
Visualizing the behavior of CBR agents in an
FPS Scenario

Philipp Yasrebi-Soppa1, Jobst-Julius Bartels1, Sebastian Viefhaus1, Pascal
Reuss1,2, and Klaus-Dieter Althoff1,2

1 University of Hildesheim
Samelsonplatz 1

31141 Hildesheim
{reusspa, bartelsj, viefhaus, yasrebis}@uni-hildesheim.de

2 German Research Center for Artificial Intelligence (DFKI)
Trippstadter Str. 122
67663 Kaiserslautern

kalthoff@dfki.uni-kl.de

Abstract. The analysis and visualization of agent behavior enables a
developer to identify unexpected or faulty behaviors and can show room
of improvement. Therefore, visualization tools can be helpful to analyze
behaviors during or after simulations. This paper presents a visualization
tool VISAB developed for analyzing and visualizing the movement and
actions of CBR agents in a first-person scenario. We describe the settings
of the scenario and in more detail the visualization possibilities to get a
better understanding of agent behavior during game-play.

Keywords: Visualization · Case-Based Reasoning · Agent behavior · Multi-
Agent System · First-Person Scenario

1 Introduction and motivation

Visualization of agent behaviors can also be helpful for teaching Artificial Intel-
ligence (AI). It can be used to support students and inexperienced AI developers
during knowledge modeling and designing decision making processes for agents.
The goal of this work was to create a visualization tool to display agent behav-
ior in a first person scenario. This scenario is part of a platform for teaching
Case-based Reasoning (CBR), learning software agents and multi-agent systems
(MAS) during a advanced programming practical. The basic idea of this platform
is to have several modules that represent different scenarios that can be played
and solved by software agents. The students design and implement an agent or
a team of agents with a CBR system (or other AI technologies that enables de-
cision making) for one of the given scenarios. The implemented agent then plays
the scenario and the behavior of the agent will be analyzed and visualized to

Copyright c© 2020 by the paper’s authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).



give feedback to the students. The students should be able to watch their agent
while playing and get an evaluation after completing the scenario. In addition to
play a scenario solo, it will be also possible to compete with the ”home team”
of agents in directly competitive scenarios. Figure 1 givens an overview of the
desired architecture of the teaching platform.

Fig. 1. Overview of the planned platform architecture

Currently, several modules are being implemented and in different states of
completion: a first-person game, a real-time strategy game, an economic simula-
tion, and several board game implementations like Settlers of Catan. In addition
to these playable scenarios, an administration module and a first visualization
module for the first-person game are under development. The visualization com-
ponent records a game and enables the user to view the game later with several
options to configure the displayed information.

The visualization of agent behavior in given environments with defined sur-
rounding conditions enables a developer to identify unexpected or faulty behav-
iors and can show points of improvement. In addition to visualizing the behavior
of the agent itself, background and contextual information can be visualized, too.
Using this additional information, agent behaviors and decisions can be analyzed
and the decision-making process of an agent will become more comprehensible
to the developer and can be better optimized. [1][5][9]

This paper provides an overview of the visualization module and the imple-
mented features. The remaining paper is structured as follows. Section 2 gives an
overview of some related work in the field of agent behavior visualization. Section
3 describes the first-person scenario (FPS) and then in detail the visualization
module for the participating agents, while Section 4 provides an overview of the
performed evaluation. The paper concludes in Section 5 with a short summary
and an outlook to future work.



2 Related Work

Over the last decades many research activities and approaches for modeling and
visualizing the behavior of software agents in different use cases were realized. To
prove the functionality of an artificial intelligence, multi-agent systems became
a popular application area. We focus on the FPS domain, a sub-genre of action
video games. In a typical FPS game, there are two teams of typically human
players trying to overcome the opposing team by either eliminating each member
of the opposing team or by successfully complete another objective, such as
planting a bomb at a certain place or by preventing the opposing team to do so.
While both teams are actively playing at the same time, most FPS are limited
by a round-time of approximately five minutes and a limited map size.

Agent modeling frameworks like NetLogo[25], REPAST[11], or Pogamut[5]
provide simulation and visualization capabilities beside their core design and
modeling features. NetLogo was developed in 1999 and is still an active multi-
agent environment today. It enables a developer to simulate complex situations
with several thousand of agents in 2D or 3D. In addition, NetLogo offers to
visualize several background information and to analyze the agent models with
the help of different diagrams. An interesting feature of NetLogo comes with the
extension HubNet. It enables the development and execution of participatory
simulation for lectures. In these simulations every participating student controls
a part of the overall system, for example a traffic light in a traffic simulation.
[26][23]

The Recursive Porous Agent Simulation Toolkit (REPAST) is an open source
framework for modeling and simulation agents. Similar to NetLogo it offers the
modeling and simulation of agents in 2D and 3D environments and several
visualization features with diagrams and graphs.[11] REPAST was developed
further into two different version, REPAST Simphony and REPAST for high
performance computing (REPAST HPC). REPAST Simphony offers additional
visualization capabilities with the help of a geographic information system to
visualize the movement of agents.[2][16]

Pogamut is another free development environment for modeling and simula-
tion agent behavior in a 3D environment. It is used mainly in combination with
the Unreal game series and is designed to support research and education. The
current version of Pogamut was released in 2015[18]. During the debugging of
implemented agents, Pogamut allows the visualization of several information, for
example the position of agents on a map, the view direction of agents, and the
planned movement.[6][7] In addition to development frameworks with visualiza-
tion capabilities, there are several more or less pure visualization tools, that a
designed with the main purpose to test and evaluate the behavior of software
agents.

GameBots is a virtual testing environment to evaluate software agents in
games. The goal was to develop a tool that can be used on computer games to
enable the use of these games for research and education in the fields of AI and
MAS. The GameBots tool provides three components to visualize background
information about agents and their environment: a 3D virtual world, a global



VizClient for analyzing the entire simulation, and a local VizClient for analyzing
the behavior of a single agent. With these three components, GameBots is able
to visualize positions, view directions and field, movement, points, messages, and
decision of the individual agents and agent teams.[1][20]

The Unreal Tournament Semi-Automated Force (UTSAF) is a military-based
agent simulation in the 3D environment of Unreal Tournament. In the context of
UTSAF, an agent can be a ground or an air unit. UTSAF uses the tool GameBots
in combination with special information brokers to visualize agent behavior.
These information broker modules can collect the information about individual
agents, agent teams, or the entire environment and passes them to different
instances of the GameBots tool. This enables the user to act as a spectator
for the simulation and get an overview of the entire environment or see the
simulation through the eyes of an individual agent.[12][17]

Lithium is a tool that was developed to enable analyses in multiplayer com-
puter games. The tool visualizes information via overlays on top of the running
game. Lithium was designed to analyze the entire situation of a computer game,
and not specific information about a single agent. The goal is to capture the en-
tire dynamic of the computer game. Lithium can visualize information on a local
and global level. Local level information is based on specific positions or parts
of the environment or specific events, while the global level is used to visualize
trends or behaviors over time. The tool provides information about the position
and movement of agents, combat behavior, and agent views on the local level.
On the global level, Lithium can display information about the agent density
on a specific part of the map, the medicine density and needs, control areas for
specific teams, and combat information like fire support ranges.[9]

HeapCraft is a free tool for visualization and data search with a focus on
the analysis of agent behavior in interactive virtual worlds. The tool can be
used by administrators and players of multiplayer game servers and aims at
changing a player‘s behavior in positive and social way. In addition, problems in
the game world and with player activities can be identified and failure diagnoses
can be performed.[13] A prominent game HeapCraft is applied to, is the 3D
computer game Minecraft, but can be applied to various games with virtual
worlds. The tool provides several components that can be integrated into a game
as plug-ins. The Epilog Dashboard provides visualizations and analyses about
player behavior in real time. In context of Minecraft the dashboard visualizes
for example the online time, the covered distance, build blocks, and gathered
resources. In addition, the dashboard computes an index for collaboration with
other players. With the help of the Map Miner player activities can be tracked,
analyzed, and visualized on a 2D map. The plug-in Classify is able to analyze
the behavior of one player over a complete day and visualizes the information in
form of diagrams. [14][15]

The Visualization Toolkit for Agents (VISTA) is a framework to visualize
the internal reasoning processes of software agents. It aims at evaluating the
behavior and decision making process of agents and can be used during or after
a simulation.[21] VISTA was developed with four purposes: providing a generic



framework capable to be used in as many agent architectures and systems as
possible, providing a domain-independent framework, enable the tracking of in-
ternal reasoning processes, and provide visualizations of agent behaviors during
run-time as well as after the termination of a simulation by recording the be-
haviors. For the visualization of the internal reasoning processes, VISTA uses
a so-called Situational Awareness Panel (SAP) to collect and display all infor-
mation about the agents, their interactions, and communications. In addition,
VISTA is capable of generating explanations for the behavior of agents with
focus on objects and situations.[21][22]

3 Visualization of CBR agent behavior

This section describes first briefly the developed game with the FPS scenario.
A more detailed description can be found in [8] and [19]. Then we will describe
in more detail the conceptual idea of the visualization component called VISAB
(Visualization of Agent behavior).

3.1 Settings of the FPS scenario

The FPS scenario was developed as a multi-agent system and consists of three
components: the multi-agent system itself, the game logic and visualization com-
ponent, and a CBR component. The game component was developed with Unity
3D[24], while the multi-agent system was implemented using Boris.Net[4]. The
CBR component was modeled and implemented using the open source tool my-
CBR[3]. The Unity 3D framework was used to design the environment in which
the software agents compete each other and to visualize the actions of the agents
to the user. The agents are implemented within the Unity 3D component with
the help of Boris.Net. There are three different agents implemented: the player
agent, the planning agent, and the communication agent. The player agent gets
an update of the situation through the Unity framework. With each sensor up-
date, the player agent sends the information to the communication agent. This
agent transforms the received data into a JSON string and passes it to the CBR
component. The CBR component performs a retrieval and answers the request of
the communication agent by sending the most similar cases back, also in a JSON
string. The solution of the cases contain possible plans that can be executed by
the player agent, but have to be transformed into Unity 3D specific orders to be
executable. Therefore, the retrieved solutions are passed to the planning agent.
This agent evaluates the received solutions and forms a plan that is passed to
the player agent. The player agent then executes the new plan. If no new plan
can be formed, the player agent continues executing the current plan.

The case structure modeled within the CBR component consists of a situation
description based on the sensor input of the player agent and associated actions
that form an executable plan. The situation description consists of seventeen
attributes with various data types. The attributes have integer, symbolic, or
Boolean data types. The distance to an entity in the game is represented by four



symbolic values: near, middle, far, and unknown. This way the similarity measure
is less complex. Is the distance to an entity less than 15 Unity scale units, the
distance is considered near, between 15 and 30 scale units the distance is set
to middle, and between 30 and 50 scale units the distance is set to far. If the
distance is greater than 50 scale units or the position of an entity is unknown,
the distance is set to unknown. The developed FPS scenario was extended with
a reinforcement learning (RL) approach to enable the CBR component to learn
from different situations and the executed plans. Therefore, a reward function is
used to calculate the win probability of a situation based on several important
attributes. The results showed that the integration of an RL approach into the
system leads to an improvement in the performance of the CBR agent. More
details on the multi-agent system, the individual agents, their relationships, and
the reinforcement learning approach can be found in [10].

3.2 Visualization tool for the FPS scenario

The analyses of the CBR agents performance were made by logging information
about victory and defeat in a CSV file and by observing the live game-play.
But this kind of analysis is not very sufficient and incorporates only few avail-
able information. Especially during observation in the live game-play, important
actions can be missed. Therefore, a visualization component was required that
was capable of collecting all relevant information during the game-play, aggre-
gating and evaluating these information, and display them to the developer to
understand the behavior of the agents. Many existing visualization tools were
reviewed to find a suitable and applicable tool or framework that could be used
in our use case. But none of the reviewed tools fit complete for our application
and the desired platform. Especially the requirement of visualizing CBR specific
information and the planned application of the visualization component to all
planned modules of our platform could not be covered by the existing tools from
our point of view. Some tools could be used only partially, other are not actively
developed anymore. This led to the development of our own solution VISAB.

The architecture of VISAB is a classic three-layered model. The presentation
layer is the interface to the user and contains the visual and graphical compo-
nents to display the information about the agents. The logic layer is arranged
under the presentation layer and is responsible for data processing and the prepa-
ration of information for the visualization. The components of the presentation
layer are controlled and managed by the logic layer. In addition, the logic layer
also enables the processing of user interactions and information requests. The
undermost layer is the data layer that provides the data streamed from the
game during live game-play or from a recorded file. The data layer loads and
saves the data from text files with a format based on keys and values. It is the
connection to the Unity game platform. Figure 2 gives an overview of the VISAB
architecture.

VISAB requires the game data in a JSON similar format. This game data is
stored in a text file and contains eighteen different properties. The value of each



Fig. 2. Overview of the VISAB architecture

property is stored for each frame of a game cycle. The properties are listed in
the following:

– ammoPosition - the positions of ammunition crates
– coordinatesCBRBot - the coordinates of the CBR agent
– coordinatesScriptBot - the coordinates of the scripted agent
– healthCBRBot - the current health of the CBR agent
– healthScriptBot - the current health of the scripted agent
– healthPosition - the positions of health containers
– nameCBRBot - the name of the CBR agent
– nameScriptBot - the name of the scripted agent
– planCBRBot - the current plan of the CBR agent
– planScriptBot - the current plan of the scripted agent
– roundCounter - a counter for the current round
– statisticCBRBot - victories and defeats of the CBR agent
– statisticScriptBot - victories and defeats of the scripted agent
– weaponCBRBot - current weapon of the CBR bot
– weaponScriptedBot - current weapon of the scripted agent
– weaponMagAmmoCBRBot - current ammunition for the equipped weapon of

the CBR agent
– weaponMagAmmoScriptedBot - current ammunition for the equipped weapon

of the scripted agent
– weaponPosition - the positions of weapons

A VISAB file can contain any type of information if it has the format [key
= value], for example [weaponCBRBot = Pistol]. The generic statistics visu-
alization component of VISAB displays any information in the given format.
In addition to a VISAB file, the game data can also be provided during live
game-play using a data stream from the Unity game platform.

The presentation layer has two main perspectives to display the visualizations
based on the data. The first one is a generic statistics overview of the provided



data. The properties and their values are displayed in a table to give the user
overview of the available data. In addition, for each agent a diagram with the
executed plans for each agent is displayed using the processed data. The diagram
shows how often a specific plan is executed during game-play as well as the total
number of all executed plans. Figure 3 shows the statistic perspective of VISAB
with some sample data.

Fig. 3. Statistic perspective of VISAB

The second perspective is the so-called PathViewer and the heart of VISAB.
It allows a detailed visualization of a game with focus on different aspects of the
game and agent behaviors. The PathViewer consists of several elements: a map
of the level, where the game took place, two tables with the detail information
of the playing agents, a configuration panel, and a time frame. In the map, all
information of the game can be visualized by symbols and paths and therefore
displays a replay of the game from a bird’s eye perspective. The configuration
panel allows the user to enable or disable the visualization of certain information
and serves also as a legend for the displayed information. The time frame is used
to control the playback of the recorded game. This can be done by playing the
complete game or by selecting a specific frame that should be displayed. Figure
4 shows the PathViewer perspective with sample data from a fifteen minute
game-play at the beginning of the visualization.

To make use the PathViewer, at first a User has to select a data file or
a live stream that should be visualized (1). Then the data is loaded (2) and
displayed in the two tables (3). In the next step, the user selects the information
to be visualized or accept the default configuration (4). The information will
be displayed in the map (5) after starting the visualization (6). During the



Fig. 4. PathViewer perspective of VISAB at the start of the visualization

visualization, the user can always see the current displayed frame or select a
specific frame (7). The single steps are marked in Figure 4.

During the visualization, different information can be found on the map. First
the path of the playing agents will be displayed to retrace the routes during a
game session. Along the paths several icons can be found. The current position
of the agents is also displayed along the routes for every frame. This allows to
see the detailed movement on the routes during playback. Every time an agent
is defeated a symbol is placed on the map to visualize the situation. In addition,
every time a weapon, ammunition, or health is spawning, the corresponding icon
is displayed on the map. If it is collected, the icon disappears. At least, another
important information can be visualized: the point during a game, when an agent
changes his action plan. This is displayed using an exclamation mark to make
the specific situation visible. Using the visualized information on the map and
the detail information about the agent status and behavior in the two tables, a
user can retrace and analyze agent behavior and can identify situations with bad
or even wrong agent behavior. This allows a better adaptation of agent behavior
than just viewing the live game without the contextual information or just using
the logged CSV file. Figure 5 shows the PathViewer with several information
visualized in the map.

4 Evaluation

The evaluation of VISAB was performed to test the correct and complete vi-
sualization of the analyzed information. In addition, the performance while dis-
playing different kinds of information were tested. To verify the correctness and



Fig. 5. PathViewer perspective of VISAB with visualized information on the map

completeness of the displayed information, a live game was directly compared
with the visualized information in VISAB. The game-play was recorded by using
a the ReLive function of a RADEON graphic card. This recorded game-play was
then compared with the VISAB visualization, frame by frame. For the verifi-
cation three game-play with a length of ten, twenty, and thirty minutes were
recorded and compared. The result was that every occurred entity and situation
during the game-play was recorded complete and correctly. The performance of
VISAB was evaluated to test the handling of big data sets recorded during long
game-play sessions. This was done with two data sets for a game-play of 90 min-
utes. The tests showed only minimal delays when selecting a specific frame with
the slider. Therefore, the performance is more than sufficient for the planned use
cases.

An evaluation within lectures with participating students is planned for the
next semester. The goal will be to evaluate the impact of VISAB on the analysis
and development process of the students.

5 Conclusion and Outlook

This paper presents a visualization tool for agent behavior in an FPS scenario
to analyze and identify bad or wrong behavior of the participating agents. We
described the settings of the FPS scenario and then the idea, architecture, and
current realization of the visualization tool VISAB. We also have conducted a
small successful evaluation on the features of VISAB. The next steps for de-
veloping VISAB further, are to evaluate VISAB with students and extend the



PathViewer with more information of the internal reasoning processes, like case
similarities. We are also currently re-implementing the FPS scenario for team
play and other game modes like capture the flag. Therefore, we will also adapt
the PathViewer to display the additional information generated by the new situ-
ations. Adding new perspectives to enable the visualization of the other modules
are also planned.

References

1. Adobbati, R.; Marshall, A. N.; Scholer, A.; Tejada, S.; Kaminka, G.; Schaffer, S.;
Sollitto, C.: GameBots: A 3D Virtual Test-Bed for Multi-Agent Research. In: WAG-
NER, T. (Ed.); Rana, O.S. (Ed.): Proceedings of the second international workshop
on Infrastructure for Agents, MAS, and Scalable MAS, Volume 5, Montreal, Canada,
2001.

2. Argonne National Labatory, Webseite 2015. - https://sourceforge.net/projects
/repast/; last verification: 16.06.2020

3. Bach, K.; Sauer, C.; Althoff, K.-D.; Roth-Berghofer, T.:Knowledge Modeling with
the Open Source Tool myCBR. In:Nalepa, G.J. (Ed.), Baumeister, J. (Ed.), Kaczor,
K. (ed.): Proceedings of the 10th Workshop on Knowledge Engineering and Software
Engineering (KESE10), Praque, Czech Republik, 2014

4. Bojarpour, A.: Boris.Net, Website, 2009 - http://www.alibojar.com/boris-net, last
verification: 16.06.2020.

5. Gemrot, J.; Kadlec, R.; Bida, M.; Burkert, O.; Pibil, R.; Havlicek, J.; Zemak, L;
Simlovic, J; Vansa, R; Stolba, M.; Plch, T.; Brom, C.: Pogamut 3 can assist devel-
opers in building AI (not only) for their videogame agents. In: Dignum, F. (Ed.);
Bradshaw, J. (Ed.); Silverman, B. (Ed.); Doesburg, W. (Ed.): Agents for games and
simulations, Springer-Verlag Berlin, Heidelberg, 2009, S. 1-15.

6. Gemrot, J.; Brom, C.; Kadlec, R.; Bida, M.; Burkert, O.; Zemcak, M.; PibilL, R.;
Plch, T.: Pogamut 3–Virtual humans made simple. In: Srini-Vasan, N. (Ed.); Gupta,
A. K. (Ed.); Pandey, J. (Ed.): Advances in Cognitive Science, SAGE Publications
Pvt. Ltd, 2010, S. 211-243.

7. Gemort, J.; Brom, C.; Plch, T.: A periphery of pogamut: From bots to agents and
back again. In: Dignum, F. (Ed.): Agents for games and simulations II, Springer-
Verlag Berlin, Heidelberg, 2011, S. 19-37.

8. Hillmann, J.: “Konzeption und Entwicklung eines Prototypen für ein lernfähiges
Multi-Agenten-System mittels des fallbasierten Schließen im Szenario einer First-
Person Perspektive” (Conception and Development of a prototype for a multi-agent-
system with learning capabilities using case-based reasoning in the first-person per-
spective szenario). Hildesheim, University of Hildesheim, 2017.

9. Hoobler, N.; Humphreys, G.; Agrawala, M.: Visualizing competitive behaviors in
multi-user virtual environments. In: Visualization, IEEE, 2004, S. 163-170.

10. Kolbe, M.; Reuss, P.; Schoenborn, J.M.; Althoff, K.-D.: Conceptualization and Im-
plementation of a Reinforcement Learning Approach Using a Case-Based Reasoning
Agent in a FPS Scenario, In: Jaeschke, R. (Ed.); Weidlich, M.(Ed.): Proceedings of
the Conference ”Lernen, Wissen, Daten, Analysen”, Berlin, 2019

11. Macal, C. M.; North, M. J.: Tutorial on agent-based modeling and simulation. In:
Simulation Conference, Proceedings of the Winter, 2005, S. 73-83.

12. Manojlovich, J.; Prasithsangaree, P.; Hughes, P.; Chen, J.; Lewis, M.: UTSAF: A
Multi-Agent based Framework for Supporting Military-based distributed interactive



simulations in 3D virtual environment. In: Simulation Conference, Proceedings of
the Winter, Volume 1, 2003, S. 960-968.

13. Müller, S.; Solenthaler, B.; Kapadia, M.; Frey, S., Klingler, S.; Mann, R. P.; Sum-
mer, R. W.; Gross, M.: HeapCraft: Interactive Data Exploration and Visualization
Tools for Understanding and Influencing Player Behavior in Minecraft. In: Pro-
ceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, 2015, S.
237-241.

14. Müller, S.; Kapadia, M.; Frey, S., Klingler, S.; Mann, R. P, Solenthaler, B.: Statis-
tical Analysis of Player Behavior in Minecraft. In: Zagal, J. (Ed.): Proceedings of
Conference on Foundations of Digital Games, 2015.

15. Müller, S.; Frey, S.; Kapadia, M.; Klingler, S.; Mann, R. P.; Solenthaler, B; Sum-
mer, R. W.; Gross, M.: HeapCraft: Quantifying and Predicting Collaboration in
Minecraft. In: Proceedings of the eleventh AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 2015, S. 156-162.

16. North, M. J.; Collier, N. T.; Ozik, J.; Macal, C. M.; Tatara, E. R.; Bragen, M.;
Sydelko, P.: Complex adaptive systems modeling with Repast Sim-phony. In: Com-
plex adaptive systems modeling, Volume 1, 2013.

17. Prasithsangaree, P.; Manojlovich, J.; Hughes, S.; Lewis, M.: UTSAF: A Multi-
Agent-Based Software Bridge for Interoperability between Distributed Military and
Commercial Gaming Simulation. In: The Society for Modeling and Simulation In-
ternational, 2004, S. 647-657.

18. Pogamut, Webseite 2015. - http://pogamut.cuni.cz/main/tiki-view
blog.php?blogId=3; last verification: 16.06.2020.

19. Reuss, P., Hillmann, J., Viefhaus, S., Althoff, K.-D.: “Case-Based Action Planning
in a First Person Scenario Game”. In: Rainer Gemulla, Simone Ponzetto, Christian
Bizer, Margret Keuper, Heiner Stuckenschmidt (Ed.). LWDA 2018 - Lernen, Wis-
sen, Daten, Analysen - Workshop Proceedings. GI-Workshop-Tage “Lernen, Wissen,
Daten, Analysen” (LWDA-2018) August 22-24 Mannheim Germany University of
Mannheim 8/2018.

20. SIOUTIS, C.: Reasoning and Learning for intelligent Agents. Phd Thesis, Univer-
sity of South Australia, 2006.

21. Taylor, G. E.; Jones, R. M.; Fredriksen, R. A.: VISTA: A Generic Toolkit for
Visualizing Agent Behavior. In: Proceedings of the 11th Conference on Computer
Generated Forces and Behavioral Representation, 2002, S. 157-167.

22. Taylor, G. E.; Knudsen, K.; Holt, L. S.: Explaining Agent Behavior. In: Behavior
Representation in Modeling and Simulation (BRIMS), 2006.

23. Tisue, S.; Wilensky, U.: NetLogo: Design and implementation of a Multi-Agent
Modeling Environment. In: Proceedings of agent, Volume 2004, S. 7-9.

24. Unity Technologies: Unity 3D Overview, Website, 2018 -
https://unity3d.com/de/public-relations, last verification: 16.06.2020.

25. Wilensky, U.: NetLogo Frogger model. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL, Webseite 2002.
- http://ccl.northwestern.edu/netlogo/models/Frogger; last verification: 16.06.2020.

26. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL, Webseite 2017. -
http://ccl.northwestern.edu/netlogo/; last verification: 16.06.2020.


