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ABSTRACT
Nowadays, many wearable devices such as smartwatches exist that
can be used to track and analyze sports activities. Generally, these
devices are equipped with high-resolution screens, but most appli-
cations provide only textual status information as real-time visual
feedback during the respective activities. This limited amount of
information is particularly the case for running, which is among
the most frequently tracked sports activities with wearable devices.
So far, only a few products and prototypes provide assistance and
feedback related to running technique and efficiency, but also pre-
dominantly by means of textual data representations.

This work investigates visualization approaches on the smart-
watch for real-time feedback. We conducted two user studies in
order to evaluate the feasibility and user acceptance of visualiza-
tions for running-technique training that assists the runner in im-
plementing a forefoot running style. Despite frequent glances at
the smartwatch, the results confirm that a runner’s performance
is not impaired in comparison to traditional training. Further, the
results indicate that runners benefit from the visualizations in vari-
ous ways: They feel more motivated and supported, improve their
self-assessment, and have the certainty that they perform the new
technique correctly. Most participants also took a very positive
view on the intuitiveness of the visualizations.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods; Mobile devices; Empiri-
cal studies in ubiquitous and mobile computing; Information visual-
ization.
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1 INTRODUCTION
Running is the most popular outdoor activity by participation rate
and by frequency of participation in the US since 2010 [91]. How-
ever, long-distance running generally causes a high incidence of
repetitive stress injuries per year. Studies report that among dis-
tance runners the knee is the body part that is most affected by
injuries [80, 95]. One of the reasons for the high knee injury rate is
that up to 95% of runners land on their heel and that a runner’s foot-
fall pattern, which is defined by the part of the foot which strikes the
ground first, plays a central role in lower extremity mechanics [21].
In general, foot strike patterns are classified into rear-, mid-, and
forefoot striking, whereas the implications of midfoot striking are
similar to forefoot striking and are subsumed in the following. The
amount of running-related research in sports and health sciences
is declining [50], but has not yet clearly answered the question
about which of both foot striking styles is better from economical
and injury prevention viewpoints. Concluding the two opposing
standpoints on the optimal footfall pattern [21, 40], both agree that
a forefoot striking pattern is associated with higher demands on
the foot, ankle, and Achilles tendon, and that a rearfoot striking
pattern exposes a greater demand on the knee. Current literature
reviews also state that the lack of longitudinal and prospective
studies with large sample sizes impedes a reliable statement on the
risk of injuries depending on the foot strike type (FST) [21, 40, 68].
However, a retrospective study indicates that habitually forefoot
strikers suffer from less injuries compared to rearfoot strikers [20].
Most recently, Chan et al. [14] published a prospective study with
320 novice runners that indicates 62% less running-related injuries
in the foorefoot striking group. Despite controversial opinions in
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health and sport science on the benefits of transitioning from a rear-
foot to a forefoot striking style, we decided to visualize a runner’s
FST in order to explore the user acceptance and utility of real-time
visualizations on smartwatches during sports activities.

Technology-supported running is dominated by performance-
oriented metrics [46], such as elapsed time, traveled distance, and
pace. Currently, new wearable assistive technologies are introduced
that give an insight on the runner’s technique and can therefore
contribute to improve the running economy and reduce injury
risks [4, 57]. In general, concurrent visual motor feedback has
proven to be a useful tool to learn complex tasks [85], such as
gait retraining [1] which is expected to benefit from the emerg-
ing wearable technologies [69, 88]. Our approach complements
studies that use more invasive modalities, e.g., electrical muscle
stimulation (EMS), to assist runners in adopting a forefoot running
technique [41]. This work proposes and evaluates a novel real-time
visualization for smartwatches that assists runners in learning a
new running technique. It combines and addresses several emerging
or under-explored research topics:

• Real-time visualizations on smartwatches for sport activi-
ties are sparse and studies investigating smartwatch-based
visualizations during exertion are missing [2, 9].

• Technique measurements and assistance is an emerging cat-
egory for sport wearables [46].

• User acceptance and efficacy for self-serviced visual mo-
tor feedback beyond textual data representations on smart-
watches is unknown.

2 RELATEDWORK
2.1 HCI and Sports
Recent trends in mobile and wearable technology are particularly
encouraging an increased research interest within the field of human-
computer interaction (HCI) on designing interactive technologies
for performing physical activities with a special focus on running.
From a holistic point of view, Mueller et al. [63] provide a number
of guidelines for the process of designing mobile running applica-
tions and highlight that individual phases of a run, e.g., preparation,
jogging before and while fatigue, and cool down, are important and
deserve explicit consideration as basis for a successful experience.
Moreover, Woźniak et al. [102] promote the design of solutions for
a broader scope that also include the runner’s social environment
and support communities for ambitious athletes.

Summarizing previous research and released products, Jensen
and Mueller [46] conclude that there is a lack of assistive running
technologies that support running technique improvements. In
order to foster developments that address this shortage and fur-
ther the field of research, special events [58–60] and tutorials [19]
are organized on a regular basis. In addition to this clear call for
novel approaches that assist runners in improving their running
technique, Amini et al. [2] identified that users demand real-time
visual feedback on smartwatches during fitness activities opposed
to the widely implemented post-hoc analysis of fitness data with
the help of smartphone devices. RunMerge [48] is a recent example
that demonstrates and evaluates how to present complex running
technique-related measurements after the workout.

2.2 Real-Time Feedback
In the following, ubiquitous running technology with a focus on
real-time feedback is discussed. Since running technology does not
exclusively rely on visual feedback, other modalities are briefly
mentioned first.

Auditory feedback has been proven as an effective feedback
modality for running by using music [22, 72], telephone calls be-
tween remote running partners [62, 64, 65, 71], and rhythmic pulse
beats [5, 26].

Haptic sensation was also explored as a feedback channel for
improving the arm movement [89], the breathing technique [94],
and EMS feedback for learning forefoot running without instruc-
tions [41]. Based on the results by Hassan et al. [41], we decided to
rely on the same task of transitioning a runner’s FST in order to
evaluate and investigate visual real-time feedback on smartwatches.
Our approach can be regarded as less invasive and more versatile
for regular use since it does not require EMS electrodes.

Visual feedback for running has been studied as well. Triple-
Beat [22] is the successor of the MPTrain system [72]. In addition
to the music feedback, it features virtual competition with other
runners and a novel glanceable user interface (UI) presented with a
mobile phone. The glanceable UI allows to quickly obtain perfor-
mance metrics including recommendations on how to improve the
performance. By conducting a user study the authors highlight the
utility and the unobtrusiveness of self-serviced visual feedback. The
Runalyser system [100] is an early example for real-time capturing
of numerous technique-related running metrics during a race. In
contrast to most other systems, all recorded measures were dis-
played on a large TV screen and thus were not primarily intended
for the instrumented runner during the race but the audience. The
RunRight system [70] was designed to experience feedback on body
movement while running and in other sport settings. Vertical and
horizontal acceleration data was displayed on a smartphone by
mapping each sensor reading to a glyph on a two-dimensional
coordinate system. Seuter et al. [83] showed real-time feedback
from inertial measurement units (IMUs) attached to a user’s legs as
simplified animated 3D bone-models on the user’s smartphone and
smartglasses in order to foster the body awareness. They conducted
a small qualitative user study to assess the prototype’s acceptance
and feasibility. Participants also reported the unhandiness of the
smartphone as mobile display and criticized the small display of
the smartglasses. In another quantitative study Seuter et al. [84]
attested that a smartwatch is better suited for interactions while
running compared to a smartphone and smartglasses. JoggAR [90]
followed an experience-first approach and transforms jogging with
smartglasses to an exertion game in order to increase the enjoyment
during workouts. The authors presented the augmented reality (AR)
visuals on demand and provided audio feedback to limit the user’s
distraction from the real environment. Recently, Hamada et al. [39]
also experimentedwith a see-through head-mounted display (HMD)
to implement a virtual runner that acts like a pacemaker. The virtual
runner was rendered transparent and solely visualized by its shoes
and hands to minimize visibility restrictions of the real world for the
user. Pacemakers were also implemented and investigated with real
devices, such as quadcopters [36, 61] and driving robots [92] that
escort the athlete. Tominaga et al. [92] attached a camera and screen
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to their robot that enabled video-mirroring and guidance of the
user’s movements in real-time for improved body self-monitoring.
Ambient displays with LED strips mounted on shoes [17] and mini-
malistic dynamic textile patterns [30] were investigated to encode
running data.

2.3 Glanceable Feedback and Visualization
Visual stimuli that are particularly intended to be perceived with
a quick glance interface with research efforts in HCI, information
visualization, and communication design. In the following, we in-
troduce the concept of glanceable visualization in general. We then
briefly discuss visualization research that focuses on small graphical
data representations and particularly discuss small-scale visualiza-
tions on smartwatches.

Matthews et al. [55] define glanceable in the context of peripheral
displays on computer screens as “quick and easy visual information
uptake, which is equivalent to Mullet’s immediacy principle for
design [66]”. This principle of “perceptual immediacy” states that
“simple designs ... can be immediately recognized and understood
wit a minimum of conscious effort” and “can be perceived during
the span of a single glance” [66]. Matthews [54] further reviews
and analyzes which concepts and theories, including attention and
gestalt theory, lead to glanceable visuals. She proposes guidelines
for effective glanceable displays based on abstraction techniques,
design variables, and design characteristics. Additionally, the design
implications are evaluated with regard to their cognitive demands
and distractions from primary tasks in multitasking environments
for learned and unlearned sets of stimuli. The visual stimuli are
defined as renditions that also include textual data representations.
The shorter the duration of a glance and peripheral vision time is,
the better is the glanceability of a rendition. It was shown that rendi-
tions that feature high-symbolism or text improve the glanceability
for unlearned conditions, but simpler and abstract renditions are
better than text or renditions with higher symbolism when learned.

In general, definitions of glanceable feedback include visual stim-
uli designed for quick glances with limited attention and minimal
interruptions from primary activities, but also ambient peripheral
vision with almost unconscious perception. Implementations cover
a wide spectrum that ranges from stationary physical sculptures
that change their shape [44, 53], ambient installations that change
the lighting environment [38, 53, 56], or large public screens [10] to
personal wearables with few LEDs [25, 47] or small high-resolution
screens [2, 23, 35]. Measured by the implementations’ physical size
and degree of mobility, guidance [16] and notifications [55] on
desktop screens, tablet-based dashboards [24], and phone-based
solutions [18, 22, 82] fall in between. Other important aspects that
vary between glanceable feedback applications are the purpose,
the targeted audience, privacy considerations by personalizing de-
vices and abstracting the feedback, and the physical and perceived
screen resolution. The latter defines the amount of information
that can be encoded for a single glance. Today’s smartwatches with
high-resolution screens provide a fair foundation for rich glances
with high information throughput. Pascoe and Thomson [74] em-
phasized early the importance of glanceability for smartwatches.
The glanceable nature of smartwatches becomes evident when
considering use cases that allow to replace smartphones [52].

2.3.1 Small-Scale Visualizations. Blascheck et al. [9] recently re-
viewed small-scale visualization techniques in the context of glance-
able visualizations on smartwatches and identified visualization
research that previously addressed related issues. Data glyphs, word-
sized graphics, and micro visualizations fall in this category.

Historically, research on data glyphs is the oldest field of research
that considers small-scale visualization problems at its foundation.
“Data glyphs are data-driven visual entities which make use of
different visual channels to encode multiple attribute dimensions.
They can be independently spatially arranged ...[,] vary in size”
and they “are individual representations of multi-dimensional data
points, often meant to be shown in small-multiple settings” [28].
In the course of the last 60 years, a multitude of glyph designs,
data mappings, and placement strategies [96, 97] were proposed
optimized for a variety of application domains, such as medical vi-
sualization [78, 79], flow visualization [49, 75, 77], and visualization
of scientific three-dimensional fields in general [51]. Since docu-
mented and imaginable data encodings from data dimensions to
visual glyph parameters seem to be countless [67], there are many
surveys to guide researchers and practitioners. Recently, Borgo
et al. [11] surveyed the comprehensive spectrum of glyph-based
visualization approaches and included relevant fundamental con-
cepts and theories from semiotics, perception, and cognition in the
scope of their report. Most recently, Fuchs et al. [28] systematically
reviewed empirical studies evaluating glyph designs and they did
not encounter any study that investigated the effect of viewing time
or display size in relation to glyph designs. Glyphs are generally
not constrained in display size, but in practice, they are often assem-
bled in large sets of many instances that are small in size [29]. Data
glyphs can be regarded as a special case of the much younger and
broader definition of word-sized graphics or micro visualizations,
which renders small-scale visualizations applicable in any context
and without restrictions. Glyph design guidelines often recommend
to incorporate only limited auxiliary structures, e.g., labels, data
axes, grid lines, or legends or to forego auxiliary structures [9].

Tufte [93] was the first to propose the concept of “small, high-
resolution graphics usually embedded in a full context of words,
numbers, [or] images”. He named his approach “sparklines [which]
are datawords: data-intense, design-simple, word-sized graphics”.
With sparklines being embedded in text he compared them with ty-
pography, which also contains iconic but non-data-driven graphics,
such as emoticons. As diverse as the visual variety of typography,
which also follows strict typographic rules, are similar definitions of
data-driven word-scale or word-sized visualizations [8, 31–33] that
can be summarized under the term micro visualizations [12, 34, 73].
Micro visualizations target explicitly small to medium-sized dis-
playable areas but are also often designed for embeddings in larger
layout ensembles. Further concrete examples for micro visualiza-
tions are: horizon graphs [81] that were evaluated and compared
to line charts [42, 45], scented widgets [101], separation plots [37],
gestaltlines [13], sportlines [76], and word-sized eye-tracking vi-
sualizations [6, 7]. Brandes [12] discussed in the context of visual
analytics potential benefits of properly designed high-resolution
micro visualizations that could facilitate seamless micro and macro
readings. Macro readings are referred to as quick glances at a vi-
sualization that provides an overview to the recipient and micro
readings reveal more detailed information at longer reading times
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but without “context discontinuities due to zooming” or other re-
quired interaction techniques.

In conclusion, glyph and micro visualization literature provides
valuable information on designing effective small-scale visualiza-
tions but does not explicitly consider small physical wearable dis-
plays. So far, there are also no comprehensive and systematic guides
that help to transfer the wealth of established visualizations tar-
geted at desktop-grade display sizes to much smaller screens [9],
such as wrist-worn displays. Other effects on perception of visu-
alizations, e.g., the relation of color and the size of colored visual
elements, have not yet conclusively been studied [87].

2.3.2 Visualizations on Smartwatches. Gouveia et al. [35] designed
a variety of watch faces that visualize and highlight the user’s
physical activity levels. They further evaluated a subset of their
designs in a user study in order to facilitate the understanding of
how different forms of glanceable behavioral feedback influence
the user’s physical activity and engagement. They conclude that
providing glanceable activity data strongly encourages users to be
more active but effects of long-term use are not yet studied. Amini
et al. [2] explored the design space of visual data representations
for real-time exploration of performance-oriented fitness data on
smartwatches. They clearly targeted a use case most similar to ours
but did not consider technique-oriented feedback as we do and they
did not evaluate their design proposals in a user study.

Apart from research that explicitly focuses on visualizing activity
and health data on smartwatches, Chen [15] presented a visualiza-
tion application tailored for smartwatches that allows interactive
exploration of time-series data, but considers longer lasting inter-
action sequences beyond quick glances which does not favor con-
current primary tasks with physical exertion, e.g., running. Horak
et al. [43] investigated how smartwatches can be used to support
large scale visualizations on display walls with small personalized
visualizations on the wrist related to specific data points on the
immersive display setup. Similar to Chen [15], they targeted in-
teraction sequences longer than short glances. Blascheck et al. [9]
conducted extensive user studies in order to determine perceptual
thresholds for the data comparison performance with bar charts,
donut charts, and radial bar charts on smartwatches. They also
varied the visual complexity in their experiments by visualizing
different amounts of data values with the chosen chart types at con-
stant physical display resolution and dimension of a smartwatch.
Participants performed the data comparison task equally well for
bar and donut charts when random data was tested. Radial bar
charts performed significantly worse, especially when many data
values were displayed at once.

3 PROTOTYPE
The objective of our wearable running assistance system for footfall
technique training is identical to the prototype designed by Hassan
et al. [41], but we are interested in exploring a different and less
invasive feedback modality by employing visual feedback on a
smartwatch instead of applying EMS feedback on the runner’s calf
muscles. The final prototype is shown in Figure 1.

Our solution for foot strike assistance consists of three main
hardware parts: (1) Shoe insoles made of thin plastic sheets for the
left and right foot. Each insole has installed three 0.5" force sensitive

resistors (FSRs) at anatomical landmarks of the foot to detect if the
foot touches the ground first with the heel or forefoot. (2) Control
units are mounted on the laces of the running shoes and are wired
to the insoles. They measure the voltage drop across the FSRs. Per
foot, all three raw FSR sensor values are transmitted via Bluetooth
at ∼100 Hz to a connected client device. (3) A 42 mm Apple Watch
Series 3 is connected to both micro controllers and receives the sen-
sor data of both feet in real-time. Parallel to analyzing the runner’s
gait cycle, the computed data is visualized on demand for the user.

Since the hardware design of our smart insole is based on the
FootStriker system [41], our foot strike detection algorithm follows
also their proposed method. We verified our implementation in
a short pilot study. Slow-motion video captures of short running
sessions with varying FSTs confirmed an excellent FST recognition
rate of approximately 100% as reported by Hassan et al. [41].

3.1 Visualization
For demonstration purposes [19, 98, 99] of the FootStriker wear-
able [41], the authors created a visualization designed for smart-
phones and intended for the audience. They defined the current heel
strike rate (HSR) as the percentage of heel strikes in relation to the
amount of strides over the last eight footsteps and visualized this
value (y-axis) with a line plot over a period of the last 40 strides (x-
axis). This graph essentially showed the binary FST, heel or forefoot
strike, over time convoluted with a linear filter kernel. This method
of data processing facilitates to assess the trend of the runner’s foot
striking technique but inhibits quick and glanceable feedback on
the very recent foot strikes.

Providing clear and legible real-time feedback with low latency is
important for a system intended for concurrent motor feedback [85].
Translating the line plot of the FST to a smartwatch screen resulted
in suboptimal visualizations with low ratings of participants in early
design studies. This was especially the case when emphasizing the
legibility of individual steps by reducing the size of the filter kernel
which ultimately led to potentially high oscillations of the line chart
between the two extremes of the current HSR. Experimenting with
other established chart types, such as area charts, did not yield
satisfactory results but led in dialog with pilot testers of our system
to the following user-centered design approach.

We propose a visualization that mimics the runner’s real world
environment and is designed to facilitate an intuitive translation
of performed strides to visualized strides. Instead of following the
conventional approach of mapping the time-related quantity on
the x-axis of a chart-based data visualization, dedicating the y-axis
to encode the time dimension exhibits a more appropriate mapping
in our application context. The rationale behind this decision is
that a runner who raises his arm in front of him to consult the
visualization on a smartwatch display should get the impression
of looking at his distance travelled. In order to achieve this effect
we represent the distance travelled with a trace of footprints. Each
footstep is visualized as a colored rectangle that appears at the top
of the screen at the very moment the runner’s foot touches the
ground and moves after its appearance with constant speed to the
bottom of the screen. The screen is divided in two halves. Footprints
resulting from strides performed with the left foot are visualized on
the left half of the screen and strides corresponding to the right foot



A Study on Real-Time Visualizations During Sports Activities on Smartwatches MUM 2020, November 22–25, 2020, Essen, Germany

Figure 1: Force sensitive insoles with control units (left), its circuit design (middle), and instrumented running shoes (right).

(a) Graphical feed-
back with short
time interval (5 s).

(b) Graphical feed-
back with long time
interval (90 s).

(c) Textual feedback
based on short time
interval (5 s).

Figure 2: Animated graphical (a, b) and textual (c) real-time
feedback visualizations. The screen is divided in two halves
for the left and right foot. In Figure (a) and (b) red bars en-
code heel strikes and white bars encode forefoot strikes. Fig-
ure (c) displays the current forefoot strike rate.

are visualized accordingly on the right half. The animation speed
and the height of the rectangles is defined by the time interval
that is being visualized. Visualizing a short history of performed
strides results in thick rectangles moving fast from top to bottom
and displaying a longer trend results in thin and slowly moving
bars. The base color of each stride encodes the captured FST. Since
it is our objective to assist the runner in learning forefoot striking,
red colored strides signal heel strikes that should be avoided and
strides drawn in white represent successful forefoot strikes. Figure 2
depicts examples of our graphical visualization described above for
two different time intervals and also shows a textual feedback screen
that resembles current state of the art approaches to communicate
running-related parameters.

In a small pre-study with three participants we explored an
appropriate range of values for the visualized time interval by
varying its length between the two extremes from displaying just a
single stride on the whole screen of the smartwatch to displaying
as many strides as possible. We limited this upper bound by the
screen’s native resolution with the result that a bar representing a
stride can be drawn just as thin as a single line of pixels. The latter
variant is demonstrated in Figure 2b. In the experiments, we assured
that participants can still spot individual strides when the FST is
altered. Interviews revealed that the visualization with the minimal
time interval containing just the current stride exposed too little
feedback for a smartwatch-based feedback method that is queried

on demand. A covered time interval of five seconds as shown in
Figure 2a was identified as the ideal lower bound that offers just
enough information content and creates the impression of looking
at the distance travelled. The maximum interval of 90 seconds
was reported as useful to answer two questions. First, “How am
I currently performing?” and second, “How did I perform over a
longer period of time?”.

In the following experiments we decided to investigate the effect
of the time interval parameter of our proposed visualization and the
effectiveness of concurrent self-serviced visual feedback in general
for learning forefoot running. Given the space constraints on a
smartwatch display, the abstract, minimalistic, and compact design
of our footprint visualization allows us to scale the time interval in
a large range to maximize the effect of this parameter. Other design
objectives might involve a more playful visualization of footprints
that feature higher symbolism or a more iconic appearance closer
to a stereotypical symbol of a footprint in order to represent a stride.
We also envision to encode parameters in footprint glyphs other
than the FST.

4 EXPERIMENT I
It was our goal to evaluate the utility of visual feedback for transi-
tioning the running technique towards forefoot striking. The second
objective was to evaluate the impact of the length of the visualized
time interval on the usage of our proposed visualization design.

4.1 Hypotheses
For this experiment we defined the following research hypotheses:

H1 Learning forefoot running with self-serviced visual feed-
back yields better results than without visual feedback.

H2 Feedback that visualizes a long time interval is consulted
less often than a visualization that covers a shorter interval.

4.2 Study Design and Task
We adopted the overall study design of the FootStriker experi-
ment [41] with a total running distance of five kilometers which
are split in three blocks with breaks in between.

1st Block (1 km) is meant for warm-up, for identifying the
runner’s target pace, and for measuring the runner’s baseline
running technique which allows us to exclude participants
from the study that already pursue a forefoot running style.
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2nd Block (3 km) is the actual workout with the defined goal
of implementing a forefoot running technique. Depending on
the participant’s assignment to the different groups, runners
receive different forms of assistive feedback.

3rd Block (1 km) is a short terminal run without any feed-
back for assessing the learning effect of the conditions.

Our study followed a between-subjects design with the feedback
method being the independent variable and the measured HSR as
the dependent variable for comparing running technique improve-
ments. For the evaluation of the visualization’s glanceability, the
number of glances is the dependent variable.

4.3 Conditions
Participants were assigned to one of the following three experi-
ment conditions that involved different levels and forms of feedback.
All three groups were based on the classical coaching condition
described by Hassan et al. [41] that was reported to exhibit poor run-
ning technique improvements. In contrast to invasive EMS feedback
that can be applied without instructing the participants [41], our
feedback methods require some instructions to create awareness
and context for the purpose of our visualization.

Every condition received traditional forefoot running coaching
implemented as follows. Each participant’s habitual footfall pattern
was captured with slow-motion video recordings at 240 Hz during
the first running block of the experiment. During the break after
the first block participant’s were shown their slow-motion video
recordings on a large 55" TV screen and their foot strike technique
was highlighted and discussed. Proper forefoot striking was demon-
strated to the participants by showing slow-motion videos of a
professional runner that underlined the differences in execution.
Finally, participants were verbally instructed on how to implement
forefoot running by avoiding over-striding and by paying attention
to their body posture.

Since it was our main objective to evaluate the utility of self-
serviced visual feedback on smartwatches, we chose to equip all
participants across all conditions with a smartwatch during the
second and third block of the experiment in order to match the
conditions as much as possible for measuring the impact of our
visualization and excluding the effect of wearing a smartwatch.
We configured the smartwatch for all conditions to signal the user
each kilometer they ran as it is typically done by most running
applications. This notificationwas implemented by playing a default
auditive and haptic alert but without providing any special visual
information since we reserved this modality for feedback on the
FST for groups two and three which are defined in the following.

Group 1: Classical Coaching Only Subjects received tradi-
tional coaching merely as described above. The only con-
ceptual difference between this group and the control group
reported by Hassan et al. [41] is the addition of our notifica-
tions for every completed kilometer in block two.

Group 2: Visualization (5 s) In addition to classical coaching
terminal to the first block and the running distance notifi-
cations introduced for group one, subjects were enabled to
evaluate their running technique during the second block
on demand by consulting the visualization of their footfall
pattern over a short five-second time interval (Figure 2a).

Group 3: Visualization (90 s) This group only differed from
group two with respect to the length of the visualized time
interval which was set to 90 seconds (Figure 2b).

4.4 Participants
We recruited in total 37 volunteers through social media channels,
word of mouth, and poster advertisements on the university cam-
pus. Inclusion criteria were that participants are required to be
recreational or amateur runners that are capable to complete a
five-kilometer run in 20 to 35 minutes and that participants are not
forefoot strikers.

Two participants were excluded after the first running block
because they exhibited already a forefoot running style for their
target pace. One participant felt very uncomfortable and cancelled
the experiment during the second block. Furthermore, four tri-
als were excluded because of wrong and missing FST detections.
Finally, a group of 30 participants (19 male and 11 female) was
included in this study. Participants were compensated with sweets
and a voluntary participation in a lottery of two 25 Euro gift
cards. The included participants reported their age between 22
and 49 years (M = 29.7, SD = 5.5), their weight between 54 and
98 kg (M = 77.1, SD = 10.4), and their body height between 163
and 196 cm (M = 179.5, SD = 9.2). Participants with visual im-
pairment were asked to use their habitual vision aid during the
experiment so that they can clearly read a wrist watch.

4.5 Procedure
Participants were welcomed, presented a written description of
the experiment, and asked to sign an informed consent. While
the participant’s running shoes were instrumented with the FST-
sensing prototype, the participants filled out an initial demographic
questionnaire. The participants were instructed to complete the
first running block with their habitual running technique and to
select their competitive running speed based on their daily shape
that would allow them to run five kilometers without decreasing
their speed. After the first block, all participants underwent the
classical forefoot running coaching procedure. Subsequently, all
runners were equipped with the smartwatch and familiarized with
the notification for completing a kilometer by providing an exam-
ple alert. For participants in the control group, the display of the
smartwatch did not show anything. Participants assigned to groups
two or three received a short three-minute training session with
their corresponding five-second or 90-second time interval visu-
alization and they were introduced to the general handling of the
smartwatch which included how to activate the display by raising
the arm. Thereafter, the second running block was carried out ac-
cording to the different conditions with each participant’s target
pace identified in the first block. After the second running block, all
participants were asked to complete an intermediate questionnaire
about their running experience regarding their task completion and
their perceived influence of the kilometer-based notifications on
the task of implementing a forefoot running style. Groups two and
three were further asked to judge the quality and the utility of the
provided visualization. Finally, the third running block was con-
ducted without any feedback for all three groups. After completing
the last running block, participants filled out a final questionnaire
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identical to all conditions and identical to the intermediate question-
naire not related to the notifications or the visualization in order to
quantify changes in the running experience. The whole procedure
took between 60 and 90 minutes.

4.6 Apparatus
We conducted the experiment in a laboratory on a consumer-level
treadmill which allowed us to conveniently record the whole proce-
dure on video and to maintain controlled experimental conditions.

All displays of the treadmill except the display of the current
running speed were covered with a piece of cardboard to minimize
distractions for the runner. From the beginning of the experiment,
participants were equipped with the smart insole and after the
classical coaching session they were equipped with the smartwatch.
The raw data from the force sensors and the derived foot strikes
were recorded on the smartwatch during the whole experiment. We
captured a closeup of the participants’ foot strike pattern in slow-
motion which served as a basis for the classical coaching session
after the first block and for post-hoc verification of the detected foot
strikes. Glances were automatically detected by logging all display
activations and deactivations of the smartwatch in our visualization
application. Additionally, the participants’ interactions with the
smartwatch were recorded on video to validate the automatically
identified glances.

4.7 Results
We evaluated the effectiveness of our proposed feedback method by
analyzing the objective measurements of the FST and the glances.

Unless otherwise noted all hypothesis tests were computed with
a significance level α of 0.05, the Shapiro-Wilk test was applied to
assess if the data could be assumed to be normally distributed, and
the homogeneity of variances was asserted by Levene’s test.

4.7.1 Effect of Feedback on the Heel Strike Rate. The effect of the
feedback method (independent variable) was assessed by the vari-
ations of each participant’s FST over time measured by means of
the HSRs (dependent variable).

Each participant’s average HSRs for the first, second, and third
running block are summarized in Figure 3. The HSR was normally
distributed for all conditions in the first block (p > 0.06), but not
for the remaining majority of cases (p < 0.01). The same applies
to the assessment of the homogeneity of variances. Only the first
running block exhibits equal variances (p = 0.31) and the variances
of the other variables could not be assumed to be equal (p < 0.001).
We applied the nonparametric Kruskal-Wallis test for independent
samples to our data for all blocks. In addition to the medians (Mdns),
the corresponding means (Ms) and standard deviations (SDs) are
provided in the following evaluation to describe the data.

Very high HSRs with minimal deviations could be observed
in the first running block across all participants and conditions
(Mdn = 96.38, M = 96.31, SD = 2.49). For this first block, which
assesses the runners’ habitual running technique, there was no
statistically significant difference in the HSRs for the three different
feedback conditions, χ2(2) = 1.24, p = 0.54.

During the second running block, participants were asked to
avoid heel strikes. They were assisted in implementing a forefoot
running style by different types of feedback. A statistical significant
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Figure 3: Box plots (orange line: median, green dashed line:
mean) of the heel strike rates for groups (G) one to three.

effect of the feedback type on the HSR could be observed for the
three feedback groups, χ2(2) = 7.35, p = 0.03. Dunn-Bonferroni
post-hoc tests revealed that group one (Mdn = 6.99, M = 29.87,
SD = 42.45) and three (Mdn = 0.34, M = 0.92, SD = 1.50) differed
significantly (z = 2.52, p = 0.04) with a large effect size (Cohen’s
r = 0.56) [27]. There were no statistical differences for the other
two pairwise comparisons, neither between group two (Mdn = 2.76,
M = 5.60, SD = 8.42) and three (p = 0.10), nor between group one
and two (p = 1.00). Compared to the study conducted by Has-
san et al. [41] our participants across all conditions (Mdn = 1.04,
M = 12.13, SD = 27.36) exhibited a notably low HSR. Even our
control group, that differed conceptually only slightly from their
condition, performed surprisingly well. Just three out of ten partic-
ipants (P0, P6, P33) assigned to our control group showed a poor
performance similar to the value range reported by Hassan et al.
[41]. The others competed with the participants assisted with vi-
sual feedback methods. Nevertheless, the results suggest that the
condition with self-serviced visual feedback based on a long visual-
ized time interval significantly outperformed the condition without
concurrent visual feedback.

The third running block was conducted without feedback for
all conditions and was meant to assess the learning effect. The
HSRs differed significantly between the conditions, χ2(2) = 9.56,
p = 0.01. Post-hoc Dunn-Bonferroni tests showed also for this
block a large significant effect (z = 2.90, p = 0.01, r = 0.65) for the
pairwise comparison among group one (Mdn = 4.44, M = 30.96,
SD = 44.04) and three (Mdn = 0.00, M = 3.87, SD = 8.74). Group
two (Mdn = 0.19, M = 3.61, SD = 8.32) was not significantly dif-
ferent from group one (p = 0.05) and three (p = 1.00). These results
suggest that only the visual feedback method that provides a visual-
ization for the long time interval has a significant stronger learning
effect on the HSR compared to the condition without concurrent
visual feedback.

4.7.2 Effect of Feedback on the Glances. The effect of the self-
serviced visual feedback method (independent variable) on the
runner’s glancing behavior was measured by the absolute number
of glances (dependent variable).

Each automatically logged glance was manually verified and
reviewed with synchronized video recordings showing the user’s
interaction sequences. On average, 11.47% of glances across all
participants, assigned to either of the two visual feedback groups
two or three, were removed due to unintended display activations
without glances from the user at the smartwatch. These wrong de-
tections, especially for participants with more than 30% of removed
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glances (P15, P31, P26), typically resulted from wiping away sweat
or hair from the forehead with the arm wearing the smartwatch.

The data was normally distributed for both conditions (p > 0.06)
but the homogeneity of variances could not be assumed to be
equal (p = 0.01). We did not resort to a nonparametric test and
conducted an unpaired t-Test. The total number of glances between
group two (M = 26.10, SD = 10.31) and group three (M = 32.50,
SD = 20.82) did not statistically differ, t(13.16) = −0.87, p = 0.40.

4.8 Discussion
The results lead to the conclusion that runners with self-serviced vi-
sual feedback are generally not more successful at learning forefoot
running than runners without visual feedback. Only those runners
with visual feedback with a long visualization interval performed
significantly better than the comparative group one with classi-
cal coaching. Results of the second condition with a visualization
based on a short interval did not significantly differ from the other
two conditions. These quantitive results suggest to reject the first
hypothesis (H1) because it could not be statistically shown that
both conditions with visual feedback outperformed the classical
coaching condition.

Furthermore, no statistically meaningful differences in the glanc-
ing behavior of the two extreme cases of our proposed visualization
method could be observed. The glancing behavior of condition two
with a short visualized time interval did not statistically differ from
condition three with a long visualized interval. Thus, the second
hypothesis (H2) was also rejected.

As a result of the experiment, it can be stated from an objec-
tive standpoint that recreational and amateur runners are able to
perform and learn forefoot running without explicit assistive con-
current feedback. The majority of all participants achieved average
HSRs clearly below 15%. These results are considerably different
from the work by Hassan et al. [41]. The main difference between
our and their control group was the notification on the smartwatch
after every kilometer of running.

Results from the questionnaires conducted after the runs indicate
that the visualizations were more useful to perform the forefoot
running than the notifications. This is not surprising since both
features, the notifications and the visualizations, were introduced to
the participants for two distinct purposes of estimating the workout
progress and for self-serviced forefoot running assistance. How-
ever, the participants’ responses suggest that the mere notifications
might have had a strong influence on the success rate of the partic-
ipants since the notifications were used as a tool to stay focused
on the primary task of forefoot running. Habitually, heel striking
runners who try to implement a forefoot running style need to pay
special attention to the forefoot running technique.

The subjective results of this experiment indicate that runners
without visual feedback tend to miss concurrent feedback in order
to validate their running technique and that runners with visual
feedback welcome assistive technology for gaining confidence in
correctly implementing forefoot running. Furthermore, the pro-
posed visualization technique was described as an intuitive and
effective tool that users would intend to use for future forefoot
running workouts.

5 EXPERIMENT II
5.1 Research Questions
This second experiment was conducted for two reasons: firstly, in
order to assess the runners’ preferred visual feedback method and
secondly, in order to evaluate the impact of the notifications on the
runners ability to implement forefoot running.

5.2 Study Design and Conditions
In order to facilitate comparisons with the results of the previous
experiment, the study design and conditions were kept as identical
as possible to group one of Experiment I.

Group 0: Classical Coaching Only Without Notifications
Subjects received traditional coaching as described in Sec-
tion 4.3 but they were not equipped with a smartwatch dur-
ing the first and second running block and they did not
receive any notifications to signal their progress. Best efforts
were taken to reproduce the same condition of the control
group in the study conducted by Hassan et al. [41].

Exclusively the third running block of the study design of the
first experiment was modified in order to pursue the first goal of this
second experiment to evaluate the runner’s feedback preferences.

Altered 3rd Block (1 km) During the course of this block
subjects were asked to make use of all three visual feed-
back methods as depicted in Figure 2: the graphical feedback
visualization with a short time interval (5 s), with a long time
interval (90 s), and a textual visual feedback representation
based on a short time interval (5 s).

The textual feedback method was added to represent the status
quo of data representations on smartwatches during workouts.

5.3 Participants, Procedure, and Apparatus
Three months after the first experiment, eleven additional partici-
pants (9 male and 2 female) were recruited who had not participated
in the previous experiment but met identical inclusion criteria. They
were rewarded with sweets and a voluntary participation in a lot-
tery of a single 25 Euro gift card. The runners reported their age
between 22 and 29 years (M = 25.0, SD = 2.5), their weight be-
tween 59 and 97 kg (M = 83.1, SD = 12.3), and their body height
between 166 and 187 cm (M = 177.6, SD = 7.2).

The experiment’s procedure was altered insofar that the partici-
pants were equipped with the smartwatch and instructed with its
purpose and use right before the new third running block. Partic-
ipants were asked to change the visual feedback technique after
every third of the third block. The order of presenting and using
the three different visualization methods was randomized for every
participant. Each visualization method was introduced to the run-
ner right before the utilization. Finally, after the last running block
semi-structured interviews were conducted with each runner in
order to evaluate their experience and feedback preferences. The in-
terview consisted of twelve questions to encourage the participants
to reason about the advantages and disadvantages of the individual
feedback methods, their utility, perceived intuitiveness, and choice
of visualization parameters.

Due to a technical problem the captured data of a single partici-
pant (P43) could not be retrieved from the smartwatch. Thus, the
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data could not be used for statistical comparisons of the HSRs with
the data obtained from Experiment I. Nevertheless, the participant’s
interview was included in the analysis.

The second experiment’s apparatus was identical to the first
experiment except that the participants were equipped with the
smartwatch not until the altered third running block.

5.4 Results
We compiled the subjective answers in the semi-structured inter-
views to evaluate the preferred feedback method. Additionally, the
impact of notifications was evaluated by analyzing the objective
measurements of the FST.

5.4.1 Interviews and Feedback Preferences. The evaluation revealed
that the visualization with the short time interval was the most pre-
ferred feedback method. It was considered the best method by five
participants. Each of the other two feedback methods (visualization
with long time interval and textual feedback) were preferred by
two runners. A single participant would have had preferred a com-
bination of the graphical feedback visualization with the short and
long time interval and another participant did not have a preferred
feedback method. Thus, ten out of eleven participants preferred
visual feedback on a smartwatch over no feedback and considered
the self-serviced concurrent feedback an assistive tool to imple-
ment forefoot running. Reasons for this consideration were mostly
the provided feedback for successful self-monitoring, motivational
aspects, and assistance to learn forefoot running.

As reported by the participants, the advantages of the visualiza-
tion with the short time interval were predominantly an accurate
symbolization of the completed strides, the simple graphical lay-
out of the screen, and its clarity caused by a limited amount of
presented information. The contrary was identified as one of the
advantages of the visualization with the long time interval which
included a high amount of details and provided a better summary
of the error rate but this method was also often described as con-
fusing. Simplicity was reported as the biggest advantage of the
textual data representation. Participants concluded that the textual
representation did not demand to interpret the data. Nevertheless,
the most disadvantages were attributed to this feedback method,
e.g., predominantly the shortage of information, the missing link
to the run, and the lack of visible progress over time which made it
more difficult for runners to judge whether their performance is
improving or deteriorating.

Further, more than 60% of the participants preferred a visualiza-
tion with the short interval over the long interval and the same
percentage rated the visualization with the short interval as the
most intuitive feedback variant. Three participants rated both visu-
alizations with a short and long time interval as equal in this regard
but better than the textual representation. Only a single participant
rated the textual representation as most intuitive. Slightly more
than half of the participants felt that they were able to interpret
the textual data representation fastest. 27% chose the visualization
with the short interval and two participants chose both graphical
visualizations as fastest to read.

The feedback for the current stride was very important for seven
out of eleven runners. The others did prefer to get feedback for the

last couple of strides or for a longer period. The separation of the
left and right foot was important for 90% of the participants.

5.4.2 Effect of Feedback on the Heel Strike Rate. Similar to Exper-
iment I, the effect of the feedback method (independent variable)
was assessed by the variations of each participant’s FST over time
measured by means of the HSRs (dependent variable).

This data complements the HSRs measured for the previous
groups one to three in the first experiment. The HSR was nor-
mally distributed for all conditions (group zero to three) in the
first running block (p > 0.06), but not for the second running
block (p < 0.01). Only the first block exhibited equal variances (p =
0.42) and the variances of the HSR for the second block could not be
assumed to be equal (p < 0.001). In accordance with the first exper-
iment we conducted a Kruskal-Wallis test for independent samples.
We did not include the third running block in this comparison with
the other conditions since its procedure was significantly altered
for this second experiment which does not allow for a statistical
analysis with data obtained in the first experiment.

Again, very high HSRs with minimal deviations could be ob-
served in the first running block across all participants and con-
ditions (Mdn = 96.04, M = 96.09, SD = 2.42). For this first block,
there was no statistically significant difference in the HSRs for the
four different conditions, χ2(3) = 2.17, p = 0.54.

During the second running block, participants were asked to
avoid heel strikes. A statistical significant effect of the feedback type
on the HSR could be observed for the four groups, χ2(3) = 11.03,
p = 0.01. Dunn-Bonferroni post-hoc tests revealed that group zero
(Mdn = 5.90, M = 26.10, SD = 35.45) and three (Mdn = 0.34, M =
0.92, SD = 1.50) differed significantly (z = 3.11, p = 0.01) with a
large effect size (r = 0.70). There were no statistical differences
for the other five pairwise comparisons between group zero and
one (p = 1.00), group zero and two (p = 1.00), group one and two
(p = 1.00), group one and three (p = 0.06), and group two and
three (p = 0.26). These results suggest that the condition with self-
serviced visual feedback based on a long visualized time interval
significantly outperformed the condition without concurrent visual
feedback and without notifications.

5.5 Discussion
The statistical analysis of the resulting HSRs of the extended ex-
periment with the data obtained from the first experiment leads
to the conclusion that there is not enough evidence to state that
runners are in general better in implementing forefoot running
with concurrent feedback or notifications than without concurrent
feedback or notifications. Only one significant difference could be
observed between group zero and three. No statistical differences
could be shown for the other pairwise comparisons. The applied
nonparametric Kruskal-Wallis test analyzes differences of medi-
ans. The median of the HSRs of group zero was 5.56 units greater
than the median of group three. Comparing the means of the HSRs
would result in a difference of 25.18. Both differences are consid-
erably lower than those observed by Hassan et al. [41] because in
our studies the runners performed exceptionally well even without
any concurrent feedback or notifications that might have alerted
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them to stay focused on forefoot running. We were not able to con-
firm a poor performance for runners that merely received classical
coaching.

We interpret our data as follows. The conditions for group zero
and one were almost identical and no considerable differences for
the second running block could be observed between both groups.
In each of the two groups with no concurrent visual feedback there
were three participants who performed considerably worse than
the others with an average HSR larger than 50% (P0, P6, P33, P39,
P40, P42). All others were able to achieve a HSR below 20% which
means that 70% of our participants without concurrent visual feed-
back were able to successfully implement forefoot running with the
classical coaching approach. The remaining 30% had problems to
correctly and consistently implement the upfront coaching instruc-
tions for the whole duration of the second running block. The study
conducted by Hassan et al. [41] had a slightly smaller sample size
of six recruited participants per condition. The six runners assigned
to their classical coaching group could have belonged to the latter
category of runners or our coaching could have been more effective
but in dialog with the authors of this previous study best efforts
were taken to match their inclusion criteria and to reproduce their
described method of classical forefoot coaching. Despite indications
that their classical coaching subjects might not be representative
for the whole population of recreational and amateur runners they
did show that forefoot running can be learned without instructions
at all by the use of EMS feedback which is more invasive than our
proposed self-serviced visual feedback on smartwatches. We also
identified a slight variation in the task for the runners to chose a
competitive running speed which might be another explanation
for the different observations. Future studies should track the rated
perceived exertion (RPE) for better comparability.

Two of the three runners of group zero (P40, P42) who had a
poor HSR larger than 50% in the second running block were able to
significantly improve their HSR in the third running block by the
use of the visual feedback methods on the smartwatch. A single
participant (P39) was not able to perform forefoot striking during
the whole experiment. One of these two participants (P42) who did
significantly improve the HSR in the third running block enhanced
his HSR to about 32%. The detailed HSR data for the complete third
running block of this participant revealed that he did not improve
his HSR in the first third of the third running block but he did
improve his HSR significantly in the two remaining thirds in the
same manner as the other participant (P40) did for the complete
third block. The former participant started with the visualization
with long time interval first. Interestingly, the latter participant
coincidentally ran with textual feedback first and was not able to
improve his HSR at all by using the textual feedback method. As
soon as this runner (P42) was asked to switch to the next randomly
assigned type of visual feedback, which was the visualization with
a short time interval in his case, he was able to avoid heel strikes
and successfully implemented the forefoot running technique. We
suspect that the textual feedback method failed to assist the partici-
pant in performing forefoot striking because of its shortcoming to
clearly communicate the FST of the current stride. In the interviews,
most participants described this feature as a very important aspect
of concurrent feedback.

6 CONCLUSIONS
On the basis of two experiments, this work evaluated the applica-
tion of smartwatch-based visualizations as an assistive feedback
method for learning a new running technique. The conducted stud-
ies with in total 40 included participants assessed the ability of
recreational and amateur runners to implement a forefoot running
technique for a three-km workout. The experiments showed that
most runners are in general able to apply the new running tech-
nique without concurrent feedback but the runners prefer to use
concurrent feedback for self-controlled learning, motivation, and
adjustment of their running technique. Furthermore, the proposed
visualization methods for self-serviced concurrent visual feedback
on the smartwatch were preferred over textual data representations.
The results indicate that runners who have issues with implement-
ing the new running technique without concurrent feedback benefit
more from the proposed data visualization that directly maps every
stride to interactive graphical elements than from the commonly
used abstract numerical display of FST data.

7 LIMITATIONS AND SCOPE
Transitioning from a rearfoot to a forefoot striking style (and vice
versa) may impose risks and the ideal strike pattern is a controver-
sial topic [3, 86]. We explicitly instructed all participants verbally
and in the informed consent that they should immediately stop
the experiment if they felt uncomfortable and that the experiment
might cause sore calf muscles.

As motivated in Section 1, we decided to visualize a runner’s FST
in order to explore the user acceptance and utility of real-time visu-
alizations on smartwatches during sports activities. The proposed
visualization is applicable to any real-time metric of interest that is
suited to be mapped to binary data, e.g., to encode if the vertical
oscillation of a runner exceeds a specific threshold. Other glyph
designs would also allow to encode more complex data. If applied
to sports other than running, it’s crucial that the athlete is able to
glance at the visualization, e.g., when lifting weights it’s often hard
to glance at a smartwatch.

8 FUTUREWORK
We investigated how smartwatch-based concurrent visual feedback
affects the implementation of a new running style in a short three-
kilometer workout in a laboratory environment. A future long-term
study in a natural running environment, which is the outdoors for
most runners, could show a stronger separation of the experiment’s
conditions since runners with concurrent feedback are expected to
be more engaged in reaching daily and long-term training goals.
Moreover, as proposed by Mueller et al. [63] for interactive jogging
systems in general, a promising enhancement in particular for
smartwatch-based assistive visualizations would be to dynamically
adjust the visualization parameters during a workout based on
contextual factors, e.g., the athlete’s level of exertion or the current
success rate.

Future studies could evaluate assistive visualization designs that
encode more than just a single metric over time in order to support
the training of more complex skills. This goal would increase the
impact of graphical data visualizations over textual data represen-
tations and over no concurrent feedback.
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A MEASURED DATA
Table 1 details the running data and Table 2 the glance data captured
in the experiments.
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Subject Block 1 Block 2 Block 3 Pace
Group 0 (1 km) (3 km) (1 km)
P37 98.86 16.29 2.65 9.50
P38 92.56 1.57 2.03 7.50
P39 94.89 89.32 87.40 9.50
P40 95.14 52.06 5.87 11.90
P41 93.44 3.68 4.03 10.00
P42 97.20 84.14 31.61 11.00
P44 95.68 4.93 4.18 7.90
P45 97.45 6.86 7.51 8.50
P46 96.61 1.84 2.14 8.00
P47 92.47 0.27 0.85 10.00
Median 95.41 5.90 4.11 9.50
Mean 95.43 26.10 14.83 9.38
SD 2.15 35.45 27.04 1.42

(a) Group 0 (Exp. II): Classical coaching only without notifications.

Subject Block 1 Block 2 Block 3 Pace
Group 1 (1 km) (3 km) (1 km)
P0 99.52 98.66 96.53 10.00
P1 97.83 0.64 0.77 12.90
P2 96.57 0.08 0.09 9.50
P3 98.67 0.40 0.59 9.50
P5 92.37 13.27 0.62 12.00
P6 99.64 99.91 100.00 13.00
P32 98.22 4.46 1.19 12.00
P33 95.58 71.68 58.57 9.70
P34 91.78 0.08 0.12 12.00
P36 98.37 9.52 27.25 11.60
Median 98.02 6.99 0.98 11.80
Mean 96.86 29.87 28.57 11.22
SD 2.80 42.45 41.27 1.40

(b) Group 1 (Exp. I): Classical coaching only.

Subject Block 1 Block 2 Block 3 Pace
Group 2 (1 km) (3 km) (1 km)
P7 97.87 5.20 12.71 10.00
P9 95.73 2.87 6.59 8.10
P10 94.84 1.00 0.34 11.00
P11 95.53 28.21 26.65 9.10
P12 98.99 0.44 1.31 10.20
P13 92.86 0.04 0.00 10.50
P14 97.94 0.93 1.57 12.00
P15 99.89 2.65 7.95 10.30
P16 93.66 6.04 3.25 10.00
P31 91.23 8.65 3.84 11.50
Median 95.63 2.76 3.55 10.25
Mean 95.85 5.60 6.42 10.27
SD 2.81 8.42 8.14 1.12

(c) Group 2 (Exp. I): Visualization with short time interval (5 s).

Subject Block 1 Block 2 Block 3 Pace
Group 3 (1 km) (3 km) (1 km)
P17 99.33 0.35 0.53 11.10
P20 92.29 0.00 0.00 10.50
P22 95.60 0.00 0.00 9.00
P23 95.40 4.84 14.09 10.80
P24 98.28 0.03 0.08 7.50
P25 97.43 0.03 0.10 10.60
P26 96.61 0.71 1.58 13.50
P27 96.19 1.84 0.12 11.90
P28 95.90 1.08 2.47 14.00
P30 95.10 0.32 0.98 11.00
Median 96.04 0.34 0.32 10.90
Mean 96.21 0.92 2.00 10.99
SD 1.93 1.50 4.33 1.91

(d) Group 3 (Exp. I): Visualization with long time interval (90 s).

Table 1: Heel strike rates (in %) and pace (in km/h) for participants (P) of group one (b), two (c), three (d), and zero (a).

Subject Number Removed glances
Group 2 of glances
P7 28 1 3.45%
P9 24 4 14.29%
P10 39 5 11.36%
P11 37 0 0.00%
P12 34 0 0.00%
P13 23 0 0.00%
P14 13 0 0.00%
P15 27 22 44.90%
P16 30 1 3.23%
P31 6 31 83.78%
Median 27.50 1.00 3.34%
Mean 26.10 6.40 16.10%
SD 10.31 10.95 27.48%

(a) Group 2 (Exp. I): Visualization with short time interval (5 s).

Subject Number Removed glances
Group 3 of glances
P17 23 0 0.00%
P20 55 1 1.79%
P22 64 0 0.00%
P23 18 2 10.00%
P24 55 0 0.00%
P25 37 0 0.00%
P26 10 6 37.50%
P27 17 0 0.00%
P28 41 1 2.38%
P30 5 1 16.67%
Median 30.00 0.50 0.89%
Mean 32.50 1.10 6.83%
SD 20.82 1.85 12.14%

(b) Group 3 (Exp. I): Visualization with long time interval (90 s).

Table 2: Glance data for participants (P) of group two (a) and three (b): corrected total number of glances (in #) and number of
removed glances (in # and %) after video verification.
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