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ABSTRACT

Stream Processing Engines (SPEs) execute long-running quer-
ies on unbounded data streams. They rely on managed run-
times, an interpretation-based processing model, and do not
perform runtime optimizations. Recent research states that
this limits the utilization of modern hardware and neglects
changing data characteristics at runtime.

In this paper, we present Grizzly, a novel adaptive query-
compilation-based SPE to enable highly efficient query exe-
cution on modern hardware. We extend query-compilation
and task-based parallelization for the unique requirements of
stream processing and apply adaptive compilation to enable
runtime re-optimizations. The combination of light-weight
statistic gathering with just-in-time compilation enables
Grizzly to dynamically adjust to changing data-characteristics
at runtime. Our experiments show that Grizzly achieves up to
an order of magnitude higher throughput and lower latency
compared to state-of-the-art interpretation-based SPEs.
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1 INTRODUCTION

Over the last decades, the requirements of data processing
changed significantly. Real-time analytics require the execu-
tion of long-running queries over unbounded, continuously
changing, high-velocity data streams. Common SPEs such
as Flink [15] and Storm [66] scale-out executions to achieve
high throughput and low-latency. However, recent research
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Figure 1: Yahoo! Streaming Benchmark (8 Threads).
revealed that these SPEs do not fully utilize modern hard-
ware [74, 76]. The authors identified three main reasons for
this. First, they introduce many instruction cache misses

because they use an interpretation-based processing model.
Second, they introduce many data cache misses because they
rely on managed runtimes. Third, they utilize sub-optimal
parallelization strategies on single nodes because they opti-
mize for a scale-out environment. By eliminating these bottle-
necks in hand-written implementations of stream processing
queries, Zeuch et al. [74] showed a significant performance
improvement is possible. However, a hand-coded query plan
is impractical and cumbersome in practice. For database sys-
tems, Neumann [56] introduce query-compilation as a tech-
nique to achieve the performance of hand-written code for
general query processing. However, no state-of-the-art SPE
exploits query-compilation to achieve similar performance
improvements for streaming workloads.

In this paper, we introduce Grizzly, the first adaptive,
query-compilation approach for stream processing on multi-
core systems. Grizzly combines the generality and ease-of-
use functionality of SPEs with the efficient hardware uti-
lization of hand-written code. To reach this goal, we tackle
three fundamental challenges: First, the semantics of stream
processing are fundamentally different from relational al-
gebra. Data streams are conceptually unbound and need to
be discretized into finite windows. Windowing semantics
are extremely diverse and cover different window types (e.g.,
tumbling and sliding windows), window measures (e.g., time-
based and count-based windows), and window functions (e.g.,
aggregations). The cyclic control flow between these compo-
nents makes it hard to directly apply state-of-the-art query-
compilation approaches. More specifically, Grizzly extends
classic query compilation by supporting cyclic compile-time
dependencies between the windowing components (win-
dow assignment, window triggering, and the window func-
tions). Second, stream processing queries are inherently long-
running, while the input stream constantly changes. As a



Portland 20, June 14-19, 2020, Portland, OR

consequence, the optimal plan and code efficiency changes
over time too. To handle this, Grizzly establishes a feedback
loop between code-generation and execution. Our key idea
is to use query compilation to inject low-overhead profiling
code into the compiled query. The instrumented compiled
query collects profiling information, which we use to adap-
tively optimize the query at run time. Third, in contrast to
relational operators, stream processing requires ordering be-
tween records. This introduces additional challenges for the
concurrent processing of state-full operations (e.g., window
aggregations). SPEs, such as Flink, apply key-by partitioning
to mitigate this problem. In contrast, we apply task-based
parallelism to utilize multi-core systems efficiently. To this
end, Grizzly generates specialized code to address the or-
dering requirements of a particular query and to take the
underlying hardware into account. Additionally, Grizzly uti-
lizes light-weight coordination among threads.

By tackling these challenges, Grizzly closes the gap be-
tween state-of-the-art SPEs and the performance of hand-
written code. In Figure 1, we compare the performance of
Grizzly to a scale-out SPE (Flink[15]), two scale-up SPEs
(Saber [46], Streambox [54]), and two hand-optimized imple-
mentations of the Yahoo! Streaming Benchmark [21]. Only
Grizzly and the hand-written C++ implementation fully uti-
lize the available hardware. Grizzly outperforms state-of-
the-art SPEs by up to an order of magnitude without losing
generality. In summary, our contributions are as follows:

(1) We present an adaptive, query compilation approach

for stream processing that generates efficient code.

(2) We extend query compilation to support common win-

dow types, window measures, and window functions.

(3) We introduce adaptive optimizations to react to chang-

ing data characteristics.

(4) We utilize order-preserving, task-based parallelization

and introduce light-weight coordination among threads.

(5) We demonstrate Grizzly’s performance in comparison

to state-of-the-art SPEs on diverse workloads.

The remainder of this paper is structured as follows. First,
we discuss foundational background (Sec. 2). Second, we
introduce the architecture of Grizzly (Sec. 3.1), its code gen-
eration approach (Sec. 4), its parallelization technique (Sec. 5),
and its adaptive optimizations (Sec. 6). Finally, we evaluate
Grizzly (Sec. 7) and discuss related work (Sec. 8).

2 BACKGROUND

In this section, we provide an overview of window semantics
and introduce query compilation for data-at-rest.

2.1 Window Semantics

Stream processing has been formally defined by multiple
authors [11, 16, 46]. Following Carbone et al. [16] we define
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a data stream s as a sequence of records and denote, s; = (i)
as the ith element in s and 5([a, b]) = s(R) = {s;|i € R} as
a sub-stream of 5. The window operator discretizes a data
streams 5 into a sequence of potentially overlapping win-
dows w; =5([b;, e;]). Windows are characterized by window
type, window measure, and window function [67].
Window Types. The window type is formally defined by an
assignment function f,(s;) — w; that assigns a record s; to
a window w;. Common window types are tumbling, sliding,
and session windows [67]. Tumbling and sliding windows
discretize a stream into windows of fixed length [. Addition-
ally, sliding windows define a slide step Is that declare how
often new windows start. Consequently, records are assigned
to multiple concurrent overlaps sliding windows when I < I.
In contrast, session windows end if no record is received for
a time [, (session gap) after a period of activity. Thus, the
size of a session window depends on the input stream.
Window Measures. The window measure defines the pro-
gress of windows. Common window measures are time and
count [11]. Time-based windows utilize a monotonic increas-
ing timestamp ts and trigger as soon as the time passes
the window end s > wj.e. In contrast, the length [ of
count-based windows corresponds to the number of assigned
records. Thus, a window ends when s; > w;.e. For grouped
aggregations, time-based windows trigger for all keys at the
same time, but the trigger decision of count-based windows
has to be managed per key.

Window-Functions. Window functions execute arbitrary
computations on assigned records. For aggregation functions,
we differentiate between decomposable and non-decompo-
sable functions as proposed by Jesus et al. [41]. Decompos-
able aggregate functions (e.g., sum, avg) are computed in-
crementally; thus, only a partial aggregate has to be stored.
In contrast, non-decomposable aggregation functions (e.g.,
holistic functions), require access to all records of a window.

2.2 Query Compilation

Over the last decade, query compilation for data-at-rest pro-
cessing was extensively studied [47, 56, 62] and implemented
in several Systems [45, 47, 56]. To generate code for a query,
many of these systems apply the Produce/Consume [56]
model. In this approach, a query compiler segments a query
plan into pipelines whenever a materialization of intermedi-
ate results is required (e.g., for Aggregation or Join operators).
All operations inside a pipeline are fused to one combined
operator that performs a single pass over the data such that
data stays in CPU registers [56]. To implement the produce/-
consume model, the compiler requires each operator to im-
plement two functions. First, the produce function is called
on the root operator and navigates the query plan from the
root to the leaves (scans) and segments the query in pipelines.
Second, the consume function is called from the leaf nodes,
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Figure 2: Query Execution Workflow in Grizzly.

navigates to the root node, and generates the code for each
pipeline. This results in a very compact code fragment which
combines the processing of all pipeline operators.

3 GRIZZLY

In this section, we introduce Grizzly, our novel adaptive,
compilation-based SPE. Grizzly’s primary goal is to provide
a high-level query interface for end-users while at the same
time achieving the performance of hand-optimized code. In
the remainder of this Section, we discuss the major chal-
lenges of compilation-based SPEs (Sec. 3.1), present how
Grizzly’s core principles address them (Sec 3.2) and explain
Grizzly’s execution model (Sec. 3.3).

3.1 Challenges for compilation-based SPEs

Similar to query compilation for data-at-rest, a compilation-
based SPE, segments queries into multiple pipelines and
fuses operators within pipelines. However, stream processing
workloads introduces several new challenges.

Challenge 1: Stream processing semantics. To the best
of our knowledge, there is no SPE that is able to fuse stream
processing queries involving windowing. The main chal-
lenges are three-fold. First, the window triggering depends
on the window assignment and is order-sensitive. Second, the
window function needs to be performed after the window-
ing, but defines the state that needs to be stored in windows.
Third, triggering involves a final aggregation step (e.g., to
compute the average). The cyclic control flow between these
three tasks makes it hard to apply state-of-the-art query
compilation techniques to an SPE because they assume only
linear compile-time dependencies between operators.

Challenge 2: Order preserving semantics. In contrast
to relational algebra, the outcome of stream processing op-
erators depends on the order of records in the data stream.
Thus, data-parallel execution requires coordination among
processing threads before the next pipeline can process win-
dow results. A compilation-based SPE has to take this re-
quirement into account during code generation. As a result, a
compilation-based SPE has to adjust the coordination among
threads depending on the query to ensure correct processing
results while enabling efficient processing.

Challenge 3: Changing data characteristics. Stream
processing queries are deployed once and executed for a
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long time, while the input stream may change. In particular,
they may face unpredictable changes in the data characteris-
tics at runtime, e.g., a changing number of distinct values or
a changing data distribution of keys. As a consequence, the
efficiency of generated code may change over time. Thus, a
compilation-based SPE has to re-evaluate the applied opti-
mizations and if required, generate new code during runtime.
To this end, Grizzly detects changes and deploys new code
variants with minimal performance impact.

3.2 Core Principles of Grizzly

Grizzly addresses the challenges introduced in Section 3.1,
by applying query compilation, enabling task-based paral-
lelization, and adaptively optimizing the generated code with
regards to hardware and data characteristics.

Query Compilation. Grizzly introduces query-compi-
lation for stream processing and handles the complexity of
windowing. Within pipelines, Grizzly fuses operations to
compact code fragments and performs all operations of a
pipeline in one single pass over a chunk of input records
without invoking functions. Thus, data remains in CPU reg-
isters as long as possible without loading records repeatedly.
To improve data locality in contrast to managed run-times,
Grizzly avoids serialization and accesses all data via raw
memory pointer. As a result, query compilation in Grizzly
increases code and data locality significantly.

Order preserving task-based parallelization. To ex-
ploit multi-core CPUs efficiently, Grizzly executes pipelines
concurrently in a task-based fashion on a global state. This
eliminates the overhead of data pre-partitioning and state
merging. However, it requires coordination between threads
to fulfill the order requirements of stream processing. Grizzly
addresses these requirements by introducing a light-weight,
lock-free window-processing approach based on atomics.

Adaptive optimizations. Grizzly introduces a feedback
loop between code-generation and query execution to ex-
ploit dynamic workload characteristics. Grizzly continuously
monitors performance characteristics, detects changes, and
generates new code variants. As a result, Grizzly performs
speculative optimizations and assumptions about the incom-
ing data. If an assumption is invalidated, Grizzly gracefully
re-optimizes a code variant. To reduce the performance over-
head, Grizzly combines light-weight but coarse-grained per-
formance counters with fine-grained code instrumentalist.

3.3 Compilation-based Query Execution

In Figure 2, we present the architecture of Grizzly’s compi-
lation-based query execution model, which consists of four
phases. From the logical query plan @ to the continuous
adaption to changing data characteristics @.
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3.3.1 Logical Query Plan. In the first phase @, Grizzly of-
fers a high-level Flink-like API and translates each query
to a logical query plan. This plan contains a chain of oper-
ators that consumes a stream with a static source schema.
Grizzly supports traditional relational operators, e.g., selec-
tion and map, and stream processing specific operators for
windowing. Window definitions consist of a window type,
a window measure, and a window function, as introduced
in Section 2.1. Furthermore, Grizzly supports global win-
dows that create one aggregate over the whole stream and
keyed windows that created partitioned aggregations per
key. Based on these operators, Grizzly supports common
stream processing queries.

3.3.2  Query Compiler. In the second phase @), Grizzly seg-
ments the logical query plan into pipelines, performs opti-
mizations, and generates code for each pipeline.

Segmentation. Query compilers for data-at-rest fuse op-
erators until they reach a pipeline-breaker, which require a
full materialization of intermediate results (e.g., joins or ag-
gregations). However, the unbounded nature of data streams
prevents the full materialization of intermediate results. To
this end, Grizzly separates pipelines at operators that require
partial materialization, similar to soft-pipeline-breakers [74].
In particular, non-blocking operators (e.g., map or filter) are
fused. In contrast, all blocking operations in stream process-
ing are computed over windows (e.g., aggregations or joins)
and terminate pipelines. Thus the support of windowed op-
erations is crucial for a compilation-based SPE.

Optimization. After query segmentation, Grizzly opti-
mizes the individual pipelines. To this end, Grizzly exploits
static information, e.g., the hardware configuration, as well
as dynamic data characteristics. To collect data characteris-
tics, Grizzly introduces fine-grained instrumentation into the
generated code. This enables Grizzly to derive assumptions
about the workload, e.g., predicate selectivity and the distri-
butions of field values. Based on these assumptions, Grizzly
chooses particular physical operators.

Code-Generation. In the last step, Grizzly translates each
physical pipeline to C++ code and compiles it to an ex-
ecutable code variant. Note that all variants of the same
pipeline are semantically equivalent, but execute different
instructions and access different data-structures. For code
generation, Grizzly follows the produce/consume model and
extends it with support for rich stream processing seman-
tics. In particular, we consider code generation and operator
fusion for the window operator.

3.3.3 Execution. In the third phase 3, Grizzly executes the
generated pipeline variant. Each variant defines an open and
close function to manage the state of the variant. Depending
on the physical operators, state is completely pre-allocated or
dynamically allocate during execution. For the input stream,
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Grizzly exploits the fact that input records physically arrive
in batches over the network and schedules each batch as a
task for an individual thread to utilize multi-core CPUs. Thus,
pipelines and their associated state are accessed concurrently
by multiple threads. This introduces challenges for window
processing, as all threads have to pass the window-end before
one thread outputs the result. To this end, Grizzly introduces
a lock-free data structure, such that multiple threads can
concurrently process a window without starvation.

3.34 Profiling & Adaptive Optimization. In the final phase @,
Grizzly continuously collects profiling information and re-
optimizes the query in two steps. During query execution,
Grizzly collects hardware performance counters, e.g., num-
ber of cache misses, to detect changing data characteris-
tics. Hardware performance counters have a negligible per-
formance impact [23, 75], but give a coarse-grained intu-
ition about the evolution of data-characteristics. If the col-
lected counters indicate a change, Grizzly collects more
fine-grained profiling information, via code instrumentation.
Based on this information, Grizzly re-optimizes the query
and generates a new code variant.

4 QUERY COMPILATION

In this section, we detail Grizzly’s query compilation ap-
proach and address the special challenges of stream process-
ing. In particular, we focus on window aggregations as they
are the primary operator requiring materialization and conse-
quently breaking pipelines. Figure 3, illustrates how Grizzly
segments an example query in two pipelines. Each pipeline
begins with an arbitrary number of non-blocking pipeline
operators (e.g., filter). Finally, each pipeline is terminated by
the window operator, which Grizzly performs in three steps.
First, the window assigner assigns input records, depending
on the window type, to one or more corresponding windows.
Second, the window aggregator updates the window aggre-
gate. Third, the window trigger checks if an active window
is complete and invokes the next pipeline to forward the
window result. As a result, Grizzly supports a diverse set
of window characteristics, which require specialized code
generation for all windowing aspects, e.g., assignment, aggre-
gation, and trigger. In Figure 4(a), we present a mapping of a
generic query plan to an abstract code template. Note that
we use the templates only for representation reasons, inter-
nally each physical operator produces C++ code depending
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/*init data structures (e.g.
DATA_STRUCTURES () ;

windowBuffer)*/

void generateAssignmentCode (WindowType
type){

Source

Q ureaxg

Pre-Trigger

Pipe-

A Final Aggregation

R

void currentPipeline (StreamBuffers streamBuf){

/* source operator */
for each(record r in streamBuf){
for each (window w in windows){
CHECK PRE_TRIGGER(w, r){

FINAL_AGGREGATION (w) ;

nextPipeline (w);

I3

}

/*perform pre-operators (e.g. filter)x*/

PIPELINE_OPERATORS (t ,{

Oper-
ators

Pre-Aggregation

Assign

for each (window w in windows){

CHECK_WINDOW _ASSIGN (w, 1) {

 PRE_ AGGREGATION(w, r);

CHECK_POST_TRIGGER(w, r){

J

)

FINAL_AGGREGATION (w) ;
nextPipeline (window) ;

ts = getTimestamp () ;
if (type == TUMBLING_WINDOW) {
PRE_AGGREGATE(w, r);
CHECK_POST_TRIGGER (w, r);
}else if(type == SLIDING_WINDOW) {
if (ts >= w.begin && ts < w.end)
PRE_AGGREGATE(w, r);
CHECK_POST_TRIGGER(w, r);
Telse if(type == SESSION_WINDOW){
PRE_AGGREGATE(w, r);
w.end = ts + type.timeout;
CHECK_POST_TRIGGER(w, r);

(b) Window Assignment.

void generatePreTrigger (Trigger t){

Post-Trigger

20 }

ts = getTimestamp () ;

W
—

REGATION (w) ;
ine (w);
w.end = NEXT_WINDOW_END (w, ts) ;

Query Plan / Dataflow Graph

22 }
Next 2 H
P 24| |}
ine 25}

for each(record r in window
pipeline operators

26| void nextPipeline (Windows window){

}

}
9| void generatePostTrigger (Trigger t){
10 w.count++;
11 if (w.count
1 FINAL_AGGREG
13 nextPipeline (w) ;
w.count = 0;

t.max_count) {
ATION (w) ;

)
. 28 /* ... 2
Sink T WRITE_OUTPUT_STREAM (output_record) ; 14
30 } 15 }
31|} 16|}

(a) Mapping of a Logical Query Plan to a generic code template.

(c) Window Trigger.

Figure 4: Overview of Code Generation.

on its particular properties. As shown, a stream processing
query may consist of four types of operators: source, pipeline
operators, window operators, and sinks. In the following, we
first provide an overview of the operators that are supported
by Grizzly (see Section 4.1). After that, we describe the code
generation for the windowing operator as the main building
block in streaming queries (see Section 4.2).

4.1 Operator Overview

In this section, we discuss the individual operators of Fig-
ure 4(a) and illustrate how Grizzly generates code for them:

Source Operator. The input stream arrives as a sequence
of input buffers containing records. Each pipeline receives
one input buffer at a time (Line 3) and the source operator
iterates in a tight for loop over all records (Line 5). To avoid
the deserialization of data from the input buffer, Grizzly
casts the data from the raw buffer directly into complex
event types. Then, the loop body executes all fused pipeline
operators and ends with the window operator.

Pipeline-Operators. Pipeline-operators apply arbitrary
non-blocking computation (e.g., filters, maps). Consequently,
pipeline-operators could generate arbitrary output records
per input record. Thus, all succeeding operations (e.g., win-
dow assignment and triggers) must be nested inside the
pipeline-operators (Line 13).

Window Operator. Grizzly divides the window operator
into three sub operators: assigner, aggregation, and trigger.

Assigner. During window assignment, Grizzly determines
the target windows for the current record. The code iterates
over all active windows and assigns the current record to its
corresponding window(s) (Line 15).

Aggregation. After assigning a record to a window, Grizzly
updates the window aggregate. Depending on the window

function, Grizzly pre-aggregates records to minimize mem-
ory consumption (Line 16). After the window is triggered,
Grizzly computes the final aggregate (Line 8 and Line 18).

Trigger. Depending on the window measure (count-based
or time-based), it is required to perform the trigger check
before (Line 7) or after the window assignment (Line 17).

Next-Pipeline. After triggering a window, the next pipe-
line starts processing window results (Line 26). The next
pipeline can again contain arbitrary pipeline operators and
ends with a window operator or a sink. As a result, Grizzly
supports queries with multiple windows.

Sink Operator. The sink operator terminates a pipeline
and writes records to an output stream (Line 29).

4.2 Window Operator

In this section, we discuss window operator-specific query
compilation aspects. To this end, we present the code gener-
ation approach for window assignment (see Section 4.2.1),
window aggregation (see Section 4.2.2), and the window trig-
ger (see Section 4.2.3). Finally, we discuss the handling of
partitioned window joins (see Section 4.2.4).

4.2.1  Window Assignment. The window assigner maps in-
coming records to windows. To this end, Grizzly keeps track
of active windows and generates specialized code depending
on the window type, illustrated in Figure 4(b). To keep track
of active windows, Grizzly stores metadata for each window
(e.g., start and end timestamps) in a compact array. During
window assignment, Grizzly checks all windows and assigns
the record to a window aggregate if the assignment condition
is true. Depending on the window type, Grizzly generates
different code (blue background for generated code). For tum-
bling and session windows, each record belongs to exactly
one window (Line 3 and Line 10). In contrast, for sliding
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windows the generated code iterates over all active windows
(Line 6) and selects matching windows based on the current
timestamp (ts) (Line 7). In contrast, session windows expand
with each assigned record and Grizzly shifts the window end
if a record is assigned (Line 12).

4.22  Window Aggregation. After assigning records to win-
dows, Grizzly adds the record to the window aggregate. Griz-
zly differentiates between decomposable (e.g., sum , avg) and
non-decomposable (e.g., median) aggregation functions as in-
troduced in Section 2.1. For non-decomposable aggregation
functions, Grizzly stores all assigned records in a separate
window buffer and computes the final aggregation after the
window is triggered. For decomposable aggregation func-
tions, Grizzly computes the window aggregate incrementally.
Thus, Grizzly only stores a partial aggregate instead of all
assigned records, which reduces memory requirements. Fur-
thermore, primitive partial aggregates can be updated much
more efficiently using atomic operations. For keyed (grouped)
aggregations, Grizzly maintains a partial aggregate per key.

4.2.3 Window Trigger. The window trigger completes win-
dows and passes them to the next pipeline. Grizzly evaluates
trigger conditions before the processing of a record (pre-
triggers) or after the window aggregation (post-triggers). We
illustrate the code generation algorithm in Figure 4(c).
Pre-Trigger. The pre-trigger checks active windows be-
fore processing the current event. This is necessary to sup-
port time-based window measures. Time triggers only de-
pend on the progress of time for the trigger decision and
are independent of the individual record. Thus, time-based
triggers replace the CHECK_PRE_TRIGGER macro in the
generic code template (see Figure 4(a), Line 7). For time-
based triggers, the generated code compares the current
timestamp ts to the end time of each active window (Line
3). If the window end timestamp is passed, the window is
triggered. In this case, Grizzly computes the final window
aggregate (Line 4) and calls the next pipeline to process the
window result (Line 5). Finally, Grizzly clears the window
state, calculates a new window end timestamp, and updates
the window metadata (Line 6). Note that an additional trigger
is necessary if the arrival rate of new records is too slow to
guarantee a constant evaluation of the trigger function.
Post-Trigger. The post-trigger is executed after assigning
a record to a window. It replaces the CHECK_POST _TRIG-
GER macro in the generic code template (see. Figure 4(a),
Line 17). The post-trigger only evaluates the assigned win-
dow instead of all active windows. Post-triggers are neces-
sary to support count-based windows, which directly trigger
a window after the last record is assigned. In contrast, a
count trigger maintains a counter to keep track of the num-
ber of assigned records to each active window (Line 10). If
the number of items has reached the maximal window count
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(Line 11), the trigger calculates the final aggregate (Line 12)
and invokes the next pipeline (Line 13). Finally, Grizzly clears
the window state and sets the window count to zero (Line 14).

4.2.4 Windowed Join. Grizzly supports windowed equal
joins following the semantics of Flink [15]. For each input
stream, Grizzly generates one code pipeline that maintains
an intermediate join table. Grizzly reuses the window trigger
code to discard the intermediate state as soon as the window
ends. During execution, each pipeline concurrently assigns
records to its local join table and probes the record to the
join table of the other join side. Consequently, the stream
join is fully pipelined and non-blocking.

5 PARALLELIZATION

To utilize modern multi-core processors efficiently, Griz-
zly applies data-centric parallelization. This paradigm is re-
flected in both the classic exchange operator [36] and morsel-
based operators [49]. Grizzly extends these ideas and intro-
duces light-weight coordination primitives to address the
unique ordering requirements of stream processing. Dur-
ing runtime, Grizzly creates tasks for each incoming buffer
and its target processing pipeline. Worker threads execute
the pipeline and operate on a shared global state, e.g., for
window aggregations. This approach eliminates the data
shuffling step of systems like Flink and provides robustness
for skewed key distributions and heavy hitters. In the re-
mainder of this section, we present how Grizzly coordinates
window processing to address the order semantics of stream
processing (see Section 5.1) and how it specializes generated
code with regards to NUMA hardware.

5.1 Lock-Free Window Processing

In general, a dynamic, task-based parallelization can lead
to wrong processing results for streaming queries. Thus,
Grizzly has to prevent that windows are passed to the next
pipeline, while other threads still assign records to them.
A naive approach, would introduce a barrier at window
ends to synchronize all processing threads. However, this
limit performance due to the introduced waiting time. To
overcome this limitation, we introduce a lock-free window
processing technique that allows threads to process differ-
ent windows concurrently. In particular, Grizzly maintains
multiple window-aggregates in a ring buffer (depending
on the window type), similar to the technique proposed
by Zeuch et al. [74]. Furthermore, each thread maintains
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a pointer to its current window-aggregate and the value
of the next window end. This technique enables Grizzly to
support important properties. First, every thread can decide
independently to which window it assigns incoming records.
Second, only the last thread that modifies a window needs
to create the final window aggregate and invokes the next
pipeline. Figure 5, illustrates an example of Grizzly’s log-
free window implementation for time-based windows. Each
thread processes its input buffer and checks per record if
the window should trigger. If the window end is reached (at
record (@ in Figure 5) the thread triggers the window locally.
To this end, the thread calculates the next window end and
shifts its current window pointer to the next position in the
window-buffer. After that, the thread will assign all succeed-
ing records to the next window-aggregate. In addition, each
thread increments atomically a global trigger counter tc. If
tc is equal to the degree of parallelism (tc==3 in Figure 5
it is guaranteed that all threads have triggered the window
locally, and no thread will modify the window anymore. In
this case, Grizzly creates the final window aggregate and
invokes the next pipeline.

5.2 NUMA-aware Stream Processing

Research in the area of multi-core query execution show,
that to enable scalability across multiple CPU sockets, its
crucial to take NUMA effects into account [43, 49]. Espe-
cially data accesses across NUMA regions reduce bandwidth
by 2x [51]. In Grizzly, we minimize the inter-NUMA node
communication and specialize the code generation to the
underlying NUMA configuration. During query-compilation,
Grizzly detects the NUMA configuration and deploys a two-
phase strategy for window aggregations. In the first phase,
processing threads pre-aggregate values into a hash-map
inside the local NUMA region. In the second phase, Grizzly
merges the aggregates of the local states at the window end.
During execution, Grizzly pins all processing threads to a
specific NUMA region and only process local input buffers.
Overall, this design reduces cross-numa communication to a
minimum and enables efficient sharing inside one socket.

6 ADAPTIVE QUERY-OPTIMIZATION

Research in the area of adaptive and progressive optimization
demonstrates that the reaction to changing data characteris-
tics improves performance significantly [8]. This specifically
affects streaming queries, which are commonly deployed
once and run virtually forever. In Grizzly, we detect and re-
act to changing data characteristics at runtime and perform
adaptive optimizations using JIT compilation. In Section 6.1,
we detail Grizzly’s adaptive query compilation approach.
In Section 6.2, we present three optimizations that exploit
specific data characteristics.
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6.1 Adaptive Query Compilation

Grizzly follows an explore/exploit approach, to enable adap-
tive optimizations. At run time, Grizzly continuously per-
forms optimization and deoptimization [32, 39]. Depending
on assumptions about the workload (e.g., data- or hardware-
characteristics), Grizzly generates specialized code variants.
If assumptions become invalid, Grizzly deoptimizes and mi-
grates back to a generic code variant. In the remainder of
this section, we detail the individual steps of this process.

6.1.1  Execution Stages. The adaptive compilation process is
reflected by the following three execution stages.

First Stage: Generic Execution. In the first stage, Griz-
zly executes a generic code variant and performs static opti-
mization. For instance, Grizzly utilizes knowledge about the
data schema to optimize comparisons to constant values.

Second Stage: Instrumented Execution. In the second
stage, Grizzly introduces code instrumentation to collect fine-
grained data-characteristics. Thus, each operator can gen-
erate arbitrary profiling instructions to track statistics (e.g.,
predicate selectivity, or the domain of a value). To reduce
overhead, Grizzly applies sampling by executing profiling
code only with a subset of threads and on a subset of records.

Third Stage: Optimized Execution. In the third stage,
Grizzly utilizes the profiling information to make assump-
tions about the underlying data characteristics. Based on this,
Grizzly performs speculative optimizations and specializes
code as well as data structures.

6.1.2° Deoptimization. Deoptimization migrates from the
optimized code variant back to the generic one. The causes
of this are two-fold. First, during execution, Grizzly detects
that an assumption is violated. For instance, if a key exceeds
the assumed range (assuming x < 5 but actualx = 10). In
this case, the current processing thread continuous with the
generic code variant. Second, Grizzly continuously monitors
hardware performance counters to identify changes in data-
characteristics e.g., number of cache misses. If Grizzly detects
a change, it schedules the deoptimization of the current code
variant. If the frequency of deoptimizations is low, Grizzly
directly migrates to stage two.

6.1.3 Variant Migration. For the migration between code
variants, Grizzly ensures correct query results while mini-
mizing processing overhead. To this end, Grizzly lazily inval-
idates code variants such that multiple threads can operate
on different variants concurrently. All processing threads
determine the switch individually and switch to the next
variant after the current task. If all threads have discard the
old variant, Grizzly triggers state migration. In the case of
windows, this requires the merging of a specialized state
representation with the generic representation of the same
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state. Furthermore, to ensure correctness, Grizzly triggers
no windows before the migration is completed.

6.2 Adaptive Optimizations

In the following, we discuss three examples of adaptive op-
timization implemented in Grizzly. Beyond this, Grizzly’s
adaptive optimization approach is able to detect and react to
a wide range of different characteristics (e.g., ingestion rate,
value distribution, selectivity), and to perform a wide range
of optimizations (e.g., operator re-order, algorithm selection,
data-structure specialization).

6.2.1 Exploiting Predicate Selectivity. Optimizing selection
operators has been studied extensively in the database [13,
14, 27,31, 63, 69, 73] as well as the compiler community [6, 7].
In Grizzly, we utilize profiling information to determine the
optimal order of selection inside a query plan. In particular,
conjunctions over multiple predicates benefit if the most
selective predicate is evaluated first, as the CPU can skip
the evaluation of all other branches. Additionally, predicates
with a selectivity of around 50% cause miss-prediction and
introduce a high-performance overhead. During instrumen-
talization, Grizzly generates one counter per predicate to
measures the individual selectivity. In comparison to mea-
suring the combined operator selectivity with performance
counters [75], this allows to directly choose the optimal pred-
icate order. During optimized execution, Grizzly executes the
optimized code variant and monitors the number of mis-
predictions for taken and not taken branches by applying
the cost model of Zeuch et al. [73]. An increasing number
of mispredictions indicates that the selectivity of a predi-
cate changed and that the current predicate order becomes
inefficient. Thus, Grizzly initiates a new profiling phase to
re-optimize the predicate order.

6.2.2 Exploiting Value Ranges. In the general case, Grizzly
maintains window aggregates in an Intel TBB concurrent
hash-map [40]. This hash-map accepts any data type for
keys and values and grows dynamically with the number
of keys. As a result, Grizzly supports any number of input
keys as long as the hash-map fits into memory. However,
this flexibility introduces a substantial overhead [52]. To
mitigate this overhead, Grizzly speculates on the value range.
During instrumentalization, Grizzly injects code to identify
the maximal and minimal key value that is inserted into
the map. During optimized execution, Grizzly replaces the
dynamic hash-map with a static memory buffer, which only
stores window aggregates. This prevents hash-collisions and
eliminates overhead for resizing the state. To prevent out-of-
bound accesses, Grizzly de-optimizes the code variant if a
key lies outside of the assumed value range. This additional
check introduces a negligible overhead as the condition is
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false as long the assumption is valid. Thus, the CPU branch
predictor can predict the branch always correctly.

6.2.3 Exploiting Value Distributions. The efficiency of win-
dow aggregations highly depends on the hash-map imple-
mentation and the key distribution in the workload [22].
A global shared hash-map is beneficial for uniformly dis-
tributed keys, as concurrent accesses to the same key are less
frequent. In contrast, skewed workloads with heavy hitters
benefit from an independent hash-map per thread. This elimi-
nates concurrent accesses and synchronization overhead but
requires merging and reduces memory efficiency as aggre-
gates are stored multiple times. Grizzly adaptively chooses
between both strategies depending on the data characteris-
tics. During instrumentalization, Grizzly creates a histogram
over the key space to monitors the distribution. If Grizzly
can assume that the majority of accesses could hit at least
the L3 cache, Grizzly uses the independent hash-map. Dur-
ing optimized execution, Grizzly monitors the performance
counters of the cache coherence protocol, to detect if the
selected strategy is still appropriate. For instance, an increas-
ing number of exclusive accesses to a cache line that another
thread has in exclusive access indicates that the uniform
distribution shifts to a more skewed distribution.

7 EVALUATION

In this section, we experimentally evaluate Grizzly. In Sec-
tion 7.1, we introduce our experimental setup. After that,
we conduct four sets of experiments. First, we evaluate the
throughput and latency of Grizzly and state-of-the-art SPEs
for different workloads in Section 7.2. Second, we highlight
the throughput impact of different workload characteris-
tics in Section 7.3. Third, we showcase the advantages of
Grizzly’s adaptive optimizations in Section 7.4. Finally, we
analyze resource utilization and system efficiency to reveal
the reasons why Grizzly’s utilize modern hardware more
efficiently compared to state-of-the-art SPEs in Section 7.5.

7.1 Experimental Setup

In the following section, we present the hardware and soft-
ware configurations (Sec. 7.1.1) and the workloads of our
experiments (Sec. 7.1.2).

7.1.1  Hardware and Software. We execute experiments on
two machines: a commodity, single-socket server (Server A)
and a high-end, multi-socket server (Server B) (to isolate
the effects of NUMA). Server A has one Intel Core i7-6700K
processor with four physical cores (in total 8 logical cores)
and contains 32GB main memory. Server B has two Intel
Xeon 6126 with 12 physical cores each (in total 48 logical
cores) and contains 1.48TB main memory. Both CPUs have a
dedicated 32 KB L1 cache for data and instructions per core.
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Figure 6: System Comparison.

Additionally, Server A has 256 KB L2 cache per core and 8 MB
L3 cache per CPU, and Server B has 1IMB L2 cache per core
and 19.25 MB L3 cache per CPU. If not stated otherwise, we
execute all experiments on Server A using all logical cores.
The C++ implementations are compiled with GCC 6.5
and O3 optimization, as well as the mtune flags to produce
specific code for the underlying CPU. We measure hardware
performance counters using PAPI [26] version 5.5.1. The Java
implementations run on the HotSpot VM in version 1.8.0 201.
We use Apache Flink [15] in version 1.8.0 as a representative
scale-out SPE and disable fault-tolerance mechanisms to
minimize overhead. As representative scale-up SPEs, we use
Streambox [54] (C++ based) and Saber [46] (JVM-based).
In the following evaluation, we examine two versions of
Grizzly. Grizzly refers to a version that does not exploit any
knowledge about the data characteristics and thus applies
no adaptive, data-driven optimizations. Grizzly™™ refers to a
version that is aware of data characteristics and thus applies
the adaptive, data-driven optimizations from Section 6.2.

7.1.2  Workload. If not stated other, we base our experiments
on variations of the Yahoo! Streaming Benchmark (YSB) to
simulate real-world stream processing workloads. We follow
the YSB implementation of Grier et al. [37] and Saber [59],
which processes all data directly inside the SPE to prevent
the overhead of external systems such as Apache Kafka or
Redis. The YSB query consists of two processing steps. First,
the YSB query evaluates if the event type matches the string
"view" (33% of the records qualify). Second, the YSB query
aggregates the qualifying records by their campaign id into a
processing-time tumbling window of 10 seconds. We ingest
data with 10k distinct keys and process a SUM aggregation.

7.2 System Comparison

In this section, we study the system throughput under the
impact of parallelism (Sec. 7.2.1 and 7.2.2), compare process-
ing latencies (Sec. 7.2.3), evaluate queries from the Nexmark
benchmark (Sec. 7.2.4), and discuss all findings (Sec 7.2.5).

7.2.1  Scaling on single socket. In this experiment, we evalu-
ate the scalability of Flink, Streambox, Saber, and Grizzly on

Server A. We execute the default YSB query and study the
throughput for an increasing degree of parallelism.

Results. In Figure 6(a), we scale the execution of the YSB
benchmark using different degrees of parallelism. Flink and
Streambox scale up similar and achieve a throughput of
up to 16M records/s. In contrast, Saber outperforms Flink
and Streambox by 2.2x (31M records/s). Sabers throughput
increases up to four cores. Beyond that, the throughput de-
creases due to hyper-threading. Hyper-threading (HT) intro-
duces two logical cores for each physical core, which share
caches, branch prediction units, and functional units [33].
HT is beneficial if multiple threads execute different types
of work (e.g., computation and I/O accesses) [78]. Therefore,
the results for Saber indicate that multiple threads compete
for the same shared CPU resources, which limits the perfor-
mance improvements of HT [33]. Note that, the results are
in line with numbers published by the original authors [58].
As shown, both versions of Grizzly outperform all other
SPEs. In particular, Grizzly achieves near-linear speedup
and exploits HT efficiently. In contrast, by exploiting adap-
tive optimizations, Grizzly** achieves the highest through-
put, which is over an order of magnitude higher compared
to Flink, Saber, and Streambox. Furthermore, Grizzly** be-
comes memory bound for a degree of parallelism of four (all
physical cores), and thus HT does not improve throughput
significantly. Overall, without adaptive optimizations, Griz-
zly outperforms Saber by an average factor of 2.9 (min 1.7x,
max 5.8x) and Flink/Streambox by a factor of 5.3 (min 3.7x,
max 7.7x). With adaptive optimizations, Grizzly™ achieves
an average speedup of 4.2x (min 2.9x, max 5.4x) over the
generic Grizzly version (due to its more dense memory lay-
out). As a result, Grizzly** outperforms all evaluated SPEs
on average by at least one order of magnitude (Saber 11.5x,
Streambox 21.4x, Flink 21.5x).

7.2.2  NUMA Scaling. In this experiment, we evaluate the
scalability of all SPEs on Server B. For Grizzly, we differ-
entiate between a NUMA-aware version as outlined in Sec-
tion 5.2 (Grizzly™ w/ NA) and a NUMA-unaware version
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(Grizzly*™ w/o NA). We execute the YSB query and compare
the throughput for parallelism of 1, 24, and 48.

Results. Figure 6(b) highlights the impact of NUMA for
the individual systems. Overall, this experiment highlights
the impact of NUMA-awareness. Already, for parallelism
of one, Grizzly™ w/ NA leads to a speed-up of 1.3x as it
guarantees that all data is located on the same numa node as
the processing thread. By increasing the degree of parallelism
to 24, all systems improve throughput. In this case, Grizzly™*
w/ NA results in a speedup of 1.5x compared to Grizzly™™*
w/o NA. If we further increase the degree of parallelism to 48,
we observe that the throughput of all numa-unaware systems
stagnates. In contrast, Grizzly** w/ NA optimizations result
in an additional speedup of 1.8x.

7.2.3  Latency. In this experiment, we examine the process-
ing latency. First, we study the dependency between the
buffer size and the latency for Grizzly. Additionally, we com-
pare the latency of Grizzly, Saber, Streambox, and Flink. We
define latency as the duration between the ingestion time of
the last record that contributes to a window aggregate and
the output of the aggregate of that window [42]. We execute
the YSB on all systems with a parallelism of eight.

Results. In Figure 6(c), we observe that both Grizzly ver-
sions reach peak performance for a buffer size larger than 100
records as the run time overhead becomes neglectable [72].
For the dependency between buffer size and latency, Fig-
ure 6(d) highlights two aspects. First, the buffer size has a
high impact on the processing latency of Grizzly. Fora buffer
size of one, Grizzly achieves an average latency of 0.035ms (+
0.014ms) that increases up to 0.91ms (+ 0.26ms) for a buffer
size of 10k records. This characteristic is independent of the
Grizzly version. Second, the code optimizations of Grizzly™**
lead to lower latencies and smaller variances for large buffer
sizes (avg. latency 0.22ms + 0.15ms). The main reason for this
is the higher complexity of the TBB hash-map in the default
Grizzly version. Streambox is the only SPEs that is also able
to reach average latencies in the range of 1ms (+ 0.4ms). In
contrast, Flink has on average a latency of 60ms (+ 4ms) and
Saber 1.9s (+ 49ms). The higher latency of Saber is caused by
its micro-batch processing model [46]. The micro-batching
approach trades higher throughput for higher latency and is
one of the reasons why Saber’s throughput is higher com-
pared to Flink and Streambox. Overall, both versions of Griz-
zly achieves up to an order of magnitude lower latencies and
smaller latency variance than all other SPEs.

7.2.4 Nexmark Benchmark. In this set of experiments, we
evaluate five queries of the Nexmark benchmark on Grizzly**
and Flink. In particular, we use a tumbling window of 10s
for Q7 and Q8, a sliding window of 10s with a slice of 1s for
Q5, and a Sum aggregation for Q5 and Q7. In contrast, Q1
and Q2 are window-less.
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Results. In Figure 7, we present the throughput of queries
with different workloads on both systems. For the stateless
Map (Q1) and Filter (Q2) queries, Grizzly** outperforms
Flink by at least 14x. Flink and Grizzly perform these queries
without any coordination between threads and process every
input record only once. However, Grizzly™™ benefits from
eliminating any data serialization overhead. For the stateful
queries Q5 and Q7, Grizzly™" outperforms Flink by at least
a factor of 60x due to its more compact state representa-
tion, which improves cache locality. Additionally, Grizzly’s
task-based parallelization technique is beneficial for Q7. In
contrast, Flink cannot parallelize the processing of global
windows. The stream join of Q8 is highly resource-intensive,
as both systems have to materialize the complete input data
stream until the window triggers. Grizzly** concurrently
builds and probes the join tables across all processing threads,
which introduce additional coordination overhead. However,
Grizzly** still outperforms Flink by at least a factor 8x on Q8.
Overall, we observe that Grizzly++ provides similar through-
put improvements among all Nexmark queries and outper-
forms Flink by at least 8x. As our selected set of queries
covers basic building blocks of queries, we expect similar
performance improvements for other streaming workloads.

7.2.5 Discussion. Across all experiments, we observed, that
Grizzly outperforms all evaluated systems by up to one order
of magnitude in throughput as well as latency on commodity
hardware as well as high-end NUMA servers. The code spe-
cialization based on data characteristics (Grizzly**) increases
the throughput by up to 5.4x compared to the version without
code specialization (Grizzly). Starting from small buffer sizes
of 100 elements, Grizzly** reaches peak throughput (337
million records/s) and achieves sub-millisecond latencies.
Therefore, Grizzly mitigates the trade-off between latency
and throughput. This experiment highlights two important
aspects of stream processing on modern hardware. First, both
versions of Grizzly exploit the cores of the CPU efficiently
and code generation leads up to an order of magnitude per-
formance improvement. Second, the code specializations of
Grizzly** induce an additional speed up and are crucial to
fully utilize modern hardware efficiently. Furthermore, we
highlight that Grizzly supports a wide range of workloads
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and reaches high performance on complex operators such
as joins or aggregations.

7.3 Workload Characteristics

In the following set of experiments, we study the impact of
particular workload characteristics on the throughput. To
this end, we study the impact of state size (Sec. 7.3.4), the
number of concurrent windows (Sec. 7.3.2), and count-based
windows (Sec. 7.3.3).

7.3.1 Impact of Aggregation Type. In this experiment, we
evaluate six window aggregation functions with a tumbling
window of 10s on Grizzly** and Flink. We evaluate four
decomposable (i.e., Sum, Count, AVG, StdDev) and two non-
decomposable aggregation functions (i.e., Median, Mode).
Results. The results in Figure 8 highlight the dependency
between the complexity of the aggregation function and
processing throughput. For decomposable aggregation func-
tions, Flink reaches an average throughput of 5M records
per second. In contrast, Grizzly** outperforms Flink by a
factor of up to 64x. Depending on the number of atomic state
variables, Grizzly™*’s throughput varies up to a factor of 2x
(e.g., SUM requires one atomic update, and Std Dev requires
three updates per record). In the case of non-decomposable
aggregation functions, the throughput of both systems de-
creases as they must materialize all records until the window
ends. However, Grizzly*™™ is still able to outperform Flink
by a factor of 13x. This is mainly due to its light-weight,
in-memory state representation.

7.3.2  Impact of Concurrent Windows. In this experiment, we
study the throughput of over overlapping sliding windows. In
particular, the efficient support of sliding windows is crucial
as the ratio between size and slide could lead to high numbers
of concurrent windows, e.g., a sliding window of one hour
with a slice of one-minute results in 60 concurrent windows.
We use the YSB query with a sliding window and scale the
number of concurrent windows from 1 to 100.

Results. Figure 9 shows that the throughput of Flink and
Grizzly is highly dependent on the number of concurrent
windows. The overhead of concurrent sliding windows was
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demonstrated in previous work [65, 67]. Both Flink and Griz-
zly use buckets to maintain window aggregates. Thus, both
systems have to assign each record to multiple windows. As a
result, the performance decreases with an increasing number
of concurrent windows. However, Grizzly outperforms Flink
on average by a factor of 4.2x (Grizzly) and 44x (Grizzly™™).
Grizzly™™ achieves a higher throughput as it represents state
in a dense fixed-size array. This simplifies data access and
reduces cache misses also in the case of concurrent windows.

7.3.3 Impact of Window Measure. In the previous experi-
ments, we studied time-based windows. In contrast to time-
based windows, the triggering logic of count-based windows
is fundamentally different and more complex as it requires
updating a global counter after each record assignment. In
the following experiment, we study the impact of the size
of a count window on the throughput. We execute the YSB
query with a count-based window and vary the window size,
which directly determines the window trigger frequency.

Results. Figure 10 reveals that the trigger overhead dom-
inates the throughput for small window sizes (1-100 records)
across all SPEs. Starting from a window size of 1k records,
the overhead gets negligible, and the throughput becomes
independent of the window size. For windows larger than 1k
records, Grizzly outperforms Flink by a factor of 3.4x (generic
Grizzly) and 17.7x (Grizzly™). In comparison to time-based
windows, count-based windows reduce the throughput by a
factor of two. This is mainly due to the more complex win-
dow trigger logic required for count-based windows (see
Section 4.2.3). In particular, Grizzly maintains a counter per
key and window, which has to be incremented atomically
for each assigned value.

7.3.4  Impact of State Size. In this experiment, we scale the
state size by adjusting the number of distinct keys (8byte) in
the input data stream of the YSB query (campaign ids). In
particular, we execute the default YSB query and scale the
number of distinct campaign ids (keys) from 1 to 10 million.
Because the YSB query aggregates by key, the number of
keys directly impacts the intermediate state size.

Results. Figure 11 highlights the dependency between
throughput and state size (number of keys) across the ex-
amined systems. Streambox and Saber achieve, on average,
a throughput of 15M and 19M record/s, respectively. Both
systems outperform Flink that reaches the lowest average
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throughput with 11M records/s. If the stream only consists
of one key, Flink’s throughput decreases to 6M record/s,
which is equal to its single-thread performance (see evalu-
ation in Section 7.2.1). This demonstrates the disadvantage
of key-partitioning based parallelization as only one thread
performs computations per distinct key. In contrast, Grizzly
outperforms all other SPEs for all state sizes.

In general, increasing key ranges of generated records
induces only a small impact on throughput for Flink, Saber,
and Streambox. If the intermediate state exceeds the L3 Cache
(more then 130k keys), the throughput slightly decreases
(e.g., for Flink 0.6x). This result indicates that all three SPEs
do not exploit modern hardware, in particular, CPU caches,
efficiently. In comparison to the best performing SPE (Saber),
Grizzly reaches an average speedup of 5.9x (min 4.4x, max
7.0x) and Grizzly** reaches an average speedup of 15.3x (min
10.2x, max 18.4x). For small state sizes (1-100 keys), Grizzly**
induces a high overhead. This overhead is mainly caused by
concurrent accesses on a small number of keys that result in a
significant synchronization overhead. Between 100 and 100k
keys, Grizzly** reaches peak performance (338M records/s).
For more than 100k keys, the performance of both Grizzly
versions decreases as the state size exceeds the L3 Cache.

7.3.5 Discussion. In these experiments, Grizzly outperformed
Streambox, Saber, and Flink across all tested workload config-
urations. Depending on the query workload, the performance
improvements differ. In particular, the aggregation type, the
window type, and the number of concurrent windows impact
performance significantly. However, we proved that the adap-
tive optimizations of Grizzly** exploit the cache hierarchy
and the capabilities of modern hardware most efficiently.

7.4 Adaptive Optimizations

In the following set of experiments, we evaluate Grizzly’s
adaptive optimization techniques (Sec. 6.2).

7.4.1 Compilation Stages. In this experiment, we study the
performance impact of Grizzly’s three compilation stages.
We execute the YSB query and configure the duration of
each compilation stage to 10 seconds. After 30 seconds, the
number of distinct keys increases by 10x.

Results. Figure 12 illustrates the system throughput of
Grizzly over time. At the beginning, Grizzly deploys the
generic code variant and reaches a throughput of 100M
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records/s. At @D, Grizzly migrates to the instrumented code
variant. The profiling instructions introduce an overhead of
50% such that the throughput decreases to 50M records/s.
At @), Grizzly utilizes the collected profiling information to
deploy an optimized code variant. This results in a speedup
of 3.3x over the generic baseline ( 330M records/s). At 3, the
number of distinct keys increases and Grizzly de-optimizes
the pipeline variant as discussed in Section 6.1. After deop-
timization, the throughput drops shortly to 24M records/s,
before a new optimization circle starts.

7.4.2° Selectivity Profiling. In this experiment, we study the
performance impact of optimizing predicate reordering in
queries containing selections (Sec. 6.2). To this end, we intro-
duce five greater equal predicates into the YSB query such
that 120 different predicate orders are possible. During exe-
cution, we vary the selectivity of two predicates (x and y).
All other predicates have a fixed selectivity of 50%.

Results. Figure 13 compares the throughput of Grizzly
with two specific plans, which either first evaluate the x or
y predicate. At the beginning, predicate y is very selective.
Thus it is more efficient to evaluate it first. Starting from
second 40, the predicate x becomes more selective then y.
Thus, it also becomes more efficient to evaluate x first. Griz-
zly detects the crossing point and changes the operator order
after re-profiling the selectivities. Over the entire runtime,
the adaptive optimization results in a throughput difference
of up to 150M records/s.

7.4.3  Heavy-Hitter-Profiling. In this experiment, we study
the impact of Grizzly’s adaptive optimization for detecting
the distribution of keys in window aggregations (see Sec-
tion 6.2). We execute the standard YSB query with 1M distinct
keys. Over time, we shift the distribution of keys, starting
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Table 1: Resource utilization per Record on YSB query.

Grizzly GrizzlyJ'Jr Streambox | Saber Flink

Branches/rec 18.2 7 706 184 701
Branch Mispred./rec 0.78 0.38 5.5 0.25 2.23
L1-D Misses/rec 3.5 1.39 50.6 11.9 23.8
L2-D Misses/rec 11.2 3.59 132 22.6 43.8
LLC Misses/rec 1.8 1.92 46.6 10.9 18.7
TLB-D Misses/rec 0.01934 0.01234 6.7 0.20 0.45
Instructions/rec 139.4 41.6 3440 1157 4162
L1-I Misses/rec 0.00026 0.00011 13.8 1.1 14.4
L2-1 Misses/rec 0.00023 0.00010 2.7 0.26 1.2
TLB-I Misses/rec 0.00012 0.00006 0.091 0.017 0.081

with a nearly uniform distribution towards a scenario where
60% of records access the same key.

Results. After the initial profiling phase, Grizzly detects
that the keyspace is nearly uniformly distributed and chooses
a shared hash-map. After 60 seconds runtime, the perfor-
mance of the shared hash-map significantly decreases, as
more than 10% of all records access the same key. Grizzly
detects the increasing cache contention with performance
counters and triggers re-optimizes by migrating to an inde-
pendent hash-map. For a highly skewed distributions, the
independent hash-map achieves a speed-up of up to 2x.

7.4.4  Discussion. The experiments showed that Grizzly is
able to detect and exploit changing data-characteristics adap-
tively at runtime. Depending on the scenario, an optimized
code variant can result in a performance gain of up to 3x.
Thus, it is important to limit the execution time of unopti-
mized pipeline variants (e.g., by profiling only small buffers.
Leis et al. already showed that 10k records are enough to
identify join orders [50]).

7.5 Analysis of Resource Utilization

In this section, we evaluate the resource utilization of Griz-
zly, Streambox, Flink, and Saber. The resource utilization
enables us to explain the different performance characteris-
tics observed in previous experiments. In Table 1, we show
performance counters for the default YSB query. These re-
sults reflect the pure execution workload per record without
any preprocessing. We divide the collected counter into three
blocks: Control Flow, Data Locality, and Code Locality.
Control Flow In the first block, Table 1 shows the number
of executed branches and branch mispredictions per record.
These counters are essential to analyze the control flow of
the SPEs. Across all SPEs, Streambox, and Flink introduce
the highest number of branches and branch mispredictions.
For Flink, data serialization and object allocation cause many
dynamic branches and branch mispredictions, which was
already shown by Zeuch et al. [74]. Saber achieves the fewest
branch mispredictions but executes up-to 26x more branches
compared to Grizzly**. The main reason for the high number
of branches is Saber’s micro-batch processing model, which
performs many prediction-friendly branches by looping over
data in batches. Overall, both versions of Grizzly introduce
very few branches and branch mispredictions. Finally, we
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show that the adaptive optimizations in Grizzly*™* reduce
branches and branch mispredictions by a factor of two.

Data Locality In the second block, Table 1 presents per-
formance counters to analyze data locality of the SPEs. Stream
processing workloads usually access each input record only
once, which causes a relatively high number of data-related
cache misses. As shown in Table 1, Streambox and Flink
induce the highest number of data cache misses across all
cache levels. Additionally, Streambox causes 29x more TLB-
D misses than any other SPE. These results indicate that
Streambox and Flink cause more memory accesses for the
same input data and that the utilized data layout and access
patterns are sub-optimal. In contrast, Saber directly processes
raw data, which causes fewer cache misses across all cache
levels. However, Saber still causes at least 3.4x more L1 cache
misses, 2x more L2 misses, and 6x more LLC cache misses
compared to Grizzly. Both versions of Grizzly cause signifi-
cantly fewer cache misses compared to all other SPEs and
achieve a higher data locality. As a result, the access latencies
for records decrease, which leads to a significant speedup.
Furthermore, Grizzly causes at least 10x fewer TLB-D misses
compared to Saber: The high data locality of Grizzly high-
lights the benefit of direct data accesses on raw data without
serialization, data copying, or object allocation overhead. The
most efficient data locality is achieved by Grizzly** which
stores window state in a dense array which results in 2.5x
fewer L1 and 3.1x fewer L2 cache misses.

Code Locality In the last block, Table 1 shows perfor-
mance counters related to code efficiency and locality of the
SPEs. Overall, Streambox, Saber, and Flink execute at least
8x (default Grizzly) and 27x (Grizzly**) more instructions
per input record. This highlights that Grizzly’s code gen-
eration results in a very compact and CPU-friendly code.
Furthermore, adaptive optimizations of Grizzly*™* reduce the
number of executed instructions by up to 3x. The results for
instruction cache misses reveal, that Grizzly overall archives
a much higher code locality. Flink and Streambox cause the
most instruction cache misses, and many TLB-I misses. In
contrast, Saber causes 10x fewer instruction cache misses
as a result of its micro-batch processing model. However,
both versions of Grizzly cause basically no instruction cache
misses and TLB-I misses per record. This indicates that the
generated code fits entirely into the L1 instruction cache,
and the generated instruction sequence is CPU-friendly.

Discussion Our analysis of resource utilization reveals
that both Grizzly versions result in better control flow as well
as higher data and instruction locality. Furthermore, exploit-
ing data characteristics in Grizzly** improves all collected
metrics and is vital to achieve peak performance. In contrast,
for Flink, Streambox, and Saber, we observe inefficient mem-
ory utilization, which is caused by data serialization, object
allocation, and the execution of inefficient and complex code.
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In sum, Grizzly’s code generation for stream processing is
essential to utilize resources of modern CPUs efficiently.

8 RELATED WORK

We structure the related work into three areas: SPEs, query-
compilation, and adaptive optimizations.

Stream Processing Engines. The first generation of SPEs
laid the foundation to handle continuous queries over un-
bounded data streams [1, 2, 19, 20]. Due to growing data sizes
and higher velocities, the second-generation of SPSs follow
scale-out architectures while focusing on higher through-
put, lower latency, and fault tolerance with exactly-once
semantics [5, 10, 15, 17, 55, 66, 70, 71]. System S introduced
optimizations for stream processing [35, 38]. In contrast to
System S, Grizzly is a scale-up SPE that efficiently utilizes
modern hardware. To this end, it fuses operators deeply to-
gether and eliminates any function calls between them.

Further examples for scale-up SPSs are SABER [46], Stream-
box [54], BriskStream [77], and Trill [18]. SABER focuses on
hybrid stream processing on CPUs and GPUs. Streambox
groups records in epochs and processes them for each op-
erator in parallel. In contrast, Grizzly compiles queries into
efficient code, which is executed using a task-based approach
on a shared global state. Trill applies code generation tech-
niques to rewrite user-defined functions to a block-oriented
processing model over a columnar data layout. In contrast
to Trill, Grizzly focuses on the fusion of multiple operators
into one code block. BriskStream optimizes execution for
NUMA hardware by distributing operations across NUMA-
regions. In contrast, Grizzly follows a data-centric approach
and executes operators on the NUMA nodes where the data
is located. Furthermore, Grizzly fuses all operators into code
without introducing unnecessary boundaries. Previous work
showed that current SPEs, do not fully utilize the resources
of modern hardware [74, 76]. Our work recognizes these
limitations and proposes Grizzly, which generates highly
efficient code. As a result, Grizzly outperforms state-of-the-
art SPEs by at least an order of magnitude and reaches the
performance of hand-optimized code.

Query Compilation. Query-compilation for batch pro-
cessing was extensively studied by Rao et al. [62], Krikellas et
al. [47], and Neumann [56]. It was applied in many data pro-
cessing systems [25, 34, 45, 47, 56, 57, 64, 68]. Further work
studied the support of user-defined functions [24], query
compilation for heterogeneous hardware [12, 60], efficient
incremental view maintenance [4], the architecture of query
compilers [3, 30, 44], and the combination of compilation
and vectorization [53]. In this work, we complement the
state-of-the-art by introducing query compilation for stream
processing. Our technique enables the fusion of queries in-
volving complex operations such as the window assignment,
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triggering, and computations. Furthermore, we enable adap-
tive optimizations. Orthogonal to our work, Kroll et al. [48]
proposed ARC an intermediate representation to unify batch
and stream queries, which could act as an input for Grizzly.

Adaptive Optimizations. In database research, adaptive
optimizations have been extensively studied [8, 9, 64]. Rad-
ucanu et al. [61] proposed micro adaptivity by comparing
the run-time of different operator implementations. Zeuch
et al. [75], extended this approach by exploiting hardware
counters to detect data properties like sortedness or operator
order. In contrast, Dutt et al. [28] introduce explicit counters
between operators to gather workload properties. In Grizzly,
we combine these approaches to enable adaptive optimiza-
tions for stream processing. To this end, Grizzly monitors
performance counters to detect changing data character-
istics and generates instrumented code to collect detailed
data statistics for optimization by using JIT-compilation.
Additional work studied adaptive optimizations for stream
processing [20, 35, 79]. These works mainly focused on the
migration between query plans in a distributed setting. In
contrast, Grizzly focuses on adaptive optimizations based
on modern profiling techniques and query-compilation to
fully exploit modern hardware. Query-compilers for data-at-
rest apply adaptive compilation techniques to reduce query-
compilation time [29, 45]. This is orthogonal to our work, as
we apply adaptive code optimizations to react to changing
data characteristics in stream processing queries.

9 CONCLUSION

In this paper, we transferred the concept of query compila-
tion for data-at-rest queries to the operators and semantics
of stream processing. We present Grizzly, the first adaptive,
compilation-based SPE that is able to generate highly effi-
cient code for streaming queries. Our compilation-based SPE
supports streaming queries with different window types, win-
dow measures, and window functions. Grizzly utilized adap-
tive optimizations to react to changing data-characteristics
at runtime. To this end, we combine different profiling tech-
niques and apply task-based parallelization to fully utilize
modern multi-core CPUs while fulfilling the ordering re-
quirements of stream processing. Our extensive experiments
demonstrate that Grizzly outperforms the state-of-the-art
SPEs by up to an order of magnitude due to better utilization
of modern hardware. With Grizzly, we lay the foundation for
the efficient use of modern hardware in stream processing
and achieve higher performance with fewer resources.
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