations through
live visualizations.

To summarize, we make the following contributions:

1. We implement a technique for gathering data from sen-
sor nodes and deploy it on a Raspberry Pi. Our tech-
nique optimizes the data gathering process based on
the data-demands of concurrently running queries.

2. We provide an interactive dashboard for live monitor-
ing of (i) the performed optimizations and (ii) the sav-
ings in data reads and transmission (Figure 4).

3. Visitors of our demonstration can configure custom
queries and data-demands to observe the algorithm
react to changing data requirements and observe the
solution’s performance in realistic scenarios.

The remainder of this paper is structured as follows: In Sec-
tion 2, we discuss the demonstrated techniques. In Section
3, we describe the setup of our demonstration and the visu-
alizations presented on our dashboard. Finally, we discuss
related work in Section 4 and conclude in Section 5.

2. DEMAND-BASED DATA GATHERING
In this section, we first provide an overview of our solu-

tion in Section 2.1, then describe demand specification in
Section 2.2, and multi-query optimization in Section 2.3.

Figure 2: Read time suggestion and read-fusion of
two concurrent queries (green and blue).

2.1 Solution Overview
Figure 1 shows the high-level architecture of our solution.

The user perspective remains unchanged compared to tradi-
tional stream analysis systems. The user submits queries to
a stream analysis cluster, which is represented by the stream
processing engine (SPE) in Figure 1. The SPE forwards the
query to the relevant sensor nodes, and reports results back
to the user. While traditional SPEs are push-based and have
no control over the incoming data streams, our approach
combines push-based data processing with pull-based sen-
sor reads. The read-scheduler on the sensor node pulls (i.e.,
reads) data from sensors based on the overall data-demand
posted by all running queries. Then, the scheduler streams
(i.e., pushes) the data asynchronously through the process-
ing pipeline, allowing for low latency processing.

When submitting a query, the data-consumer specifies the
data-demand. The next two sections describe the demand
specification and multi-query optimization in detail.

2.2 Demand Specification
Our proposed approach to data gathering consists of two

core components: 1. Scheduling the optimal next read time
for a query depending on its data-demand, and 2. merging
similar read times to share reads and transmissions. There-
fore, we extend queries by the following information:
(i) A sampling algorithm tD(·) specifies a query’s data-
demand by proposing the desired read timestamp, based on
the last sensor read 〈time, value〉 as well as the last desired
read time. Users can specify tD(·) as an analytical expres-
sion (i.e., user-defined function), which is very powerful and
flexible. Alternatively, users can pick from existing adaptive
sampling algorithms such as Adam [11] and FAST [4]. These
algorithms adapt to the volatility in the observed sensor val-
ues and adjust sampling frequencies to capture the underly-
ing time series with a tolerated error, while minimizing the
number of required sensor readings.
(ii) As the data-demand differs among queries, efficient read-
and transmission-reduction requires slight deviations from
the desired read time. The tolerance to such deviations de-
pends on the application. Hence, for each query, bounds
tmin(·), tmax(·) around the desired read time indicate the ac-
ceptable time interval for the next read. A penalty function
p(·) is used to compare the negative impact of deviations
from the desired read time. The data consumer specifies
the bounds as analytic expressions, based on the next de-
sired read time, and the last sensor read 〈time, value〉. The
penalty is required to be a convex function, centered at the

2

pre
pri

nt



Figure 3: Plot of optimal time frames for sensor
reads and selected read times with ten concurrent
queries on the public transport dataset.

next desired read time. The so-called user-defined sampling
function (UDSF) condenses (i) and (ii) into one function:

〈time, value〉 7→ 〈tmin, tD, tmax, p(t)〉

After each sensor read, the function is called with the time
and the value of the reading as parameters. The UDSF,
including the second order function p(t), is specified by the
user and returns the instructions for the next sensor reading.

Examples: We run queries for Applications 1 and 2 from
the introduction on the data replayed from the Berlin pub-
lic transport dataset [14]. We illustrate the UDSFs used
in these scenarios hereafter. First, consider Application 2,
which tracks the number of vehicles in a specific area. It only
issues a sensor read if a vehicle is potentially close to switch-
ing areas. In order to account for changes in velocity, this
translates to taking at least one measurement per minute,
or if the distance between the vehicle and the boundaries of
the area will be crossed when traveling at a constant veloc-
ity. Reading up to two seconds early is fine, and reading one
second late is allowed. The UDSF is defined on the vehicle’s
(positive) velocity v [m/s] and current position p:

U2 :=
〈
tD−2s,2t+min(60s,

dist(p, area)

v
), tD+1s, 20·t2

〉
The UDSF for the driving behavior profiling application (1)
is much more strict and requires data at least once a sec-
ond or every 20 meters. The penalty of deviating from the
desired read time increases with the vehicle’s velocity.

U1 :=
〈
tD−0.1s,2t+min(1s,

20m

v
), tD+0.1s, (v+1)·t2

〉
It is possible to disable read-sharing altogether by enforc-
ing exact reads at the proposed time. We demonstrate this
behavior with queries on the DEBS’13 football dataset by
defining the following UDSFS: Ua uses the adaptive sam-
pling algorithm AdaM and Ub samples at the maximum pos-
sible frequency.

Ua :=
〈
tD, AdaM(time, value), tD, 02〉, Ub :=

〈
tD,2tlastD , tD, 02〉

Neither Ua nor Ub permit deviations from desired read times.

2.3 Multi Query Optimization
Figure 2 illustrates the scheduling of a sensor read based

on the data-demands of two queries. Both queries have sub-
mitted tmin, tD, tmax, and p(t) to request the next sensor
reading as described above. The scheduler now determines
the optimal time frame for the next sensor read (highlighted
gray). Reading within this time frame allows for sharing a
single sensor read and transmission to satisfy the-demand of

Figure 4: A view into the sensor-dashboard, running
the driver profile and area monitoring applications.

both queries. To determine the best read time within the
marked time frame, we sum the convex penalty functions
p(t) and find the minimum of the resulting sum. Reading
at the time of that minimum implies the smallest penalty.
We represent the selected read time by a vertical black line.
Once we performed the sensor read, we use the read time
and the obtained sensor value to request the next desired
read (tmin, tD, tmax, and p(t)) from the UDSFs of the two
currently active queries. We refer the reader to our full
paper [10] for a thorough specification of UDSF and our
scheduling algorithm which goes beyond the summary pro-
vided in this section.

Figure 3 shows the scheduler in action for a larger num-
ber of queries. Due to the limited space, we do not show
the penalty function in this figure. The evaluated UDSFs
contribute to the cumulative penalty function in the selected
fragments, which is minimized by the algorithm.

3. DEMONSTRATION
To demonstrate our solution, we integrated the read sched-

uler introduced in Section 2.3 into NebulaStream [14] to
gather sensor values from a Raspberry Pi. On the sensor,
we use an open-source framework for replaying real-world
datasets [5]. We provide a dashboard for live monitoring of
the performed optimization and savings in data reads and
transmissions. Attendees interact with the algorithm by de-
ploying the queries associated with the real-world examples
on the datasets and submitting additional custom queries
with associated UDSFs. They gather real-time insights into
the performed optimization and observe the transmission
achieved savings.

3.1 Setup
We selected a Raspberry Pi 3 Model B single-board com-

puter due to its cost-effectiveness and widespread use in
sensor-based research as our sensor node. We equipped the
device with the real-time kernel patch PREEMT-RT, allow-
ing for more precise wakeup times for read-execution, sched-
uled according to the Pi’s steady system clock. It is worth
noting that our framework operates cross-platform: It runs
on POSIX compliant operating systems, GNU/Linux and
BSD variants and is agnostic to the underlying hardware
architecture.

3.2 Interactive Dashboard
The dashboard consists of three core components: 1. The

configuration panel, allowing to provision the Raspberry

3

pre
pri

nt



Figure 5: Executed reads and deviations from tD.

Pi with queries, 2. a visualization of the read-sharing, and
3. statistics on the performed reads and transmissions.

Configuration Panel: Attendees submit queries with cus-
tom data-demand specifications provided as UDSFs, that
are applied immediately. For ease-of-use, a set of pre-confi-
gured queries allows us to present various aspects of the
solution in detail: Attendees learn about the fundamentals
of read-time-suggestion when we present our one-query con-
figuration. We explain read-fusion with the second default
configuration, which launches two queries simultaneously.
Figure 2 shows a screenshot of this configuration. Deploy-
able queries for the real world examples on the football and
public transport datasets constitute realistic data-gathering
environments.

Read Sharing Visualization: The read-sharing visualiza-
tion consists of a continuously updated timeline. It com-
bines the information conveyed in Figures 2 and 3 by visu-
alizing (i) currently active UDSF (namely, the time inter-
val, penalty function, and desired read time) for each query,
(ii) the optimal time frame for the next read (shaded area),
and (iii) the executed read time (as a vertical line spanning
all queries). We can switch off the plotting of penalty func-
tions for larger numbers of queries to avoid clutter.

Read and Traffic Statistics: Read-fusion saves sensor reads
and data transmissions but requires tolerances in the desired
read times to enable read-fusion. We visualize this tradeoff
in the Read time statistics panel in Figure 5. On the left-
hand side, we contrast the executed number of reads to the
amount required when read-fusion was disabled. On the
right-hand side, a histogram shows the deviations from the
desired read time tD for past reads.

4. RELATED WORK
While the problem of data-oblivious sampling is studied in

the literature, our solution adds more flexibility for demand-
based data gathering and addresses multi-query optimiza-
tion. TinyDB [6] introduces the concept of acquisitional
query processing to combine database operators and sensor
reads in joint pipeline. Our work extends this approach with
the ability to run more flexible, non-peroidic, and stateful
sampling logic such as adaptive sampling functions [4, 11].
Xiang et al. [13] eliminate read redundancies by scheduling
reads at the greatest common divisor of all sampling rates.
Read-fusion, exactly adhering to scheduled reads, is a special
case of our solution, while we also allow exploiting read time
tolerances. In contrast to the approach by Tavakoli et al. [8],
UDSFs provide the flexibility to perform non-periodic reads,
to specify dynamic read tolerances, and to weight read-times
within the acceptable tolerance. In summary, we provide
a combined framework for Demand-based Data Gathering
and Multi-Query Optimization. Hereby, separation of the
specification for read-suggestion and read-fusion allows us
to correctly address a query’s data-demand.

5. CONCLUSION
We demonstrate a solution for demand-based data gath-

ering from sensor nodes with multi-query optimization. Our

solution reduces the number of sensor reads and the amount
of transferred data. The demonstration shows the flexibility
and the ease-of-use of the proposed approach. Queries ex-
press their data-demand as user-defined sampling functions
(UDSFs) that enable sharing of sensor reads and data traf-
fic among queries. While the complexity of demand-based
read-scheduling is transparent to the user, this demonstra-
tion helps understanding the internals and allows for com-
posing user-defined sampling functions that capture the spe-
cific data-demands of queries.

6. REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito. The internet of

things: A survey. Computer networks,
54(15):2787–2805, 2010.

[2] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache flink: Stream and
batch processing in a single engine. IEEE Big Data
Bulletin, 36(4), 2015.

[3] L. Da Xu, W. He, and S. Li. Internet of things in
industries: A survey. IEEE Transactions on industrial
informatics, 10(4):2233–2243, 2014.

[4] L. Fan and L. Xiong. An adaptive approach to
real-time aggregate monitoring with differential
privacy. IEEE TKDE, 26(9), 2014.

[5] D. Giouroukis, J. Hülsmann, J. von Bleichert,
M. Geldenhuys, T. Stullich, F. Gutierrez, J. Traub,
K. Beedkar, and V. Markl. Resense: Transparent
record and replay of sensor data in the Internet of
Things. In Proceedings of the International Conference
on Extending Database Technology (EDBT), 2019.

[6] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an acquisitional query processing
system for sensor networks. TODS, 30(1), 2005.

[7] C. Mutschler, H. Ziekow, and Z. Jerzak. The debs
2013 grand challenge. In Proceedings of the 7th ACM
international conference on Distributed event-based
systems, pages 289–294, 2013.

[8] A. Tavakoli, A. Kansal, and S. Nath. On-line sensing
task optimization for shared sensors. IPSN, 2010.

[9] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, et al. Storm@twitter. In Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 147–156, 2014.

[10] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and
V. Markl. Optimized on-demand data streaming from
sensor nodes. In ACM SoCC, 2017.

[11] D. Trihinas, G. Pallis, and M. D. Dikaiakos. AdaM:
An adaptive monitoring framework for sampling and
filtering on IoT devices. IEEE Big Data, 2015.

[12] R. van der Meulen. Gartner says 6.4 billion connected
things will be in use in 2016, up 30 percent from 2015.
2015.

[13] S. Xiang, H. B. Lim, K.-L. Tan, and Y. Zhou.
Two-tier multiple query optimization for sensor
networks. ICDCS, 2007.

[14] S. Zeuch, A. Chaudhary, B. Del Monte, H. Gavriilidis,
D. Giouroukis, P. M. Grulich, S. Breß, J. Traub, and
V. Markl. The nebulastream platform: Data and
application management for the internet of things. In
Conference on Innovative Data Systems Research
(CIDR), 2019.

4

pre
pri

nt


	Introduction
	Demand-based Data Gathering
	Solution Overview
	Demand Specification
	Multi Query Optimization

	Demonstration
	Setup
	Interactive Dashboard

	Related Work
	Conclusion
	References



