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Abstract. This paper introduces FLEA-CBR, an alternative approach
for composition of case-based reasoning (CBR) processes. FLEA-CBR
extends the original 4R (Retrieve, Reuse, Revise, Retain) CBR cycle with
a flexible order of execution of its main steps. Additionally, a number of
combinatorial features for a more comprehensive and enhanced compo-
sition can be used. FLEA is an acronym for Find, Learn, Explain, Adapt
and was initially created to solve the restrictiveness issues of case-based
design (CBD) where many existing approaches consist of the retrieval
phase only. However, the methodology can be transferred to other CBR
domains too, as its flexibility allows for convenient adaptation to the
given requirements and constraints. The main advantages of FLEA-CBR
over the classic 4R cycle are the ability to combine and activate the main
steps in desired or arbitrary order and the use of the explainability fea-
ture together with each of the steps as well as a standalone component,
providing a deep integration of Explainable AI (XAI) into the CBR cycle.
Besides the CBR methods, the methodology was also conceptualized to
make use of the currently popular machine learning methods, such as
recurrent and convolutional neural networks (RNN, ConvNet) or gen-
eral adversarial nets (GAN), for all of its steps. It is also compatible
with different case representations, such as graph- or attribute-based.
Being a template for a distributed software architecture, FLEA-CBR
relies on the autonomy of implemented components, making the method-
ology more stable and suitable for use in modern container-based envi-
ronments. Along with the detailed description of the methodology, this
paper also provides two examples of its usage: for the domain of CBR-
based creativity and library service optimization.
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1 Introduction

In case-based reasoning (CBR), the historical development of the research area
established the 4R cycle [2], that consists of the consecutive steps Retrieve,
Reuse, Revise, and Retain, as the main underlying structure for implemented
and theoretical approaches that explicitly identify themselves or were designated
by researchers as CBR-based. Quickly after its introduction in 1994, the 4R cycle
became a widely accepted synonym for case-based reasoning and is referenced
nowadays in nearly every CBR-related research work.

Generally, two types of such CBR research works exist nowadays: one-step-
specific and generative application. The works of the first type deal with only
one of the R-steps (where Retrieve and Reuse make up the majority) and are
rarely created for one specific domain, providing improvement of a universally
applicable method. In contrast to the first type, the generative application of
the CBR cycle is usually conceptualized for a specific domain (often including
the related domains as well), taking the CBR cycle as a whole and using all of
the R-steps to build a CBR-based solution for a specific problem of the domain.
Sometimes this type is combined with other AI methods providing the so-called
hybrid approaches. Both types have in common that they do not try to modify
the complete CBR cycle and adapt it to own purposes, instead the 4R cycle is
used “as is”. These modifications, however, exist and make up the third, very
rare, type of CBR-related research: the explicit modifications of the classic CBR
cycle. The reasons for development of such modifications are different, but can
mostly be narrowed to the (partial) incompatibility of the application domain
in question to the original order of execution of 4R and/or to the restrictions of
the domain that allow for execution of a subset of the four R-steps only.

In this work, we present FLEA-CBR, a methodology for modification of the
original CBR cycle, whose aim is to bring more flexibility to the cycle structure
and to offer an alternative underlying approach for systems where the four R-
steps may not or cannot be applied subsequently in the original order. FLEA
is an acronym for Find, Learn, Explain, and Adapt. These four components
represent the main functionalities of the methodology. Main features of FLEA
are the possibility of standalone usage of the components as well as the arbitrary
combination of them and the deep integration of Explainable AI (XAI) into the
cycle making it an equivalent step among the already existing ones. FLEA was
conceptualized for the domain of case-based design (CBD), however, its flexibility
allows for application to other domains as well. The only requirement is that the
case representation types of the domain(s) are compatible with FLEA-CBR.

This paper is structured as follows: first, we present work related to the
research topic of this paper, i.e., the modifications of the 4R CBR cycle. We
show differences between hybrid CBR approaches and cycle modifications and
present an overview of selected modifications. In the following Sect. 3, FLEA-
CBR’s core components and features are presented in detail. In Sect. 4, existing
and theoretical example usages of FLEA-CBR are presented for the domains of
CBR-based creativity and library service optimization respectively. Finally, an
outlook to the future of the methodology concludes this work in Sect. 5.
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2 Related Work

The explicit modifications of the original order of execution of the four R-steps
have a long tradition in CBR, being present after the 4R cycle started to gain
its popularity. However, it is important to mention that this rare type of CBR-
related research should not be confused with the hybrid CBR approaches, i.e.,
those that combine CBR with other machine learning techniques or related meth-
ods. The examples of such hybrid approaches can be found in combination with
deep learning [6], genetic algorithm optimization [21], or support vectors [11].
Additionally, an overview of such combinations [28] provides an entry point
to start research into these approaches. The hybrid approaches mostly do not
change or adapt the cycle itself, whereas the CBR cycle modifications explicitly
edit the 4R cycle: for example, an additional step can be appended or prepended
to the cycle, or one or more of the existing steps can be replaced by other steps,
combined into a single step, or managed by an additional non-CBR module,
such as an artificial neural network (ANN). The following Table 1 provides a
comparison of selected CBR cycle modifications that either explicitly identify
themselves as a ‘modification’ or provide enough evidence to count as such, i.e.,
edit the cycle as described above. The approaches that were proposed as modi-
fied CBR cycles, but in fact are hybrid systems, were not considered. Besides the
descriptions of the respective approaches and the corresponding cycle modifica-
tions, this comparison also provides information on suitability of the approach
for universal use and if it implements explainability features.

Table 1. An overview of selected CBR cycle modifications. U stands for the universal
type of use, DB for domain-bound use. XAI stands for explainability/explainable AI.

Description Publication Modification U/DB XAI

CBR-based recipe
recommender system

Skjold and
Øynes [36]

Second Retrieve in
ephemeral case base betw.
Reuse and Revise

DB No

Recipe generation with
CBR and deep learning

Grace et al. [16] Dual-cycle CBR DB No

CBR real-time planning
for industrial systems

Navarro et al.
[25]

Starts with learning
(Revise+Retain)

DB No

Decision support with
neocortex imitation

Hohimer et al.
[18]

Exec. order: Reason, Retain,
Review, Revise

U No

Tagging+ retrieval of
similar code passages

Roth-Berghofer
and Bahls [34]

Explain +Customize replace
Reuse+Revise

DB Yes

Reorganization of the
case bases

Finnie and Sun
[14]

Repartition betw. Reuse and
Revise

U No

Maintenance of CBR
systems

Reinartz et al.
[29]

Review and Restore after
Retain

U No

Oceanography forecasts
with CBR and ANN

Lees and
Corchado [23]

ANN governs Reuse and
Revise

DB No
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Interpreting the Table 1, we can conclude that certain similarities between
hybrid approaches and cycle modifications exist, in some cases it is also hard
to tell if the given approach is of hybrid type or an explicit modification. Both
types are mostly used for a specific domain or task. The universal approaches
contained in Table 1, such as the neocortex imitation [18], the intermediate reor-
ganization of case bases [14], or the 6R cycle [29] that adds the maintenance steps
Review and Restore to 4R, build the minority. Another example is the real-time
intelligent decision support [12], which, however, was not included in the com-
parison, as it makes the human operator responsible for Retain and provides no
adaptation, restricting the CBR process to the retrieval phase only.

The obvious problem of cycle modifications is that no methodology exists
that is universal as well as flexible in terms of execution order. Other problem is
the lack of XAI features. The only exception is the approach [34] that, however,
provides explanations only for results of the retrieval phase.

3 FLEA-CBR

This section describes the FLEA-CBR methodology in detail and compares it to
the 4R cycle in terms of flexibility and universality of use. First, the problem of
non-flexibility of the 4R cycle will be described, after that an overview and each
of the R-steps will be compared to its approximate counterpart of FLEA-CBR.

3.1 Problem Description

During the last decades, the 4R cycle (see Fig. 1) became an ubiquitous part
of case-based approaches that mostly improve one of the R-steps or apply the
cycle to the given domain to produce a complete CBR-based solution to the given
problem space (see also Sect. 1). However, one of the main problems of the 4R
cycle is that it requires the consecutive execution of the R-steps in order to work
properly and to be used for the problem space as a suitable solution approach.
This problem also precludes the 4R cycle from being more universal and forces
the applications to follow the only available order (Retrieve → Reuse → Revise
→ Retain) and to be non-flexible in terms of selection of the currently required
step. This issue is also valid for the contemporary alternatives to the 4R cycle,
such as the cycles presented by Hunt [20] or in Leake’s work [22]. Changing the
order of execution might result in reassessment of the complete approach and
in the subsequent decision of the developers of the system to use methods other
than case-based. A number of modified execution orders and the nevertheless
existing problems and issues were already listed in Sect. 2.

A major technical flexibility problem of the 4R cycle and the majority of its
modifications is that the retrieval step is required in all application cases and all
other steps depend on its results. While many problems of many domains can
be solved with this order and restrictions (for example, in the classic domains
of CBR, such as mechanical engineering tools diagnosis or medical applications
[19]), other domains, especially those that make use of creativity (for example,
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architecture or game development), may require other, more complex and custom
orders that may not look reasonable to humans but are completely understand-
able and executable by the machines.

Another main structure-related issue is that, while being simulated from
human thinking and reasoning abilities, the 4R cycle and its contemporary alter-
native cycles also follow the human methods of experience-based decision mak-
ing. This is reasonable if the computer should make decisions that the humans
can relate to, but computers are generally more flexible in that regard and should
not be restricted to one order only and should be able to decide autonomously
which order is the most suitable for the current problem space. Therefore, espe-
cially case-based reasoning should provide more high-level features, for example
to mix the steps and allow for repeating of some, if necessary.

Fig. 1. FLEA-CBR in direct comparison with the 4R cycle.

3.2 Overview and Background

To overcome the issues described above and to make it possible for affected
domains to make more use of CBR, we developed the methodology FLEA-CBR
that introduces flexibility to the usage of the CBR features and allows for mix-
ing, repeating, sequencing, or cycling (further referred as FLEA’s core features)
of the steps Find, Learn, Explain, and Adapt (further referred as FLEA’s core
components). FLEA-CBR was created in research context of MetisCBR [7], a
framework for distributed case-based decision support during the early concep-
tual phases in architecture, that can find similar spatial configurations and con-
textually explain the retrieval results, suggest the next design step, and evolve
the current design state to show how it can look in the future.

In the following sections the four core features of FLEA-CBR are described
first, after that the four core components are presented. In Fig. 1, a high-level
overview of FLEA-CBR and its direct comparison to the 4R cycle are available.
Figure 2 demonstrates examples of core feature usages. Figures 3 and 4 contain
feature usages for real domains.
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Fig. 2. Core features of FLEA-CBR.

3.3 Core Features

Mixing. This feature is crucial for FLEA-CBR’s flexibility advantage as it
allows for breaking the original 4R order and mix the mains steps in the order
that is necessary for the domain or just for trying out and find the best option.
Mixing can be done by a human operator as well as by a machine, e.g., a ‘par-
ent’ CBR cycle. In Sect. 4, all examples are mixed and demonstrate how this
action provides the FLEA-CBR implementation with the flexibility advantage.

Repeating. The goal of this functionality is to allow for continuous re-execution
of a step with a predefined or arbitrary count of executions, e.g., to try other
configuration options or different methods within one cycle run. This feature
makes the CBR process with FLEA more fine-grained and exact, but also versa-
tile in terms of selection of the most suitable method. This core feature can be
executed with specific high-level frameworks, such as Keras [9] for deep learning.
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Sequencing. This feature introduces the possibility of summarizing of
(repeated) steps into sequences that can be used for similar domains or tasks.
Unlike repeating, the sequences are more symbolic, i.e., do not contain infor-
mation about exact methods or approaches applied, and can consist of different
steps. This gives the system designers freedom to decide which methods are the
most suitable, but preclude them from changing the execution order, transfer-
ring only the structure of the sequence. Along with Mixing, Sequencing bears a
close resemblance to the original 4R cycle.

Sub-cycling. This feature introduces FLEA-CBR sub-cycles that can be used
to encapsulate certain sequences and use the final outcome only in the parent
cycle. Sub-cycles’ goal is to increase the likelihood of possibly useful outcomes
that, however, might be helpful or reused later in the parent process. That is,
the sub-cycles can be skipped or executed asynchronously. Furthermore, sub-
cycles can also be configured by the parent cycle. Technically, sub-cycles were
added to the FLEA-CBR features in order to add a higher compatibility to the
modern microservices-based software architectures. They can be executed in a
dedicated container with methods that totally differ from other sub-cycles in
terms of execution time or system resources usage.

3.4 Find

FLEA-CBR’s Find step is the approximate equivalent of the Retrieve phase of
the 4R cycle. Its main task is to search in the given collection of the domain cases
(the case base) for entries with the highest similarity to the received problem
description (query). However, generally, Find differs from Retrieve in the way
that it can receive queries or requests from other FLEA-CBR modules or sub-
cycles and forward them to modules other than Reuse in the format suitable for
this module or sub-cycle.

Beyond the retrieval of the most similar cases, Find can also be used for look-
ing for contextual connections between a subset of the data collection entries in
order to provide the user or a FLEA-CBR application with information about
how these entries, i.e., cases, are related to each other. In theory, it is also possible
to integrate Find as a simple full text or image search engine to perform a com-
mon precision-recall-based information retrieval process, however, the modules
that receive the results should be able to work with them, e.g., infer similarity
values when necessary. All the retrieval methods described above can be com-
bined and/or executed consecutively using the Repeating feature.

Context of Usage. When used as an intermediate step between other steps
or modules, it is advisable to provide the FLEA-CBR sequence that contains
Find with information on the execution context, e.g., the domain, in order to
select the most suitable retrieval or matching method. This information can be
received from the Learn or Explain component. Similarly to Retrieve, Find can
also be used as an entry point to the case-based reasoning process.
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3.5 Learn

The Learn step of the methodology was developed to enrich the FLEA-CBR-
based approaches and applications with abilities of making reasonable conclu-
sions based on features of the cases and predicting contextual and relational
connections between them, but also to implement the retaining techniques that
govern how and why the cases should be saved in the application’s case col-
lections. Therefore, the Learn step can also be seen as an approximate further
development of 4R cycle’s Retain and a high-level interface for gathering and
combining the learning strategies and case preservation methods. To accomplish
these tasks, Learn is conceptualized to make use of the modern deep learning
methods, such as recurrent neural networks based on LSTM [17] or GRU [8],
convolutional neural networks, or Generative Adversarial Networks (GAN) [15].
However, the established CBR learning methods such as Instance-Based Learn-
ing [4] can be used as well. A combination by using a subset of these technologies
is possible too, e.g., in the Repeating feature (see Sect. 3.2).

Context of Usage. Learn can be used in context of classification of cases into
different categories for later saving in this category’s case base (if the application
or approach make use of distributed architecture with multiple case bases). It
can also be used in the CBRs usual context of judging if the case is save-worthy
or not. On application’s entry point level Learn can separate the initial case set
into different clusters based on separations conducted for similar case sets. Inter-
mediately, Learn can function as a bridge between other modules (i.e., activated
each time after Find, Explain, or Adapt) to draw conclusions from the results
of the respective step and inform the subsequent module about its findings in
order to influence its behavior and produce a more reasonable outcome.

3.6 Explain

The current development of the research area of artificial intelligence emphasizes
the increasing requirement of the AI systems to include a component or module
that implements an algorithm that is able to explain the behavior and decisions
of the system during the current operation. Based on this increasing need, a
research area of Explainable AI (XAI) has emerged and resulted in a number of
corresponding research initiatives, such as the well-known DARPA Explainable
AI program and a multitude of thematic workshops, such as IJCAI XAI work-
shops [5] or the XCI workshop [27]. One of the most recent research works, a
comprehensive guide to XAI in machine learning applications by Molnar [24],
shows the future directions of XAI and provides instructions and best practices
for its implementation. Furthermore, a survey on XAI [3] can be examined.

In case-based reasoning, the requirement for proper explanations was exam-
ined before the 4R cycle was first introduced [1]. However, the development of the
XAI area in CBR concentrated mostly on simplistic explanations (i.e., the why-
and how-explanations), as pointed out in foundational issues of explanations
in CBR [33]. The cognitive explanations, that extend their explanation space
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beyond the simplistic questions and whose task is, inter alia, to provide answers
to the questions of relations between results of operations (e.g., retrieval) or con-
textual connections between concepts, were rarely implemented. This problem
extends to the most systems and approaches from other AI domains. Being very
complex systems (which especially relates to the decision support systems), they
are not always able to explain their behavior to the user. The reasons for this
are either the non-transparent reasoning process, which could be implemented
on purpose this way (e.g., in a black-box API), or a system design that does
not allow for explanation interfaces to be implemented and/or connected. The
latter problem is more common: many systems were constructed without having
in mind the importance of an explicit explanation module, i.e., conceptualized
and implemented before XAI emphasized the importance of such functionalities.

With FLEA-CBR’s Explain, we intend to provide the systems that use the
methodology as their underlying structure, with a high-level approach that can
combine, select, and apply different types of explanations in order to compose
an algorithm that can give insights into the behavior of this system. As a stan-
dalone component, Explain is the main structural difference between 4R and
FLEA-CBR. Its inclusion in the methodology as a particular step of the rea-
soning process is based on the XAI importance described above. The main goal
of Explain is to build connections that can provide a structure for exchange of
explainable data between the modules and sequences of a FLEA-CBR imple-
mentation and the user. In particular, we differentiate between the internal and
external types of explanations that can be handled and produced by Explain:

– Internal – This type of explanations is intended for internal use between the
components. The data transferred within these explanations does not have
to be human-readable, as its goal is to provide the receiving module with a
foundation for its reasoning process.

– External – The explanation data of this type is delivered to the user providing
her with the corresponding information. It is up to the system designer as
well as depends on the domain how the explanations will be presented. Many
of the systems use textual explanations (e.g., Roth-Berghofer and Bahls [34],
see Sect. 2), however, graphical or audiovisual explanations can be produced
too. The most important fact to have in mind is that XAI is a matter of
user experience and system usability too, therefore, explanations should be
designed in a way that is most familiar to the target group.

Both explanation types can be final as well as temporal. The final expla-
nations provide a finite state where the expression or data cannot be modified
anymore and represents the final output of the Explain module implementation.
This type can be used for static modules that do not update their state with
new results, i.e., do not run iteratively to improve the results, e.g., use only the
Mixing feature (see Sect. 3.3). In contrast to the final ones, the temporal expla-
nations can be changed over time and are more suitable for systems that are
able to run iteratively or apply a number of concurrent processes. Hence, the
temporal type allows for continuous update of explanations making the systems
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more dynamic and their mode of operation more asynchronous. Such approaches
would most likely use either Sequencing or Repeating features for their systems.

Context of Usage. The necessity to use Explain can be found at any point
in the runtime of the system where a component needs to send or receive data
required for justification or transparency of its actions. In structural CBR sys-
tems, for example, local similarities on the attribute level can be used to produce
a detailed transparency report that makes clear how the overall similarity value
for the case has been calculated. This report can be filled iteratively with tem-
poral explanations constructed for different similarity measures. In textual CBR
systems, Explain can be used for labeling of the most important text passages
providing, for example, the Learn module with information about those pas-
sages in order to learn the class of the text or transfer the labeling information
to the current domain. As a standalone component, Explain can also be used
separately, e.g., to explain differences between selected cases.

3.7 Adapt

Adaptation of selected cases, being a core feature of case-based reasoning, has
also found its way to FLEA-CBR. Similarly to Find and Learn, the step Adapt
inherits the original task of its approximate 4R equivalent Reuse, i.e., the modifi-
cation of cases according to the adaptation rules, and extends it with additional
operations to catch up with the currents trends in AI. Adapt unifies methods
for both transformation-based and generative adaptation [37] together with the
data augmentation, completion, and generation approaches.

Additionally, Adapt is responsible for automatic revision of transformed
cases, i.e., it imitates the Revise step of the 4R cycle in order to rate the helpful-
ness of adaptation and to decide if the transformation has a potential to solve the
given problem. For this special case, a combination of Adapt and Explain seems
reasonable: with Explain’s abilities to construct a human-readable expression an
explanation can be delivered to the user informing her about possible solution
transformation and application.

Context of Usage. Besides the classic usages of Reuse named above, Adapt can
be used for the currently very frequently executed tasks of data augmentation
and data generation. Both tasks are required in applications where the available
amount of data is small and can be extended and/or enhanced with augmentation
or generation to produce the amount required for application to work properly
or to be able to conduct experiments with a prototype of the approach.

4 Example Usages

The following examples intend to demonstrate how the dynamic structure of
FLEA-CBR would (in theory and practice) outperform the static structure of
4R on problem spaces that are suitable for solving with the CBR methods.
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4.1 CBR and Creativity

The first example and at the same time the showcase of FLEA-CBR is the
problem space of the CBR and creativity domain. Among the CBR community,
this notation normally subsumes the application of CBR to the human creativity-
related tasks, such as architecture [31] and computer-aided design (CAD) [26]
(both are usually summarized as case-based design, CBD), cooking [10], knitting
[30] or similar domains. The common problem space of all these sub-domains of
CBR-based creativity can be narrowed to the following characteristics:

1. The complexity of cases – Mostly, the cases available in the case bases of the
creativity domain applications and approaches have a complex, very often
nested, attribute-value-based structure. Knowledge described with these cases
is comprehensive and many cases differ only in small details. An example of
such case is a CAD model that consists of many parts combined together or a
floor plan with many differently shaped rooms. As a result of such complexity,
the 4R cycle may take a very long time to finish its process.

2. Adaptation is not available – The use of CBR knowledge containers (case
bases, adaptation knowledge, similarity measures, vocabulary) [32] qualifies
an approach as CBR-based. However, quite often the adaptation knowledge is
not available in CBR creativity applications due to the lack of the adaptation
feature. Such approaches are often restricted to retrieval only leaving the user
without creative solution recommendations or an adaptation to the styles of
other designers (style transfer).

FLEA-CBR’s ability to run tasks in parallel and partially can solve such
problems without being modified or adapted specifically, the only important
fact to have in mind is that a suitable configuration of FLEA-CBR is required.

For example, using a configuration with the Sub-cycling feature, the FLEA-
CBR-based application can divide the execution of the whole cycle into separate
sub-cycles in order to provide each of these sub-cycles with a part or a layer of
the complex case. The sub-cycles would run concurrently and asynchronously
and speed up the process, without waiting for the previous process to finish. For
each part or layer a modification of the case into other representation can be
provided as well using it as input for an adaptation approach that can work with
this type of data. More specifically, the Generative Adversarial Nets (GAN) [15],
as an artificial neural network type that was specifically created for generation
of objects that would appear real to a human and also accepted as such, can
be used as an adaptation approach for creativity cases, provided that it receives
input data in the proper format. As adaptation knowledge the data transferred
with Learn from other domains and accepted generated objects can be used.
Additionally, Learn can suggest the proper next actions of the current creativity
process. In Fig. 3, an example implementation of FLEA-CBR for the creativity
domain is shown. This example is based on the only existing and evaluated
[13,35] implementation of FLEA-CBR: namely, in the framework MetisCBR for
support of floor plan design process (see also Sect. 3.2). The figure demonstrates
the current state and the planned further development of the framework.
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Fig. 3. FLEA-CBR implementation in MetisCBR [7]. The modules that are currently
in early stage of development are represented with a slight transparency. The dark
gray group with Learn and Adapt, that produces possible design evolutions with GAN,
represents the Sub-cycling feature. The double Find group represents Repeating.

4.2 Library Service Optimization

The second example demonstrates how the optimization of the scientific library
service process can be achieved with a FLEA-CBR-based software architecture.
For demonstration purposes, an everyday process of recording of bibliographic
items, e.g., scientific monographies, and the following item borrowing process
from the library’s stock will be used. We do not assume a specific case repre-
sentation, but the case itself, i.e., the bibliographic item to be recorded, can be
incomplete or in foreign language. The general tasks of the planned system in
this particular case can be summarized as follows:

1. Automatic translation of the item – If the item is not in the language(s) of
library’s country then it should be translated for correct keyword extraction
and, if required, transliterated to be readable by the library staff and users.

2. Looking for similar items in case bases of items – This task subsumes the
search for similar items and the subsequent completion of the given item, if
some information is missing.

3. Entry and search in the knowledge graph – Usually, a catalogue search would
be used instead, however, taking the current scholarly information processing
trends into account, we replace it with a knowledge graph.

Additionally, the XAI features, that provide the results of the tasks named
above with human-understandable justifications to receive confirmations or cor-
rections from the user and to proceed with the next step, can also be used.

The task of the FLEA-CBR implementation is to guide the human opera-
tor during the item recording process: suggest the best way of transliteration
based on the item’s language, fill up the missing information based on similar
previous cases, insert information into the knowledge graph, suggest catalogue
categories and a signature, and track the item’s status (borrowed, not returned
etc.). Figure 4 demonstrates the possible FLEA-CBR configuration for this use
case.
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Fig. 4. FLEA-CBR configuration example for a library service optimization. The pink
group represents the Sequencing feature where information about incomplete parts
can be transferred from other librarian records categories (e.g., periodical publications).
The green group represents Sub-cycling, i.e., searching and status tracking of the record.
(Color figure online)

5 Conclusion and Future Work

In this paper, we presented FLEA-CBR, an alternative approach to the well-
established 4R (Retrieve, Reuse, Revise, Retain) cycle. FLEA-CBR’s core com-
ponents Find, Learn, Explain, and Adapt can be executed in order desired or
suitable for the current domain or task, unlike the 4R steps that require the exe-
cution in the predetermined order, starting with Retrieve. FLEA-CBR’s goal is
to solve this flexibility issue, that the 4R itself and its contemporary alternatives
and modifications possess. Furthermore, the FLEA methodology makes the XAI
component an equivalent and ubiquitous part of the CBR cycle. Additionally,
FLEA-CBR offers a number of features that extend the flexibility of the cycle:
Mixing, Sub-cycling, Sequencing, and Repeating. The suitability of FLEA-CBR
for use as the underlying structure for CBR approaches was demonstrated in an
evaluated existing approach for CBR-based creativity and a theoretical appli-
cation for the library service domain. Future plans for FLEA-CBR include, for
example, an implementation of a symbolic programming framework for proto-
typing of applications that are based on the methodology and conducting of new
experiments for existing implementations to further confirm the methodology’s
suitability for use as the underlying software architecture.
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