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Abstract. The artificial intelligence methods, such as case-based rea-
soning and artificial neural networks were already applied to the task of
architectural design support in a multitude of specific approaches and
tools. However, modern AI trends, such as Explainable AI (XAI), and
additional features, such as providing contextual suggestions for the next
step of the design process, were rarely considered an integral part of these
approaches or simply not available. In this paper, we present an applica-
tion of a distributed AI-based methodology FLEA (Find, Learn, Explain,
Adapt) to the task of room configuration during the early conceptual
phases of architectural design. The implementation of the methodology
in the framework MetisCBR applies CBR-based methods for retrieval of
similar floor plans to suggest possibly inspirational designs and to explain
the returned results with specific explanation patterns. Furthermore, it
makes use of a farm of recurrent neural networks to suggest contextu-
ally suitable next configuration steps and to present design variations
that show how the designs may evolve in the future. The flexibility of
FLEA allows for variational use of its components in order to activate
the currently required modules only. The methodology was initialized
during the basic research project Metis (funded by German Research
Foundation) during which the architectural semantic search patterns
and a family of corresponding floor plan representations were developed.
FLEA uses these patterns and representations as the base for its semantic
search, explanation, next step suggestion, and adaptation components.
The methodology implementation was iteratively tested during quanti-
tative evaluations and user studies with multiple floor plan datasets.

Keywords: Room configuration, Distributed AI, Case-based reasoning,
Neural networks, Explainable AI



1 Introduction

Current trends of information technology established artificial intelligence (AI)
as one of the most ubiquitous techniques for decision and creativity support in
different business and research areas. Architecture, being an interdisciplinary
domain, i.e., active in both business and research, is not an exception: contin-
uously increasing complexity and the industrial digitization of the architectural
design process require consistent modernization and consolidation of methods
that support creativity in form of digital assistance during the inspiration and
exploration phases. Still, many approaches that implement the recent AI trends,
such as convolutional and recurrent neural networks (CNN, RNN), are in the
process of research and not yet ready to be used in the daily design process. How-
ever, many of them showed potential for standalone application or integration
in the existing computer-aided architectural design (CAAD) software.

This paper presents a novel AI-based methodology FLEA (named after its
four main steps/components: Find, Learn, Explain, Adapt) and its implementa-
tion for the phase of creating a room configuration: an essential process of the
initial design phase that is responsible for the basic setup of the building design
as it influences the later utilization and interior of the currently designed archi-
tectural unit. The goal of FLEA is to inspire and guide the designer during the
early conceptual phase by providing her with a collaborative assistance system
in order to create a proper room layout for the design task at hand.

The key advantage of FLEA is its high flexibility: each main component can
be decoupled and used separately, without being dependent on other modules,
provided that the data required for the component to work is available. A com-
bination that consists of a subset of the main components is possible as well.
Each main component itself possesses a certain grade of flexibility too, e.g., a
conditional choice of the most suitable neural network to suggest the next step.
The methodology was implemented as the underlying structure for the mode of
operation of MetisCBR [7], a framework for support of the early design phases
in architecture. MetisCBR uses methods of case-based reasoning (CBR), multi-
agent systems (MAS), and artificial neural networks (ANN). The architectural
design case in the framework is represented as a graph-based room configuration
that uses semantic fingerprints of architecture [21] for description with well-
known architectural concepts (see Fig. 1 and also Fig. 3). This paper describes
the current status of FLEA’s integration in the framework (see Fig. 2).
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Fig. 1. Semantic fingerprints of architecture currently implemented in MetisCBR.



2 Related Work

In the last decades, many research initiatives from the AI-related domains devel-
oped approaches to support the early phases of the architectural design process.
During the early years of CBR, a multitude of design-related case-based systems
established case-based design (CBD) as an essential part of the entire CBR do-
main. The approaches, such as ARCHIE [30], FABEL [29], or, later, DIM [19]
and CBArch [9], provided different variations of case-based techniques to exam-
ine how CBR can improve the design process by recommending, modifying, or
explaining the floor plans and their corresponding (semantic) representations.
Richter’s work [23] summarizes the activity of CBR in the CAAD domain and
provides an overview of problems that the case-based approaches need to solve
or keep in mind if the acceptance of CBR among the representatives of the archi-
tecture domain should be increased. Among these problems are the optimization
of retrieval strategies and the lack of variability and flexibility in the systems.

From the distributed AI perspective, the MAS-related research provided the
most influential approaches for development and enhancement of the FLEA
methodology. The work of Anumba et al. [3] examines research and technical
foundations of use of multi-agent systems in construction and architecture do-
mains. Gerber et al. [16] developed a research framework for prototyping of
agents for support of generative parametric design process for the tasks of, e.g.,
façade generation or shell form finding. Simeone et al. [26] present an agent-
based simulation and modeling approach for building design construction that
enhances the Building Information Modeling (BIM) structure by extending it
with agents that take into account the building’s future users and use. Chu et
al. [11] use agents to create a system for collaborative distributed 3D design:
agents run on the server as well as on the user side, negotiate the design param-
eters, and generate the geometric model based on these parameters.

The research domain of deep learning in form of ANNs extended its activities
for the CAAD domain as well and provided a number of related approaches
during the last years. One of these approaches, DANIEL (Deep Architecture for
fiNdIng alikE Layouts), uses deep learning for extraction of semantic features
from floor plan images and applies convolutional neural networks for retrieval of
similar building layouts [25]. An approach that combines case-based reasoning
strategies with multi-agent systems and artificial networks was developed by
González-Briones et al. for optimization of energy management in office buildings
[17]. These two approaches are structurally the closest ones to FLEA and its
implementation in MetisCBR, however, they are either conceptualized for one
phase only, e.g., retrieval, or do not deal with the room configuration phase.

3 FLEA Methodology

Case-based reasoning, being a versatile knowledge-based technique, can be used
to cover a number of phases of the design process and many tasks during these
phases. For example, CBR can be used in early conceptual phases as well as in



the cost calculation phase. For the former, CBR can offer the designer a collection
of structurally similar past designs, pick the features that should be adapted in
the current design, or create a variety of design recommendations based on the
current design and the similar designs. For the latter, CBR-based approaches
can search for past designs with similar features, present the cost for each of
these designs, and estimate the budget for development of the current design.
The accomplishment of such tasks is possible thanks to the human-alike reason-
ing structure of CBR’s 4R-cycle [1] that includes the phases Retrieve, Reuse,
Revise, and Retain. By combining CBR with distributed AI, it is also possible
to distribute the R-steps among autonomous agents that assume responsibility
for one or more tasks and collaborate to solve the given common problem.

However, a completely collaborative process with voluntary participation of
autonomous agents is not possible with 4R, as the current step always depends
on the results of the previous step. This also means that combinations of some of
the steps can’t be made flexible: e.g., retrieval is always required. Furthermore,
for the design domain, the problem of CBR-specific separation of case in problem
and solution exists as well: usually, the problem is described as a failure or a
(feature-based) search request for which the most similar case from the case
base should be retrieved, its solution adapted and implemented, and, if positively
revised, saved in the case base. Designs, however, usually do not contain explicitly
described failures, and reduction to a set of abstract features does not represent
its complex structure and so is not suitable for use as a query for structurally
similar designs and the adaptation. The approaches that used the structure of
an architectural design as query [2], mostly contain the retrieval step only.
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Fig. 2. The current implementation of FLEA in MetisCBR.



To overcome these shortcomings, we developed FLEA, a more flexible alterna-
tive to the classic CBR cycle. FLEA was created specifically for the architectural
design domain, however, it can also be applied to other domains that provide
a similar case structure. FLEA’s main task is to provide a flexible assistance
methodology to support the early phase of the design process by recommending
inspirational similar designs (Find, see Sect. 3.1) and contextually suitable next
steps of the process (Learn, see Sect. 3.2), explaining why and how a design
can be helpful (Explain, see Sect. 3.3), and adapting the design by generating
varieties of alternatives (Adapt, see Sect. 3.4). The FLEA methodology delib-
erately does not provide a strict execution sequence of its steps: unlike the 4R
cycle, steps of FLEA can be almost arbitrary combined or used separately, pro-
vided that the correct data for the step could be inferred from the previous steps
and/or the current state of the design process. Examples of such combinations
in the context of the architectural design process are provided in Sect. 4.

3.1 Find

Find is historically the first phase that was developed for FLEA and MetisCBR
in order to find similar architectural designs with methods of CBR. Find ’s dis-
tributed domain model [6] (see Fig. 3) defines the underlying structure for all
room configuration cases of the system. It is based on semantic fingerprints and
AGraphML [20], the architectural implementation of the graph description lan-
guage GraphML. Three main concepts are available to describe the case: ROOM,
EDGE (room connection, relation), and FLOORPLAN (metadata). ROOM and
EDGE can have multiple instances per case and describe the atomic parts of
the floor plans with the corresponding AGraphML attributes and a number of
specific additional attributes (such as source and target for EDGE). FLOOR-
PLAN contains the meta information about the case and is enriched with specific
attributes too (e.g., roomTypes for the list of room functionalities of the room
graph). The main concepts are connected with the is-part-of connection. For
retrieval, MetisCBR uses the so-called Basic strategy (see also Fig. 3 and [6]),
which is based on the main premise of CBR: similar problems have similar so-
lutions. Find ’s case base of floor plans contains the cases for the case-based
comparison with the query. Each case is constructed with respect to the domain
model, incomplete cases (e.g., those without metadata) are not permitted.

Based on the results of the most notable experiments, e.g. [24], performed to
evaluate MetisCBR’s retrieval coordination component and the retrieval strategy
in the context of other methods, the retrieval component of MetisCBR was
extended with improvement of the search functionality, making it more flexible
and responsive [5]. During a specific study, the representatives of the architecture
domain were asked to play the role of the framework with the goal to examine
their working and thinking processes during the early conceptualization process,
with emphasis on the search for similar references during the room configuration
process, in order to transfer a meta model of these processes to the framework.
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One of the results of this study is the generic definition for retrieval strat-
egy that became a base for creation of new and modification of already available
strategies. The most recent research work [28] presents a new strategy, the Room
Type Dominance (RTD) strategy, as well as the extension of the Basic strategy
according to the definition. The RTD strategy is based on the new criterion for
floor plan comparison, the room type dominance: a measure of dominance of a
room type within the room configuration (e.g., in a room configuration {Living,
Living, Living, Sleeping, Kitchen, Bath} the room type Living is highly
dominant). The RTD strategy uses it as the main comparison criterion along with
the semantic fingerprint-based criteria and the abstraction levels [5] of the floor
plans. The extension of the Basic strategy adds a special similarity value, Neigh-
borhood Similarity Coefficient to the last step of the strategy. The evaluations
of both new strategies have proven their suitability for use in MetisCBR under
different scenarios: the RTD strategy for scenarios where specific functionalities
of rooms or the floor plan should be detected, the modified Basic strategy for
situations where a set of inspirational designs is required, however, with a very
high structural similarity to the query [28].



3.2 Learn

The phase Learn of the implementation of FLEA represents a collection of ma-
chine learning methods to learn the context or purpose of the current room con-
figuration process and to suggest a set of possible next actions for this process.
In particular, the system module the Suggester (that implements and executes
the Learn phase, see Fig. 4) analyzes the previous steps of the process recorded
by the system, tries to determine which context the process most likely belongs
to, and produces a number of possible continuations of the configuration based
on the previous processes from this context. The key components of the Sug-
gester module of MetisCBR are the process chain, the contextual clusters, the
contextual recurrent neural networks, and the context footprint case bases [12].
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Fig. 4. The mode of operation of the Suggester in MetisCBR. An example of a vi-
sualized query with possible similarity values for each context and an example of a
visualized suggestion are added for demonstration purposes. Figure adapted from [12].

The process chain represents an ordered record of the particular steps of the
room configuration process. It is an emblematization of user’s actions and is
represented by a directed acyclic graph (DAG). For each step of the process,
a notation of its action is mandatory. The Suggester can differentiate between
room-related actions, such as Addition, Removal, Reshaping, or Type modifica-
tion. Each action also contains specific information about the level of abstraction
of the room, and the room type. For the Addition action, a set of additional infor-
mation can be appended: a position within the configuration and the connections
that should be used to connect the new room with rooms from the position sug-
gestion. Each step in the process chain is accompanied by a metadata label (see
Fig. 4) that consits of the current room and edge counts, the current amount of
actions, and the amount of semantic fingerprints used in the latest search. The
latter is the only attribute that connects Find and Learn in MetisCBR.



The contextual clusters represent the process chain dataset divided into a
number of clusters based on the metadata described above. That is, each process
chain is assigned to a cluster with contextually similar chains. The contexts
are determined automatically with the K-Means clustering method that takes
the metadata of the last step in the chain as the input vector. This contextual
separation is a direct connection to our research [13] where the specific contextual
classes define relations between the configurations in the retrieval result set.

After the cluster creation has been performed, a contextual RNN is created
for each cluster as basis for training and the actual suggestion of the most suitable
configuration step. In the past, RNNs have provided the best performance for
sequential data (e.g., time series) as the mode of operation of their network cells
allows for remembering the states of previous time steps in order to predict the
next step. That is, RNNs are able to remember dependencies between the past
steps over time. The Suggester uses GRU (Gated Recurrent Unit) [10] for the
cells of cluster RNNs. To determine which cluster RNN is the most suitable one
for suggestion of the next step for the current configuration, a special case base
is created for each context cluster. This case base represents the cluster with a
footprint – a selection of cases that provide the most typical metadata values for
this cluster. This method is inspired by the footprint similarity-based retrieval
[27]. The initial set of footprint cases is a product of random selection. Every
new process chain query that is processed by the Suggester gets compared with
all footprint cases of all cluster case bases, the RNN of the cluster case base that
provides the highest similarity value is then queried and returns a set of possible
next actions. The case that provided the highest similarity value remains in
the case base, all others are removed and the case base gets filled up with new
random cases from the cluster data. This repeats for every new query.

If the context RNN suggests to add a new room to the configuration, then
the Suggester needs to find the proper position within the configuration and
to determine which connections can be used to connect this new room to the
adjacent rooms. The position suggestion uses a histogram of position entries
of the corresponding action (for each of the possible addition actions such a
histogram exists that was created from the initial process chain dataset) and
suggests the positions consecutively starting with the position with the highest
number of occurrence. The suggestion of connections is performed in a similar
way: an instant histogram of all connections of each room type available in the
current configuration is used. The Suggester then tries to find the best connection
guess for the given number of the adjacent rooms, starting with the connections
set with the highest number of occurrence.

For implementation of Learn in MetisCBR, an initial quantitative evaluation
was conducted to examine the general suitability of the module [12]. A generated
dataset with an amount of 1000000 process chains was used. 100 clusters/RNNs
were created from this data with 50 chains per cluster footprint case base. 1000
generated queries were used to perform two suggestion phases. In the first phase
86% of suggestions were valid, i.e., accepted as suitable for the current configu-
ration. In the second phase this value increased to ≈ 97%.



3.3 Explain

The current directions of the AI-related research domains emphasize the impor-
tance of human-understandable explanations of the internal processes of the AI
systems. The research domain of Explainable AI (XAI) gained much attention
within the last decade, resulting, for example, in multiple XAI-related workshops
at the major AI conferences. The phase Explain of FLEA follows the current
XAI development and requires an explanation feature for the systems that im-
plement the methodology. To provide MetisCBR with explanation abilities, the
Explainer module (see Fig. 2) was created as part of the system according to
this methodology requirement. The main task of the Explainer is to support
the retrieval process by providing explanations for the search results in form of
textual expressions that contain information about system’s decisions and rea-
sons to include these results in the final result set. The mode of operation of the
Explainer is based on the Explanation Patterns for CBR-based approaches [8]:

– Justification – Answers the question of why a particular result was returned.
– Relevance – Provides the context of the question that the system has asked.
– Transparency – Explains how exactly the system was able to find results.

Over time, a number of different Explainers have been conceptualized and
implemented in MetisCBR. All of them have in common that they implement
the explanation patterns and the validation of the produced explanations, i.e.,
they check the explanation for correlation between its expression or value and
the requirements for understandable domain-specific explanations.

The CBR-Explainer-1 [4] was the first one to implement the concept of ex-
planation patterns and validation. Its task was to detect the patterns within
the retrieval results by means of applying a specific ruleset that was concep-
tualized to cover all possible combinations of semantic fingerprints. After the
pattern recognition phase, the corresponding explanation expression was gener-
ated, based on detected patterns (see Fig. 5), and evaluated with the case-based
validation process based on comparison with ground-truth explanation cases
from a case base of ‘golden-standard’explanations that were checked for validity
by a CAAD expert. During an evaluation with a case base of 225 room config-
urations, the CBR-Explainer-1 achieved 84.825% of validation processes with a
positive outcome and so proved the suitability of its mode of operation.

The CBR-Explainer-2 [13], an enhanced, however, more restrictive version of
the CBR-Explainer-1, provides more deeply in detail going explanations that do
not consider the semantic fingerprints only for patterns detection, but also take
particular attributes of the domain model’s main concepts into account. The de-
tection process of each pattern was reworked, extensively enhanced and assigned
a particular agent responsible for this pattern only. The Relevance detection is
based on analysis of attributes of all ROOMs and EDGEs available in case and
query, where each of them is checked for predefined requirements that determine
if this instance is suitable for similarity assessment. If no Relevance was detected
in either query or case, then the pattern detection process proceeds with recog-
nition of the Justification pattern. Here, a Justification score that is based on



similarity values of the particular rooms, edges, and the result as a whole, serves
as a classification means to categorize the result into a justification class. The
detection of the Transparency pattern then depends on similarity assessment
history of the attributes of the main concepts. The Transparency agent collects
all available data on this history and constructs the assessment summary report.
The explanation validation process of the CBR-Explainer-2 is an enhancement of
the CBR-Explainer-1’s validation, the most notabe modification is the inclusion
of undetected patterns which provides a more exact detection picture. Besides
pattern detection, the CBR-Explainer-2 is also able to detect contextual relations
between the results by assigning different context classes to them. These classes
represent specific features such as RoomTypeDominance (see Sect. 3.1) or Spar-
seConnections [13]. The evaluation of the CBR-Explainer-2 with a dataset of 119
room configurations resulted in ≈ 80.4% of validations with a positive outcome.
The subsequent user study, during which the understandability of explanations
was rated, resulted in satisfactory feedback with comments on visualization of
explanations and improvement suggestions from the participants.
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Fig. 5. An example of explanations produced with CBR-Explainer-1. T, J, and R stand
for Transparency, Justification, and Relevance respectively. Figure adapted from [4].

The DA-Explainer [14] is based on the classification method discriminant
analysis. This Explainer was conceptualized and implemented to predict the ex-
planation and validation classes of the result. The explanation classes, denoted
by the letters A-D and assigned by means of applying the discriminant function
and decision trees, represent the detection grade of the corresponding pattern
and so can describe how likely a sufficient amount of explanation-related infor-
mation will be available in both query and result to produce an understandable
explanation. The validation classes, denoted by V1-V4, estimate the likelihood
of validity of the explanations. The DA-Explainer was compared in a joint eval-
uation [15] with the CBR-based Explainers. This experiment used a dataset of
120 room configurations and showed that the CBR-Explainer-1 produces the
most constant validation values, whereas the DA-Explainer delivered the most
inconsistent performance.



The last of the currently existing Explainers is the BDI-Explainer [22] that
is based on the Belief-Desire-Intention architecture well-known from the MAS
domain. This Explainer was influenced by the explainable BDI agent concept
[18]. The BDI-Explainer provides a high-level structure for construction of other
Explainers where each concept of the BDI architecture is connected to a specific
task and/or the corresponding knowledge basis. Beliefs describe the domain-
specific technical knowledge, i.e., the technical terms and relations of the CAAD
domain. Desires represent the goals of the Explainer: detection of explanation
patterns and validation of the generated explanation. Intentions stand for the
most suitable next steps to achieve the desired goal by means of applying the be-
liefs knowledge, e.g., to contextually activate one of the available Explainers. The
concept of the BDI-Explainer was examined by a group of 4 architects [22]. The
results showed a general acceptance rate of 75% for the concept of knowledge-
and pattern-based explanation generation. Additionally, it was also determined
that the enrichment of results with explanations helps to avoid mistakes during
the conceptualization process, but does not stimulate creativity.

3.4 Adapt

Modification of solutions of retrieved cases, emblemaized by the phase Reuse
of the 4R CBR cycle, by adapting them (or just the parts of them) to the
current situation, is an essential phase that influences the success of the reasoning
process as it provides the user with a possible solution to her problem. For
design cases, this means that a selection of generated variations of the current
design at hand can be presented. FLEA’s Adapt provides the implementation of
the methodology with such functionality to give the designer another source of
inspiration that shows how the current design can evolve over time.

The implementation of Adapt in MetisCBR is based on Generative Adversar-
ial Nets (GAN), an approach for ANN-based generation of data objects. GAN
makes use of two neural networks, where the Generator generates objects and
the Discriminator decides if this object would appear real to a human. Our ap-
proach (see Fig. 6) takes the GAN methodology as a basis and extends it with a
pre-generation step, the adaptation complexity classification phase implemented
in the specific Classificator network that defines how strong the current design
should be adapted. The outcome of this classification is the grade on the spe-
cific complexity scale 1(slight)-3(heaviest) that is then used to select a proper
mode of adaptation for the Generator that modifies the current room configura-
tion according to the requirements of this grade. After that, all of the generated
room configuration variants are forwarded to the Discriminator whose task is
to determine if this configuration can be considered a descendant of the orig-
inal configuration. The chosen variations are then saved in the case base and
marked as descendants of the query design producing its particular case tree.
All three steps of our adaptation approach use a convolutional neural network
(CNN, ConvNet) as its corresponding underlying technique and work with a
connection map as the floor plan representation (see Fig. 6).
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A connection map is a modified adjacency matrix of the floor plan’s graph,
however, instead of weights, a special connection code is used to mark the con-
nection between two rooms. This code represents a numerical signature of the
connection, where the first two numbers represent the connected rooms and the
last number stands for the type of connection. For example, the connection code
241 stands for Living and Kitchen connected by a Door. Both directions, e.g.,
Living→Kitchen and Kitchen→Living are allowed, e.g., if they are connected
with two different connection types. For use in ConvNets, these numbers are
then converted into the grayscale values, e.g., 241 to 0.241. In Fig. 7, an exam-
ple visualization of the original and the corresponding adapted connection maps
is shown. The outcomes from the Generator’s network are decoded afterwards, if
they have been accepted by the Discriminator. The dataset of connection maps
is a reflection of the case base for retrieval, with adaptation complexity classes
derived from different steps of the process chains described in Sect. 3.3.

Currently the adaptation component is under active development, especially
the configurations of different adaptations modes of the Generator are being
tested. However, in an initial evaluation of the Classificator, classification accu-
racy of ≈93% could be achieved, based on 30000 generated connection maps.

4 Example Usages of FLEA Components

The following examples demonstrate how FLEA’s components can be combined
together or used separately in order to accomplish different tasks that can occur
during the room configuration process (see Fig. 7).
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Fig. 7. Examples of FLEA component combinations.

4.1 Example 1: Learn and Adapt

If the architect does not wish to take a look on floor plans similar to the currently
developed one, but instead only to know how this current design can or could
evolve, then the system can combine Learn and Adapt components in order to
present variations of the design by using the past design process steps history
saved in the process chain (see Sect. 3.2). In this case, the Adapt component
takes the different, in the most simple case manually or randomly selected, con-
figuration states from the history (including the current state) and produces a
number of adaptations that can show how the current state can evolve as well
as what would happen if at some other point in the current room configuration
history another configuration decision could have been made. This combination
can help the designer reconsider her decisions and try to correct them if required.

4.2 Example 2: Find - Adapt - Explain

The most classic case, where the designer looks for the most similar cases in the
dataset of past cases in order to find inspiration or take a look how the current
configuration is embedded in a similar context can be extended with explanations
of why these designs are useful for further design development process and also
how they are related to each other (which is already implemented in MetisCBR).
Additionally, this combination can be enhanced with an intermediate adaptation
functionality that can adapt the current design state as well as a number of the
most similar designs found in the case base. Furthermore, these selected most
similar designs can themselves be used as the adaptation basis. Subsequently, the
Explain component can be used to make retrieval as well as adaptation results
more reasonable by showing the similarity-based relationship between them.

4.3 Example 3: Learn or Explain Separately

If computational ressources are to be considered then only the modules can be
active that are currently required most, while other modules can be disabled.
For example, Explain can be used separately to find out how two designs can be
helpful for each other, which is the easiest possible use of Explain. In this case,
the explanation component does not need much ressources, as pattern detection
and validation will only be performed for the evaluation of one design. Other
example is the usage of Learn as the only active component that concentrates
the system performance on suggestions for the next step only. As Learn generally
requires more computational ressources than other modules, it is recommended
to periodically (re)consider how many clusters and RNNs should be created.



5 Future Work and Conclusion

In this paper, we presented FLEA, a methodology for support of the early con-
ceptual design phase in architecture. FLEA is implemented in a framework for
room configuration support, where all steps, namely Find, Learn, Explain, and
Adapt, are implemented in particular system components for retrieval of similar
floor plans, explanation of the returned results, suggestions of the next configu-
ration steps, and generation of adapted variations of the current configuration.
Future work will be conducted mostly for Learn and Adapt to improve these
components and perform a number of quantitative and qualitative experiments.
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