
Towards case-based reasoning in real-time
strategy environments with SEASALT

Jakob M. Schoenborn1,2 and Klaus-Dieter Althoff1,2

1 University of Hildesheim
Universitätsplatz 1, 31141 Hildesheim, Germany

schoenb@uni-hildesheim.de
2 German Research Center for Artificial Intelligence (DFKI)

Trippstadter Str. 122, 67663 Kaiserslautern, Germany
kalthoff@dfki.uni-kl.de

Abstract. Real-time situations provide numerous different problems to
solve. Starting with the requirement of finding a solution inside an ac-
ceptable time frame, the problem is to find the right balance between
performance and precision of the system. One might not be able to wait
multiple minutes for a solution, however, a too quickly made decision
might entail a certain risk factor. Thus, it has to be decided when meth-
ods such as using a rule-based system is sufficient and when it is rather
beneficial to take the cost of using methodologies for knowledge man-
agement. We are using StarCraft II as an example for decision making
in a real-time environment using incomplete information with a finite
set of buildings and units to control. We propose using agents to de-
cide the proportion of command authority between using a rule-based
and a case-based reasoning agent. Earlier stages of the game seem to be
promising for immediate reactions while later stages of the game require
more planning due to the increased rate of information, which have to
be processed. By reusing past experiences, case-based reasoning may be
able to help improving the planning process.

Keywords: Case-based Reasoning · Realtime Strategy · Knowledge Man-
agement

1 Introduction

To solve problems in a real-time situation is very difficult, especially with incom-
plete information. The general problem consists in finding a selection of complex
processes in order to decrease the idle time of any given unit as much as pos-
sible. This is not only applicable in the gaming area, but similar problems can
be found in the production area: using limited resources to obtain the highest
possible output. The longer it takes to process the information, the more likely it
is to lose value of the made decision, due to the delayed provision of the solution

Copyright c© 2020 by the paper’s authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

Fig. 1. Screenshot of StarCraft II during early stages of the game: Building the base,
train combat units and manage resources. The panel in the bottom contains multiple
information based in the selected unit such as health points, attack damage, unit-
specific abilities, and a minimap with three different levels of fog of war (visible, visited
but not currently visible (gray), and never visited (black).

or since the data as a decision foundation has been changed during the process
- or a combination of both. This requires the decision making processes to be as
effective as possible.

StarCraft II is a real-time strategy game developed and maintained by Ac-
tivision Blizzard, including hosting and organizing tournaments which since 2010
have awarded $33,003,549.29 in total prize money from 5839 tournaments, with
a majority of the price money granted to players located in south korea [3]. The
game, representative for any other games in its genre, evolves around two differ-
ent aspects and can be seen in Fig. 1: macro- and micromanagement. The former
considers the usage of resources (minerals, blue crystals) to build structures and
combat units, the latter considers moving units for scouting and fighting the
enemy player. Combat contains multiple different aspects to consider, such as
differences in unit weapon- and armor types, ground and air units, and addition-
ally in the kind of movement itself, for example, using a “hit- and run”-strategy
to deal as much damage as possible while taking as less damage as possible.
With these differences, it is important to scout the enemy to know about the
enemies chosen strategy to counter it by building corresponding units. These
receive a damage bonus based on their weapon type against the armory types of
the enemies unit. This has also been tested in a CBR approach by Cadena and
Garrido [2].

The usage of reinforcement learning (RL) and artificial neural networks
(ANN) is in current research the way to solve seemingly any problem, for exam-
ple, Vinyals et al. provided 2019 an AI, which is capable of defeating professional
StarCraft II players [9] or earlier approaches by Mnih et al. using a similar ap-
proach [6]. However, ANN usually implies the unfair advantage of numerous
training sessions, i. e., parallelizing games, or taking larger datasets into account
than a human could process (971.000 replays of games played by human players
have been used as data set) [9]. Since one of the strengths of case-based rea-
soning (CBR) is to use it even with a smaller set of cases, we investigate the
possibilities of implementing CBR into the decision making process.

To consider the possibilities, we overview recent work which has been done
in the real-time strategy games area, followed by describing our ideas on micro-
and macromanagament agents, and ending with a conclusion including future
work.

2 Related Work

Vinyals et al. developed AlphaStar, an AI which combines ANN and RL espe-
cially during training [9]. The API on which the AI has been created contains an
observation object, which provides necessary information such as visible units,
buildings, and the environment in general. Using these observations and the
abilities of the owned units, the action state space can be transmitted via the
monitoring layer. The monitoring layer processes the received observations by
an artificial delay of 80ms and limiting the number of taken actions to approx.
22 per 5 seconds. This decision has been made to prevent the AI to gain an un-
fair advantage in contrast to the human player who is limited in the number of
physical actions per second. The professional player Dario ‘TLO’ Wünsch cred-
its AlphaStar to not be “superhuman”, resulting in an overall fair feeling when
playing against the AI [9]. In terms of learning components, the combination of
RL and supervised learning (SL), multiple instances of RL agents are spawned
by the SL layer, collect experiences, update the policy and value outputs. As a
baseline, replays of human games have been used to learn from their behaviours
and strategies and apply it to the current player.

Wender and Watson presented 2014 an approach to combine CBR with RL
specifically for the micromanagement problem [10, 11]. Two kinds of agents are
presented. One agent is observing the overall state of the game by creating so-
called influence maps. These are areas, in which the system can take influence
by executing actions such as attacking, building, or scouting to further increase
the influence. Any other agent represents one unit object of the game, such as a
marine soldier selected in Fig. 1. The casebase contains cases, which describe, for
example, actions based on the current influence, such as sending certain agents
to specific areas to increase the influence. These cases are not changed during the
execution of the program. However, using Q-learning in the RL component, the
solution of the most similar case may be adjusted to fit into the current situation.

Based on the perceived result after execution, the agent will be rewarded or
punished [10, 11].

3 On the granularity level of control

The goal is to defeat the enemy by destroying every building and unit. Depend-
ing on the experience of the opponent, especially against beginners, a rule-based
agent using only a set of few rules, such as building as soon as possible and
collectively attacking after x units have been trained, is sufficient to fulfill this
task. There are a few rules of thumb, which generally hold true and can easily
be followed by any rule-based agent, such as not being supply blocked (meaning
certain buildings have to be built before recruiting more units), using excess re-
sources to build further production buildings for faster recruiting, and gathering
combat units before heading towards the enemies base. This does not take the
complexity of the game into account, which has been slightly mentioned in the
introduction.

For the agent framework, we use the SEASALT of Kerstin Bach, which con-
sists of multiple different layers dealing with knowledge presentation, -provision,
-representation, -formalization and knowledge sources [1]. Fig. 2 shows the com-
plete architecture layout. As a brief overview, the “Shared Experience using a
Agent based System Architecture LayouT” uses one coordination agent who
controls n topic agents. Each of those agents, including the coordination agent,
contain a case factory, which in turn contains multiple agents for knowledge
maintenance and formalization. A collector agent gathers information from a
community of experts, for example, by using crawling technologies and extract-
ing textual information into knowledge representations. Other kinds of knowl-
edge representations are ontologies, taxonomies, similarity measures, constraints,
vocabularies, and rules. These can be accessed by any layer, while knowledge for-
malization and knowledge sources may also modify these.

For our application, we propose to instantiate a coordination agent, macro-
and micro agent and an explanation agent. The coordination agent inhabits
templates and a question handler in a knowledge map. One coordination agent
can control other agents, which contain an own case factory and casebase. The
casebase of these agents (including the coordination agent) are specially targeted
for their individual needs, especially in terms of defined similarity measurements
for the retrieval. For example, the micro agent might value the unit count for
tactical combat decision making higher than the macro agents for prioritizing
the reproduction of fallen units. To account for the complexity of the game and
to inhabit a learning component, the following models are possible:

Centralized CBR. By only using one methodology, there is no interference and
communication overhead between multiple agents to be expected, resulting in an
overall faster decision making process. However, it seems questionable whether
it is feasible to let each agent query the CBR system - and as such the casebase -
based on numerous triggering events. This may create the necessity to repeatedly

Fig. 2. SEASALT, a domain independent architecture for knowledge management us-
ing multiple agents

evaluate the current plan, especially in very information heavy situations such
as during fights between multiple armies.

Distributed problem solving. For distributed problem solving, a coordinator agent
can be used as a first-level support to handle increasing complexity limits, such
as during combat fights. The coordinator agent functions as the centralized CBR
system, which has been partially covered by Wender and Watson [10]. By com-
bining the information gathered by the micro- and macro agent, the coordinator
agent combines these with the general information of the observation object
(such as resources and visible areas) to create a new plan. A plan may consist
out of multiple sequences, analogous to the approach of Kolbe et al. used in
first-person shooter gaming scenarios [5].

Fig. 3. Instantiation of distributed problem solving using one macro agent, one micro
agent, and one coordination agent.

CBR and ANN in combination. As discussed above, Vinyals et al. used ANN
in combination with RL to train the agents with new strategies and planning
capabilities [9]. For providing explanations for an ANN system, Keane and Kenny
defined ANN-CBR twins. The combination of ANN and a CBR technique, which
mostly used k-NN in their case, provided better results than considering each
method separately [4]. The approach could be used analogously: CBR could
provide most similar cases to the current situations while ANN interprets these
and takes control over the game state and the overall game plan.

In Fig. 4, an explanation agent has been added to the knowledge provision
layer. This agent will receive information of the macro- and micro agent directly
whenever the agent queries those, in addition to the coordination agent. The co-
ordination agent in turn may provide the solution to the graphical user interface.
The explanation is targeted for the knowledge engineer to further understand
why certain actions has been taken. This is helpful to understand the learning
process of the micro- and macroagents and support further debugging of those,
allowing a more targeted way for knowledge maintenance to increase the learning
rate of the agents and to gain a more purposeful search through the casebases.
Since it can be assumed that the knowledge engineer inhabits knowledge over the
domain, providing a list with most similar cases and their features may serve as

an explanation by itself - using the inherent explainability of CBR. Otherwise,
for rather novice users, explanation patterns as introduced by R. Schank can
be used for explanations [8]. These patterns can be filled, for example, with the
rules that have been used, the applied similarity measures, the used vocabulary,
or adaptation rules that have been triggered. These are the components of the
knowledge containers as defined by Richter [7].

Fig. 4. Instantiation of distributed problem solving extended by adding an explanation
agent, which gathers information from the macro- and micro agent and communicates
with the coordination agent, transferring explanations to the graphical user interface.

Full multi-agent system. Each unit is treated as an own agent. However, these
agents need to willingly work together as a team to defeat the opponent. Typi-
cally, in a multi-agent system, each agent may interact with any other agent as
well as the coordinator agent who coordinates single agents to fulfill the over-
all goal (which may be split into separate lower level goals). The architecture is
analogous to SEASALT in Fig. 2. From a knowledge management perspective, it
may be interesting to evaluate on which granularity the level of control should be
settled. As stated before, each unit could be treated as an own agent. A typical
army usually consists out of 20-40 units, thus, leading to 20-40 agents in need
to communicate and coordinate with each other and the coordination agent.
Another possibility may be to designate one CBR agent to a specific unit type,
since usually an army only consists out of 2-4 different unit types. This would
decrease the level of communication needed drastically. However, experiences are
then also limited to a single agent.

4 Conclusion

Developing an artificial intelligence in real-time strategy fields provide multiple
challenges. However, there are also chances for increasing the efficiency by in-
cluding CBR. Here, we shared a few thoughts on the granularity level of control
by different approaches. With having positive and negative aspects, the ques-
tion remains open whether there is an overall “best” approach or whether a
hybrid architecture might be feasible as well. Regarding this question, another
important question is the granularity of the case structure in terms of choosing

attributes and how to model the local and global similarity without ending up in
overfitting problems. Based on the case structure, the case instances themselves
are another challenge on their own. For a given sequence of events, a starting
point and an end point has to be defined. Especially in terms of learning from
single fights, the start and the end of a fight has to be determined and saved
inside the case structure. Furthermore, the transferability of knowledge learned
by a single agent to another agent using the same (or parts of) casebase remains
to be an open research question, which may help to structure the casebases of a
single agent. These challenges may be considered in future work.

References

1. Bach, K.: Knowledge Acquisition for Case-Based Reasoning Systems. Ph.D. thesis,
University of Hildesheim (2013), http://www.dr.hut-verlag.de/978-3-8439-1357-
7.html

2. Cadena, P., Garrido, L.: Fuzzy case-based reasoning for managing strategic and
tactical reasoning in starcraft. In: Batyrshin, I., Sidorov, G. (eds.) Advances in
Artificial Intelligence. p. 113–124. Springer Berlin Heidelberg (2011)

3. Earnings, E.: StarCraft II Top Players & Prize Pools - Esports Tracker :: Es-
ports Earnings (2020), https://www.esportsearnings.com/games/151-starcraft-ii,
last validation: 06/14/2020

4. Keane, M.T., Kenny, E.M.: How case-based reasoning explains neural networks: A
theoretical analysis of XAI using post-hoc explanation-by-example from a survey
of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) Case-Based Reasoning
Research and Development - 27th International Conference, ICCBR 2019, Otzen-
hausen, Germany, September 8-12, 2019, Proceedings. Lecture Notes in Computer
Science, vol. 11680, pp. 155–171. Springer (2019)

5. Kolbe, M., Reuss, P., Schoenborn, J.M., Althoff, K.D.: Conceptualization and im-
plementation of a reinforcement learning approach using a case-based reasoning
agent in a FPS scenario. In: LWDA 2019, Workshop on Knowledge Management,
Berlin (2019)

6. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

7. Richter, M.M.: Fallbasiertes Schließen. Görz, Günther; Rollinger, Claus-Rainer;
Schneeberger, Josef (Hrsg.): Handbuch der Künstlichen Intelligenz 4, 407–430
(2003)

8. Schank, R.C.: Explanation Patterns: Understanding Mechanical and Creatively. L.
Erlbaum Associates Inc., USA (1986)

9. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-
agent reinforcement learning. Nature 575(7782), 350–354 (2019).
https://doi.org/10.1038/s41586-019-1724-z

10. Wender, S., Watson, I.: Combining case-based reasoning and reinforcement learn-
ing for unit navigation in real-time strategy game AI. In: Lamontagne, L., Plaza,
E. (eds.) Case-Based Reasoning Research and Development. p. 511–525. Springer
International Publishing (2014)

11. Wender, S., Watson, I.: Integrating case-based reasoning with reinforcement learn-
ing for real-time strategy game micromanagement. In: Pham, D.N., Park, S.B.
(eds.) PRICAI 2014: Trends in Artificial Intelligence. p. 64–76. Springer Interna-
tional Publishing (2014)

