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Abstract

Besides principal polymerase chain reaction (PCR) tests, au-
tomatically identifying positive samples based on computed
tomography (CT) scans can present a promising option in
the early diagnosis of COVID-19. Recently, there have been
increasing efforts to utilize deep networks for COVID-19 di-
agnosis based on CT scans. While these approaches mostly
focus on introducing novel architectures, transfer learning
techniques or construction of large scale data, we propose a
novel strategy to improve several performance baselines by
leveraging multiple useful information sources relevant to doc-
tors’ judgments. Specifically, infected regions and heat-map
features extracted from learned networks are integrated with
the global image via an attention mechanism during the learn-
ing process. This procedure makes our system more robust to
noise and guides the network focusing on local lesion areas.
Extensive experiments illustrate the superior performance of
our approach compared to recent baselines. Furthermore, our
learned network guidance presents an explainable feature to
doctors to understand the connection between input and output
in a grey-box model.

Introduction
Coronavirus disease 2019 (COVID-19) is a dangerous in-
fectious disease caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). It was first recognized
in December 2019 in Wuhan, Hubei, China, and continu-
ally spread to a global pandemic. According to statistics at
Johns Hopkins University (JHU)1, until the end of August
2020, COVID-19 caused more than 850,000 deaths and in-
fected more than 27 million individuals in over 120 countries.
Among the COVID-19 measures, the reverse-transcription-
polymerase chain reaction (RT-PCR) is regularly used in the
diagnosis and quantification of RNA virus due to its accu-
racy. However, this protocol requires functional equipment
and strict requirements for testing environments, limiting
the rapid diagnose of suspected subjects. Further, RT-PCR
testing is reported to suffer from high false-negative rates
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(Ai et al. 2020). For complementing RT-PCR methods, test-
ings based on visual information as X-rays and computed
tomography (CT) images are applied by doctors. They have
demonstrated effectiveness in current diagnoses, including
follow-up assessment and prediction of disease evolution
(Rubin et al. 2020). For instance, a hospital in China utilized
chest CT for 1014 patients and achieved 0.97 of sensitivity,
0.25 of specificity compared to RT-PCR testing (Ai et al.
2020). Fang et al. (2020) also showed evidences of abnormal
CT compatible with an early screening of COVID-19. Ng
et al. (2020) conducted a study on patients at Shenzhen and
Hong Kong and found that COVID-19’s pulmonary mani-
festation is characterized by ground-glass opacification with
occasional consolidation on CT. Generally, these studies sug-
gest that leveraging medical imaging may be valuable in the
early diagnosis of COVID-19.

There have been several deep learning-based systems pro-
posed to detect positive COVID-19 on both X-rays and CT
imaging. Compared to X-rays, CT imaging is widely pre-
ferred due to its merit and multi-view of the lung. Further-
more, the typical signs of infection could be observed from
CT slices, e.g., ground-glass opacity (GGO) or pulmonary
consolidation in the late stage, which provide useful and
important knowledge in competing against COVID-19. Re-
cent studies focused on three main directions: introducing
novel architectures, transfer learning methods, and building
up a large scale for COVID-19. For the first category, the
novel networks are expected to discriminate precisely be-
tween COVID and non-COVID samples by learning robust
features and less suffering with high variation in texture,
size, and location of small infected regions. For example,
Wang et al. (2020) proposed a modified inception neural
network (Szegedy et al. 2015) for classifying COVID-19
patients and normal controls by learning directly on the re-
gions of interest, which are identified by radiologists based
on the appearance of pneumonia attributes instead of training
on entire CT images. Although these methods could achieve
promising performance, the limited samples could potentially
simply over-fit when operating in real-world situations. Thus,
in the second and third directions, researchers investigated
several transfer learning strategies to alleviate data deficiency



(He et al. 2020) and growing data sources to provide more
large-sized datasets while satisfying privacy concerns and
information blockade (Cohen, Morrison, and Dao 2020; He
et al. 2020). These approaches have also been employed suc-
cessfully in other domains such as skin cancer classification
(Nguyen et al. 2020) or image captions generating in general
medical records (Kalimuthu, Nunnari, and Sonntag 2020).

Unlike recent works, we aim to answer the question: “how
can we boost the performance of COVID-19 diagnosis algo-
rithms by exploiting other source knowledge relevant to a
radiologist’s decision?”. Specifically, given a baseline net-
work, we expect to improve its accuracy by incorporating
properly two important knowledge sources: an infected and
a heat-map region without modifying its architecture. In our
settings, infected regions refer to positions of Pulmonary
Consolidation Region (PCR) (as shown in figure 1 at the
middle, green regions), a type of lung tissue filling with liq-
uid instead of air; and Ground-Glass Opacity (GGO), an
area of increased attenuation in the lung on CT images with
preserved bronchial and vascular markings (as depicted in
figure 1 at the middle, red regions). By quantifying those
regions, the radiologists can distinguish normal and infected
COVID-19 tissues. While infected areas are based on med-
ical knowledge, we refer to heat-map (as shown in figure 1
at the right-hand side) as a region extracted from a trained
network, which allows us to understand transparently essen-
tial parts in the image directly impact the network decision.
Our method motivates from the two following ideas. Firstly,
we would like to simulate how a radiologist can comprehen-
sively consider both global, local information, and their prior
knowledge to make final judgments by associating global
images, infected regions, and heat-maps during the training
process. Secondly, for avoiding network suffering by a sig-
nificant level of noise outside the lesion area, an attention
mechanism to supervise the network is necessarily such that
it can take both lesion regions and global visual information
into account for a final decision.

We introduce an attention mechanism to integrate all visual
cues via a triplet stream network to realize those ideas. Our
method can be highlighted in two attributes. First, it has two
dedicated local branches to focus on local lesion regions, one
for infected and another for heat-map areas. In this manner,
the noise’s influence in the non-disease areas and missing
essential structures can be alleviated. Second, our principal
branches, i.e., a global branch and two local branches, are
connected by a fusion branch. While the local branches rep-
resent the attention mechanism, it may lead to information
loss when the lesion areas are scattered in the whole image.
Therefore, a global component is demanded to compensate
for this error. We reveal that the global and local branches
complement each other by the fusion branch, which shows
better performance than the current state-of-the-art methods.

In summary, we make two following contributions:
• We provide a new procedure to advance baselines on

COVID-19 diagnosis without modifying the network’s
structures by integrating knowledge relevant to radiolo-
gists’ judgment as examining a suspected patient. Exten-
sive experiments demonstrate that the proposed method
can boost several cutting-edge models’ performance, yield-

Figure 1: Left: the picture of a COVID-19 case. Middle: red and
green labels indicate the Ground-Glass Opacity (GGO) and Pul-
monary Consolidation regions (Fan et al. 2020). Right: heat-map
region extracted from trained network.

ing a new state-of-the-art achievement.

• We show the transparency of learned features by embed-
ding the last layer’s output vector in the fusion branch
to smaller space and visualizing in a 3-D dimension (as
shown in figure 3). Interestingly, we found a strong con-
nection between learned features and network decisions as
mapping of activation heat-map and infected regions. Such
property is a critical point for clinicians as end-users, as
they can interpret how networks create a result given input
features in a grey-box rather than a black-box algorithm.

Related Works
In a global effort against COVID-19, the computer vision
community pays attention on constructing efficient deep
learning approaches to perform screening of COVID-19 in
CT scans. Zheng et al. (2020) pioneered in introducing a
novel 3D-deep network (DeCoVNet) composed from pre-
trained U-net (Ronneberger, Fischer, and Brox 2015) and two
3D residual blocks. To reduce annotating costs, the authors
employed weakly-supervised based computer-aided COVID-
19 detection with a large number of CT volumes from the
frontline hospital. Other methods also applied 3D deep net-
works for CT images can be found in (Gozes et al. 2020; Li
et al. 2020). Recently, there are also two other state of the
art works from Saeedi, Maryam, and Maghsoudi (2020) and
Mobiny et al. (2020), which trained directly on 2D images on
a dataset collected from He et al. (2020) with 746 CT samples.
While Saeedi, Maryam, and Maghsoudi (2020) developed
a novel method by combining several pre-trained networks
on ImageNet with regularization of support vector machine,
Mobiny et al. (2020) proposed a novel network, namely DE-
CAPS, by leveraging the strength of Capsule Networks with
several architecture to boost classification accuracies. In other
trends, Song et al. (2020) developed CT diagnosis to support
clinicians to identify patients with COVID-19 based on the
presence of Pneumonia feature.

To mitigate data deficiency, Chen et al. (2020) built a
publicly-available dataset containing hundreds of CT scans
that are positive for COVID-19 and introducing a novelty
sample-efficient method based on both pre-trained ImageNet
(Deng et al. 2009) and self-supervised learning. In the same
effort, Cohen, Morrison, and Dao (2020) also contributes
to open image data collection, created by assembling med-
ical images from websites and publications. While recent



networks only tackle in a sole target, e.g., only diagnosis or
compute infected regions. In contrast, we bring those compo-
nents into a single system by fusing straight infected areas
and global images throughout the learning-network proce-
dure so that these sources can support each other to make our
model more robust and efficient.

Methodology
Fusion with Multiple Knowledge
Infected Branch Fan et al. (2020) developed methods to
identify lung areas that are infected by ground-class opacity
and consolidation by presenting a novel architecture, namely
Inf-Net. Given the fact that there is a strong correlation be-
tween the diagnosis of COVID-19 and ground-class opacity
presented in lung CT scans. Therefore, we adopt the Semi-
Infected-Net method from (Fan et al. 2020) to localize lung
areas suffered by ground-class opacity and consolidation on
our CT images. In particular, we expect using this quantifi-
cation to reduce focused regions of our model to important
positions, thus making the system learn efficiently.

Following approach based on semi-supervised data in (Fan
et al. 2020), we extend it in the diagnosis task by first training
the Inf-Net on D1 dataset (please see Section Data for further
reference). Then, we use this model to obtain pseudo label
segmentation masks for 100 randomly chosen CT images
from D2 and D3 datasets. After that, we combine the newly
predicted masks with D1 as a new training set and re-train
our model. The re-trained model will continue to be used for
segmenting other 100 ones randomly chosen from the remain-
ing D2 and D3. Then, we repeated this data combining step.
The cycle continues until all images from D2 and D3 have a
segmentation mask. We summarize the whole procedure in
algorithm 1.

Algorithm 1: Training Semi-supervised Infected Net
Input: Dtrain = D1 with segmentation masks and

Dtest = D2 ∪ D3 without masks.
Output: Trained Infected Net model, M

1 Set Dtrain = D1; Dtest = D2 ∪ D3; Dsubtest = NULL
2 while len(Dtest) > 0 do
3 Train M
4 if len(Dtest > 100) then
5 Dsubtest = random ( Dtest\Dsubtest, k = 100)
6 Dtrain = Dtrain ∪M(Dsubtest)
7 Dtest = Dtest\Dsubtest

8 else
9 Dsubtest = Dtest

10 M(Dsubtest)
11 Dtest = Dtest\Dsubtest

Heat-map Branch Besides the whole original scans of CT
images, we wanted our proposed network to pay more at-
tention to injured regions within each image by building a
heat-map branch, which was a separate traditional classi-
fication structure as DenseNet169 (Huang et al. 2017) or

ResNet50 backbone (He et al. 2016). This additional model
was expected to learn the discriminative information from
a specific CT scan area instead of the entire image, hence
alleviating noise problems.

A lesion region of a CT scan, which could be considered
as an attention heat-map, was extracted from the last convolu-
tion layer’s output before computing the global pooling layer
of the backbone (DenseNet169 or ResNet50) in the main
branch. In particular, with an input CT image, let fk(x, y) be
the activation unit in the channel k at the spatial (x, y) of the
last CNN layer, in which k ∈ {1, 2, ...,K} and K = 1644
for DenseNet169 or K = 2048 for ResNet50 as a backbone.
Its attention heat-map, H , is created by normalizing across k
channels of the activation output by using Eq. 1.

H(x, y) =

∑
k fk(x, y)−min(

∑
k fk)

max(
∑

k fk)
(1)

We then binarized H to get the mask B of the suspected
region in Eq. 2, where τ is a tuning parameter whose smaller
value produces a larger mask, and vice versa.

B =

{
1, if H(x, y) > τ

0, otherwise
(2)

We then extracted a maximum connected region in B and
mapped with the original CT scan to get our local branch’s
final input. One can see a typical example of the heat-map
area in figure 1 on the right-hand side. Given this output and
coupling with an infected modelM obtaining from algorithm
1, we now have enough input to start training the proposed
model.

Network Design and Implementation
Multi-Stream network Our method’s architecture can be
illustrated in figure 2, with DenseNet169 as an example of
the baseline model. It has three principal branches, i.e., the
global and two local branches for attention lesion structures,
followed by a fusion branch at the end. Both the global and lo-
cal branches play roles as classification networks that decide
whether the COVID-19 is present. Given a CT image, the
parameters of Global Branch are first fine-tuned by loading
either pre-trained ImageNet or Self-transfer learning tactics
as in (He et al. 2020), and continue to train on global images.
Then, heat-map regions from the global image extracted us-
ing equations (1) and (2) are utilized as an input to train on
heat-map Branch. In the next step, input images at the Global
Branch are fed into Infected-ModelM , which is derived after
completing the training procedure in algorithm 1, to produce
infected regions. Because these lesion regions are relatively
small, disconnected, and distributed on the whole image, we
find bounding boxes to localize those positions and divide it
into two sub-regions: left infected and right infected photos.
Those images can be fed into a separate backbone network
to output two pooling layers and then concatenating with
pooling features from the global branch to train for Infected
Branch. It is essential to notice that concatenating output fea-
tures from Infected Branch with global features is necessary
since, in several cases, e.g., in healthy patients, we could not
obtain infected regions. Finally, the Fusion Branch can be



Figure 2: Our proposed attention mechanism given a specific backbone network to leverage efficiently three knowledge sources: infected
regions (top branch), global image (middle branch) and learned heat-maps (bottom branch). For all branches, we utilize a binary cross entropy
loss function during the training process. The backbone network (DenseNet-169 in this figure) can be replaced by arbitrary networks in general
case.

learned by merging all pooling layers from both global and
two local branches.

To be tighter, we assume that each pooling layer
is followed by a fully connected layer FC with
C− dimensional for all branches and a sigmoid
layer is added to normalize the output vector. Denot-
ing (Ig,Wg, pg(c|Ig)), (Ih, Wh, ph(c|Ig, Ih)), and
(Iin, Win, pin(c|Ig, Iin)) as pairs of images, param-
eters and probability scores belong to the c-th class,
c ∈ {1, 2 ..., C} at FC layer for global, heat-map and
infected branches, respectively. For each fushion branch,
we also denote (Poolk, Wf , pf (c|(Ig, Ih, Iin)) as a pair of
output feature at pooling layer in branch k (k ∈ {g, h, in}),
parameter and probability scores belong to the c-th class of
the fusion branch. Then, parameters Wg,Wh, and Win are
optimized by minimizing the binary cross-entropy loss as
follows:

L(Wi) = −
1

C

C∑
c=1

lc log(p̃i(c)) + (1− lc) log(1− p̃i(c)),

(3)
where lc is the ground-truth label of the c-th class, C is the
total of classes, and p̃i(c) is the normalized output network
at branch i (i ∈ {g, h, in}), which can be computed by:

p̃i(c) = 1/(1 + exp(−pi(c|Ig, Ih, Iin) (4)

in which

pi(c|Ig, Ih, Iin) =

{
pg(c|Ig) if i = g

ph(c|Ig, Ih) if i = h
pin(c|Ig, Iin) if i = in

(5)

For the fusion branch, we have to compute the pooling fu-
sion Poolf by merging all pooling values in all branches:

Poolf = [Poolg, Poolh, Poolin]. After that, we evaluate
pf (c|(Ig, Ih, Iin) by multiplying Poolf with weights at FC
layer. Finally, Wf can be learned by minimizing equation (3)
with formula (4).

Training Strategy Due to the limited amount of COVID-
19 CT scans, it is not suitable to simultaneously train entire
branches. We thus proposed a strategy that trains each part
sequentially to reduce the number of parameters being trained
at once. As a branch finished its training stage, its weights
would be used to initialize the next branches. Our training
protocol can be divided into three stages, as follows:

Stage I: We firstly trained and fine-tuned the global branch,
which used architectures from an arbitrary network such as
DenseNet169 or ResNet50. The weight initialization could
be done by loading pre-trained ImageNet or Self-Transfer
learning method (He et al. 2020).

Stage II: Based on the converged global model, we then
created attention heat-map images to have the input for the
heat-map branch, which was fine-tuned based on the hyper-
parameter τ as described in section Heat-map Branch. Simul-
taneously, we could also train the infected branch indepen-
dently with the heat-map branch using the pooling features
produced by the global model, as illustrated in figure 2. The
weights of the global model were kept intact during this
phrase.

Stage III: Once the infected branch and the heat-map
branch were fine-tuned, we concatenated their pooling fea-
tures and trained our final fusion branch with a fully con-
nected layer for the classification. All weights of other
branches were still kept frozen while we trained this branch.

The overall training procedure was summarized in algo-
rithm 2. Different training configurations might affect the



performance of our system. Therefore, we analyzed this im-
pact from variation training protocol in experiment results.

Algorithm 2: Training our proposed system
Input: Input image Ig , Label vector L, Threshold τ
Output: Probability score pf (c|Ig, Ih, Iin)

1 Learning Wg with I, computing p̃g(c|Ig), optimizing
by Eq. 3 (Stage I);

2 Finding attention heat-map and its mapped image Ih
of Ig by Eq. 2 and Eq. 1.

3 Learning Wh with Ih, computing p̃h(c|Ig, Ih),
optimizing by Eq. 3 (Stage II);

4 Finding infected images Iin of Ig by using infected
model M ;

5 Learning Win with Iin, computing p̃in(c|Ig, Iin),
optimizing by Eq. 3 (Stage II);

6 Computing the concatenated Poolf , learning Wf ,
computing pf (c|Ig, Ih, Iin), optimizing by Eq. 3
(Stage III).

Experiment and Results
This section presents our settings, chosen datasets, and the
corresponding performance of different methods.

Data
In our research, we use three sets of data.

• D1. COVID-19 CT Segmentation from “COVID-19 CT
segmentation dataset”2.
This collection contains 100 axial CT images of more
than 40 COVID-19 patients with labeled lung area and
associating with ground-class opacity, consolidation, and
pleural effusion .

• D2. COVID-19 CT Collection from (Fan et al. 2020).
This dataset includes 1600 CT slices, extracted from 20
CT volumes of different COVID-19 patients. Since these
images are extracted from CT volumes, they do not have
segmentation masks.

• D3. Sample-Efficient COVID-19 CT Scans from (He et al.
2020).
This data comprises 349 positive CT images from 216
COVID-19 patients and 397 negative CT images selected
from the PubMed Central3 and publicly-open online medi-
cal image database4. D3 also does not have segmentation
masks; only COVID-19 positive/negative labels are in-
volved.

For all experiments, we exploited all datasets for training
the Infected-Net model while detection performance was
evaluated on the D3 dataset.

2https://medicalsegmentation. com/covid19/
3https://www.ncbi.nlm.nih.gov/pmc/
4https://medpix.nlm.nih.gov/home

Settings
We implemented several experiments on a TITAN RTX GPU
with the Pytorch framework. The optimization used SGD
with a learning rate of 0.01 and is divided by ten after 30
epochs. We configured a weight decay of 0.0001 and a mo-
mentum of 0.9. For all baseline networks, we used a batch
size of 32 and training for each branch 50 epochs with input
size 224×224. The best model is chosen based on early stop-
ping on validation sets. We optimized hyper-parameters τ by
grid searching with 0.75, which yielded the best performance
on the validation set.

Method Accuracy F1 AUC

ResNet50 (1) (ImgNet, Global) 0.803 0.807 0.884
DenseNet169 (1) (ImgNet, Global) 0.832 0.809 0.868

ResNet50 (1) + Our Infected 0.831 0.815 0.897
ResNet50 (1) + Our heat-map 0.824 0.832 0.884
ResNet50 (1) + Our Fusion 0.843 0.822 0.919

DenseNet169 (1) + Our Infected 0.861 0.834 0.911
DenseNet169 (1) + Our heat-map 0.855 0.825 0.892
DenseNet169 (1) + Our Fusion 0.875 0.845 0.927

Table 1: Performance of two best architectures on D3 dataset using
pre-trained ImageNet with only used global images (ResNet50 (1),
DenseNet169 (1)) and obtained results by utilizing our strategy.
Blue and Red colour are best values for ResNet50 and DenseNet169
correspondingly.

Method Accuracy F1 AUC

ResNet50 (2) (Self-trans , Global) 0.841 0.834 0.911
DenseNet169 (2) (Self-trans , Global) 0.863 0.852 0.949

ResNet50 (2) + Our Infected 0.842 0.833 0.918
ResNet50 (2) + Our heat-map 0.879 0.848 0.924
ResNet50 (2) + Our Fusion 0.861 0.870 0.927

DenseNet169 (2) + Our Infected 0.853 0.849 0.948
DenseNet169 (2) + Our heat-map 0.870 0.837 0.954
DenseNet169 (2) + Our Fusion 0.882 0.853 0.964

Table 2: Performance of two best architectures on D3 dataset
using Self-trans with only used global images (ResNet50 (2),
DenseNet169 (2)) and obtained results by utilizing our strategy.
Blue and Red colour are best values for ResNet50 and DenseNet169
correspondingly.

Evaluations
In this section, we evaluated our attention mechanism with
different settings, such as semi-supervised procedure (al-
gorithm 1) and training strategies (algorithm 2) on the D3
dataset. We also illustrated how our framework allowing to
boost the performance of several baseline networks without
modifying their architectures.

Improving on Standard Backbone Networks We first ex-
amined our approach’s effectiveness on commonly deep net-
works like VGG-16, ResNet-18, ResNet-50, DenseNet-169,
and EfficientNet-b0. Based on summarized results from (He
et al. 2020), we picked two top networks that achieved the
highest results on the D3 dataset and configuring them in



Method Accuracy F1 AUC
Saeedi et al. 2020 0.906 (±0.05) 0.901 (±0.05) 0.951 (±0.03)
Saeedi et al. 2020 + Our Fusion w/out Semi-S 0.913 (±0.03) 0.926 (±0.03) 0.960 (±0.03)
Saeedi et al. 2020 + Our Fully Fusion 0.925 (±0.03) 0.924 (±0.03) 0.967 (±0.03)

Mobiny et al. 2020 (1) 0.832 (±0.03) 0.837 (±0.03) 0.927 (±0.02)
Mobiny et al. 2020 (1)+ Our Fusion w/out Semi-S 0.856 (±0.03) 0.864 (±0.03) 0.950 (±0.02)
Mobiny et al. 2020 (1)+ Our Fully Fusion 0.868 (±0.03) 0.872 (±0.03) 0.947 (±0.02)

Mobiny et al. 2020 (2) 0.876 (±0.01) 0.871 (±0.02) 0.961 (±0.01)
Mobiny et al. 2020 (2)+ Our Fusion w/out Semi-S 0.885 (±0.01) 0.884 (±0.02) 0.983 (±0.01)
Mobiny et al. 2020 (2)+ Our Fully Fusion 0.896 (±0.01) 0.889 (±0.01) 0.986 (±0.01)

Table 3: Performance of other state-of-the-art methods from (Saeedi, Maryam, and Maghsoudi 2020) (the first row) and (Mobiny et al. 2020)
(two options are represented by the fourth and seventh row) with only used global images and obtained results by utilizing our strategy with
multiple knowledge sources. Blue, red and bold colors represent the best values in each method.

our framework under two settings: initializing weights from
pre-trained ImageNet or self-transfer techniques proposed in
(He et al. 2020). We first used only global images for cases
and then added one by one other option as heat-map, Infected,
and Fusion branch to capture each component’s benefits. Fur-
thermore, the proposed training strategy (algorithm 2) and
semi-supervised techniques (algorithm 1) were also involved.

Fusion Branch: From both table 1 and table 2, it is clear
that our fusion mechanism with ResNet50 and DenseNet169
has significantly improved performance compared to the de-
fault settings (only used global images) for all categories:
pre-trained ImageNet and Self-Transfer Learning. By em-
ploying pre-trained ImageNet with ResNet50 backbone, our
fusion method increases the accuracy from 80.3% to 84.3%,
which is slightly better than this network’s accuracy using
Self-Transfer Learning (84.1%). Similarly, for DenseNet169
with pre-trained ImageNet, our fusion method can improve
the performance from 83.2% to 87.5% in terms of accuracy.
This accuracy once again is better than the option using Self-
Transfer Learning (86.3%). Our fusion method’s outstanding
performance is also consistent for two other metrics as AUC
and F1. With Self-Transfer (table 2), we continue boosting
performance for both ResNet50 and DenseNet169, especially
with the DenseNet169, a new milestone with 88.2% and
96.4% in Accuracy and AUC metrics is achieved, which is
higher 2% compared to the original one.

Mixing Global and Local Branch: Using Infected infor-
mation or heat-map with the baseline can boost the result
from 3 - 4%. For instance, the Global-Infected structure for
ResNet50 with pre-trained ImageNet (table 1) improves the
exactness from 80.3% to 83.1%. The Global-heat-map in-
creases ResNet50 with Self-Trans initialization (table 2) from
84.1% to 87.9%. However, overall, there is no pattern to con-
clude if either the Infected or heat-map branch outperforms
the other. Furthermore, in most cases, the best values across
metrics are obtained using the Fusion branch. This evidence
demonstrates that using more relative information, more ac-
curate predictions the model could make.

Peformance of Training Strategies: To validate the impact
of the proposed training strategy (algorithm 2), we tested
with various settings, for example, train all branches together,

train global, heat-map, and infected together. These results
can be found in table 4 appendix. In general, training for
each component sequentially is the most efficient case. This
phenomenon might be due to the lack of the data as training
the whole complex network simultaneously with the limited
resources was not a suitable schema. Thus, training each
branch independently and then fusing them can be the right
choice in such situations.

Improving on State of The Art In this experiment, we
aim to further evaluate the proposed method’s effectiveness
by integrating the current state-of-the-art methods on the
D3 dataset. This includes three methods, one from (Saeedi,
Maryam, and Maghsoudi 2020) and two others from (Mobiny
et al. 2020). Specifically, we used trained models following
descriptions of authors and available code to plug in our
framework. The experimental results in table 3 were calcu-
lated as the experimental design of each paper, for instance,
ten-fold cross-validation in (Saeedi, Maryam, and Maghsoudi
2020) and average of the best five trained model checkpoints
in (Mobiny et al. 2020). Furthermore, the contribution of
the semi-supervised strategy was also evaluated in various
metrics for each method.

Performance of Fully Settings: “Fully settings” refers to
utilizing the training method as in algorithm 2 with fusing
all branches. Interestingly, our attention method continues
improving for all of these state of the art methods, resulting
in obtaining a new benchmark without modifying available
architectures. Specifically, we boosted approximately 2% for
the method in (Saeedi, Maryam, and Maghsoudi 2020) (from
90.6% to 92.5%) and second option in (Mobiny et al. 2020)
(from 87.6% to 89.6%) in terms of accuracy metric. It is even
better for the first option of (Mobiny et al. 2020) with an im-
provement up to 3.6% (from 83.2% to 86.8%). This benefit
was also attained for other metrics as F1 and AUC. In short,
this evidence once again confirmed the proposed method’s
effectiveness. A better result can be obtained by just using
an available trained model and inserting it into our frame-
work. In other words, our attention mechanism can be played
as an “enhancing technique” in which the performance of
a specific method can be improved by integrating properly
multiple useful information relevant to doctors’ judgments
by our framework.



Figure 3: Interpreting learned features by t-SNE with the final layers of the fusion branch. Each point is presented together with its original
scan, class activation map (CAM) representation, and infected regions (left to right order). For Covid and Non-Covid cases whose distance is
far away from a decision margin, important heat-map regions (inside the rectangle) locate inside/outside the lung regions (zooming for better
visualization). For points locating near the boundary margin, the heat-map area overlaps both the lung and non-lung area, which indicates for
uncertainty property of the network’s decision.

Performance of Semi-Supervised: The advantages of ap-
plying semi-supervised in final performance are also pre-
sented in table 3. Accordingly, without using semi-supervised
tactics contributes a smaller improvement to the arts in most
cases. Excepting the cases of (Saeedi, Maryam, and Magh-
soudi 2020) with F1 and the first version of (Mobiny et al.
2020) with AUC metric, without semi-supervised is better,
however the difference is not significantly compared to fully
settings.

Interpretable Learned Features
Besides high performance, an ideal algorithm should be ex-
plainable to doctors about its connection between learned
features and the final network decision (Sonntag, Nunnari,
and Profitlich 2020, Zhang et al. 2017). Such property is criti-
cal, especially in medical applications; thereby the reliability
is the most concerning factor (Profitlich and Sonntag 2019).
Furthermore, in our experiment, given that the D3 dataset
only contains two classes Covid or Non-Covid, understanding
how the model makes a decision is even more critical because
it allows doctors to believe or not predict the trained model.
To answer this question, we interpret our learned features
by generating the class activation map (CAM) (Zhou et al.
2016) of the fusion branch and applied t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) (Maaten and Hinton 2008)
method for visualization by compressing 1644-dimensional
features (DenseNet169 case with Self-Trans) into a 3D space.
Figure 3 depicts the pooling features’ distribution on testing
images of the D3 dataset using t-SNE and CAM representa-
tions. Furthermore, infected regions were also shown with
their corresponding CT images.

By considering CAM color and its corresponding labels,
figure 3 indicated that for data points whose positions are far
from the margin decision (both left and right), our system
could focus precisely regions within the lesion lung area for
positive scans and vice versa, the red heat-map parts locate
outside the lungs for healthy cases. This finding matches
the clinical literature that lesion regions inside the lung are

one of the significant risk factors for COVID-19 patients
(Rajinikanth et al. 2020). Meanwhile, the infected branch
also provides useful information by discovering the lungs’
unnormal parts (colored in orange). While these lesions are
rarely present or appear sparingly in healthy cases, it is clear
that this feature plays an important factor in assessing the pa-
tient’s condition. Finally, given data points distributed close
to the margin separate the COVID-19 and non-COVID cases,
learned heat-map regions overlapped for both lung and non-
lung regions, indicating the uncertainty of the model’s pre-
diction. In such situations, utilizing other tests to validate
results and the clinician’s experience is a necessary factor in
evaluating the patient’s actual condition instead of just rely-
ing on the diagnosis of the model. For this property, we once
again understand the importance of an explainable model.
Without such information, we have a high risk of making mis-
takes using automated systems while we could not predict all
possible situations.

Conclusion
In this paper, we have presented a novel approach to im-
prove deep learning-based systems for COVID-19 diagnosis.
Unlike previous works, we got inspired by considering ra-
diologists’ judgments when examining COVID-19 patients;
thereby, relevant information such as infected regions or heat-
maps of injury area is judged for the final decision. Extensive
experiments showed that leveraging all visual cues yields
improved performances of several baselines, including two
best network architectures from (He et al. 2020) and three
other state-of-the-art methods from recent works. Last but
not least, our learned features provide more transparency of
the decision process to end-users by visualizing positions of
attention map. As effective treatments are developed, CT im-
ages may be combined with additional medically-relevant and
transparent information sources. In future research, we will
continue to investigate this in a large-scale study to improve
the proposed system’s performance towards explainability as
an inherent property of the model.
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Appendix
Peformance of Training Strategies

Training Global-Infected Global-Heatmap Fusion
GHIF 0.822 0.813 0.844
GHI-F 0.834 0.841 0.869
G-H-I-F 0.847 0.875 0.871

Table 4: The performance of branches under changing of training
strategies is described in algorithm 2. The results are reported by
computing the average accuracy of DenseNet169 and ResNet50 with
Self-Trans. G: global branch, H: heatmap branch, I: infected branch,
and F: fusion branch. GHIF denotes for training all components
together; GHI-F denotes for training global, heatmap, and infected
simultaneously then continue training fusion branch. Finally, G-H-
I-F indicates for training each part sequentially.
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