
Performance Aspects of Correctness-oriented Synthesis Flows

Fritjof Bornebusch1, Christoph Lüth1,2, Robert Wille1,3,4, Rolf Drechsler1,2
1 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

2 Mathematics and Computer Science, University of Bremen, Germany
3 Integrated Circuit and System Design, Johannes Kepler University Linz, Austria

4 Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria
{fritjof.bornebusch,christoph.lueth}@dfki.de, robert.wille@jku.at, drechsler@uni-bremen.de

Keywords:
Hardware Designs, Proof Assistants, Functional HDLs, Hardware Synthesis, MIPS processor

Abstract:
When designing electronic circuits, available synthesis flows either focus on accelerating the syn-
thesized circuit or correctness. In the quest for ever-faster hardware designs, the correctness of
these designs is often neglected. Thus, designers need to trade-off between correctness and perfor-
mance. The question is how large the trade-off is? This work presents a systematic comparison of
two representative synthesis flows, the LegUp HLS framework as a representative for flows focusing
on hardware acceleration, and a flow based on the proof assistant Coq focusing on correctness.
For evaluation purposes, a 32-bit MIPS processor synthesized using the two flows, and the final
HDL implementations are compared regarding their performance. Our evaluation allows a quan-
titative analysis of the trade-off, showing that correctness-oriented synthesis flows are competitive
concerning performance.

1 Introduction

Electronic circuits have become more and
more complex over time. The goal of synthe-
sis flows is either to synthesize accelerated cir-
cuits which have a high performance or correct
ones which guarantee correctness properties. As
synthesis flows with an emphasis on acceleration
often do not provide the ability to formulate cor-
rectness proofs, these design flows are a severe
issue when applied in safety-critical systems such
as cars, airplanes, or medical devices. This com-
parison leads to the question of whether both
flows can be combined to get the best of both
worlds.

To address this question, we first take a look
at synthesis flows with an emphasis on acceler-
ation. To tackle the synthesis of faster hard-
ware designs, synthesis flows like Bambu [29],
DWARV [27], or LegUp [8, 9] evolved (in the
following called acceleration-oriented synthesis
flows). These flows start with a model writ-
ten in a Domain-specific language (DSL) to de-
scribe hardware designs that are embedded into

the C programming language. After the model
is implemented, it is synthesized into a low-
level implementation in a hardware description
language (HDL) at the Register-Transfer-Level
(RTL), e.g., Verilog. During the automatic syn-
thesis process, different optimizations like loop
or functional pipelining [8, 22] are performed to
accelerate the final implementation.

One problem with these synthesis flows is the
missing definition of a synthesis scheme [15, 2]
and the resulting lack of property verification.
In general, it is unclear (1) how the implemen-
tation is generated from the model in detail;
(2) whether the semantics of the model are cor-
rectly represented by the semantics of the im-
plementation; and (3) how to track and verify
properties stated at the specification level in the
implementation.

In contrast, synthesis flows with an emphasis
on verification like Kami [11] or the one based
on Coq [4] and CλaSH [3] as introduced in [5]
start with a specification in a formal language
that allows the verification of functional prop-
erties about the hardware design (in the follow-

ing called correctness-oriented synthesis flows).
After the specified behavior was verified, an
RTL implementation is synthesized automati-
cally. This way, these flows guarantee a correct
transformation of the semantics of the specifi-
cation to the final implementation and, hence,
ensure the verified properties hold on all levels.

However, while these approaches can guar-
antee correctness, it remains unclear how the
performance of the resulting designs compares
to the performance of designs obtained by the
acceleration-oriented synthesis flows reviewed
above. In fact, it is intuitive to assume that a
focus on verification may harm this performance.
But unfortunately, this possible trade-off has not
been addressed in detail yet. While anecdotal
evidence suggests correctness-oriented flows can
be competitive with respect to performance, we
present a systematic analysis by comparing the
design of a non-trivial circuit with two represen-
tative flows from each camp.

The missing trade-off leaves designers with
the question of whether they should focus
on correctness (motivating the utilization of
a correctness-oriented synthesis flow) or on
performance (motivating the utilization of an
acceleration-oriented synthesis flow).

This paper addresses this question. To this
end, we investigate both design flow paradigms
– using the LegUp high-level synthesis (HLS)
framework [8, 9] and the synthesis flow from [5]
as a representative for acceleration-oriented and
correctness-oriented synthesis, respectively. We
chose those flows as they represent the most ef-
ficient (cf. [26]) and most recent flows available
thus far, implementing the respective concepts.
The foundation of the investigation is a 32-bit
MIPS processor [20], which is synthesizable by
LegUp. The functional behavior of this proces-
sor is specified, verified, and synthesized using
the correctness-oriented flow, described above.

Our quantitative analysis of the processor im-
plementations gives a first impression to gauge
the trade-off between performance and correct-
ness. Even though there will be cases that jus-
tify the application of the acceleration-oriented
flows, our analysis shows the potential of further
research of applying correctness-oriented flows in
an industrial setting, even in cases where perfor-
mance is a critical issue. Moreover, it is easier
to increase the performance of circuits synthe-
sized by correctness-oriented flows than to make
hardware designs following acceleration-oriented
flows correct.

We do not discuss whether an acceleration-
oriented model or a correctness-oriented specifi-
cation is more user-friendly as this question is
too subjective to answer.

This work is structured as follows: first, we
motivate our work by describing and discussing
the LegUp synthesis flow and the considered
problem we address in this work. Section 3 de-
scribes the correctness-oriented synthesis flow in
detail and how it addresses the considered prob-
lem. Section 4 describes our specification of the
processor and how properties are verified. Sec-
tion 5 evaluates and discusses the RTL imple-
mentations. Finally, Section 6 summarizes this
work.

2 Motivation

This section analyzes the LegUp HLS frame-
work synthesis flow [8] as a representative of
a contemporary, state-of-the-art acceleration-
oriented synthesis flow. On average, LegUp syn-
thesizes the fastest hardware designs, which is
the reason for picking it as a representative [26].
This flow analysis shows the missing ability to
verify correctness properties of models imple-
mented for these flows.

An available model of a 32-bit MIPS proces-
sor is used as a running example to analyze the
synthesis flow implemented by the LegUp HLS
framework [20, 8]. The MIPS architecture de-
scribes an instruction set architecture (ISA) for
a reduced instruction set computer (RISC) [25].

2.1 The LegUp Synthesis Flow

The foundation of the LegUp framework is the
LLVM (Low Level Virtual Machine) compiler in-
frastructure [24]. LLVM is a modular compiler
infrastructure for optimized code generation. A
model is transformed into LLVMs internal in-
termediate representation, which is a machine-
independent assembly language using the Clang
compiler front-end and later optimized by a se-
ries of built-in compiler optimizations. LegUp
extends the LLVM backend by generating Ver-
ilog code instead of Machine code [8]. In or-
der to accelerate hardware designs, different ad-
ditional optimizations are performed during the
optimization process by LegUp, e.g., loop or
functional pipelining [8, 22].

These optimizations aim to identify behav-
ior that can be accelerated. Whether an opti-

Model
in hardware DSL

Implementation
in Verilog

automatic

Figure 1: Sketched LegUp synthesis flow for pure
hardware designs. A model in a hardware DSL is
synthesized into an accelerated low-level implemen-
tation in Verilog automatically.

mization can be performed and , therefore, re-
sult in an implementation that satisfies the re-
quired performance properties depends on the
used model.

For modeling designs, LegUp defines a
Domain-specific language embedded into the C
programming language. Two modes are provided
to synthesize a model. The first mode is the
generation of a hybrid processor/accelerator ar-
chitecture. The described behavior of a model
is compiled and executed on a dedicated pro-
cessor that profiles its execution. After profil-
ing, segments of the model are selected that are
accelerated by hardware implementations. The
final part is re-compiling the model into a hy-
brid hardware/software system (Hardware/Soft-
ware Codesign [18]).

The second mode is the automatic synthesis
of a model in a pure and accelerated RTL imple-
mentation, sketched in Figure 1. After the im-
plementation is generated, it can be synthesized
on an FPGA using commercial synthesis tools.
In contrast to the first mode, constructs like
dynamic memory management, recursion, and
floating-point arithmetic are not supported [8].

In this paper, we focus on the second mode.
Since the running example used in this work de-
scribes a 32-bit MIPS processor, the model is
synthesized to pure hardware.

Example 1. In order to analyze the LegUp syn-
thesis flow regarding the verification of proper-
ties, we consider a 32-bit MIPS processor im-
plementation. This implementation is already
the subject of current research [20, 26] and is
sketched in Listing 1. The model implements a
subset of the 32-bit MIPS standard instruction
set, roughly 40 instructions. It also provides an
implementation of a program that is a set of bit-
vectors and follows the bit order for instructions
stated by the 32-bit MIPS instruction specifica-
tion [25].

According to the program counter, each in-
struction is processed in one iteration and is read

i n s = imem [IADDR (pc)] ;
op = in s >> 26 ;
switch (op) {
case R:
funct = in s & 0 x3f ;
shamt = (in s >> 6) & 0 x1f ;
rd = (in s >> 11) & 0 x1f ;
r t = (in s >> 16) & 0 x1f ;
r s = (in s >> 21) & 0 x1f ;
switch (funct) {
case ADDU:
reg [rd] = reg [r s] + reg [r t] ;
break ;

case SLL :
reg [rd] = reg [r t] << shamt ;
break ;

[. . .]
address = in s & 0 x f f f f ;
r t = (i n s >> 16) & 0 x1f ;
r s = (in s >> 21) & 0 x1f ;
case ADDIU:
reg [r t] = reg [r s] + address ;
break ;

[. . .]
case J :
tgtadr = in s & 0 x 3 f f f f f f ;
pc = tgtadr << 2 ;
break ;

Listing 1: Extract from the 32-bit MIPS processor
model that contains the ADDU, SLL, ADDIU, and
J instruction [20]. The model is implemented as
a state machine that iterates over the instructions.
The current instruction is separated into its parts
using logical shift and logical and operations.

from the instruction array. It is separated into
its parts, e.g., the operation code, function code,
or operands. After separation, the instruction
is processed according to its operation code or
function code. The program counter is changed
after instruction execution so that the next in-
struction is read from the instruction array. The
model also contains a register file storing 32 en-
tries and a data memory storing 64 entries. The
execution of the iterations is stopped by a dedi-
cated instruction (syscall 10), which means exit
and is part of the program.

2.2 Considered Problem

LegUp implements a new LLVM backend to syn-
thesize hardware designs to Verilog implemen-
tations [8]. LegUp’s input language defines a se-
quential execution scheme, but hardware designs
define a parallel one. To formally describe the
transformation of a sequential scheme into a par-
allel one, synthesis schemes [15, 2] can be used.
According to the LegUp authors [8], the trans-
formation from LLVM’s internal representation
language to Verilog does not follow such a syn-
thesis scheme. The same goes for synthesis flows
implemented by Bambu [29] and DWARV [27].
As a result, it is unclear how properties formu-
lated at the model level relate to the implemen-

tation and how one could verify them. Moreover,
it is unclear how to formulate properties in the
hardware DSL because of its embedding into C.
While there are tools to state and verify prop-
erties of C programs, such as Frama-C [13] or
Astrée [12], these tools assume a compiler be-
having according to the semantics defined by the
C standard [30]. These assumptions are not the
case for hardware designs as just described.

The missing ability to verify properties of
models using the LegUp synthesis flow leads to
the following questions. First, can we synthe-
size the 32-bit MIPS processor with a different
synthesis flow that allows us to prove its correct-
ness? Second, what would be the performance of
the final implementation compared to the imple-
mentation synthesized by LegUp?

3 Correctness-oriented
Synthesis Flows

In contrast to the acceleration-oriented syn-
thesis flows just introduced, there are other syn-
thesis flows like the correctness-oriented flows
implemented by Kami [11] or [5]. In this section,
we discuss and evaluate both flows to address the
considered problem.

The idea of formally describing hardware us-
ing higher-order logic to prove correctness prop-
erties (formal synthesis) is not new [23, 17, 19].
Higher-order logic was used to avoid the com-
binatorial explosion of test vectors to ensure
correctness and use symbolic reasoning instead.
One of the first frameworks using this method-
ology were LAMBDA/DIALOG [16] and VERI-
TAS [19]. Elaborating this methodology further
description languages using higher-order logic,
such as Hardware ML (HML) [28] and Blue-
spec [1, 6], were invented. The invention of Blue-
spec resulted in a hardware description language
embedded into the proof assistant Coq to provide
an automatic synthesis process that extracts a
low-level implementation from a verified specifi-
cation [11].

Kami and the Coq/CλaSH flow rely on the
proof assistant Coq [4, 10] to specify and ver-
ify hardware designs and synthesize them after-
wards in an implementation automatically. Coq
specifies a functional behavior using the Calcu-
lus of Inductive Constructions (CiC). This for-
mal language combines higher-order logic and a
richly-typed functional programming language,

Specification
in Coq

Model
in Bluespec or CλaSH

Implementation
in VHDL or Verilog

automatic

automatic

Figure 2: The correctness-oriented synthesis flows
start with a specification using the proof assistant
Coq. From the specification, a model in Bluespec
(Kami) or CλaSH ([5]) is extracted. The model is
finally synthesized to an RTL implementation, e.g.,
in VHDL or Verilog.

called Gallina. As higher-order logic is too ex-
pressive for automatic reasoning, a separated
tactic language [14], called Ltac, is provided to
let the engineer guide Coq’s reasoning engine
through the proof. Properties about the spec-
ified behavior are proven in this tactic language.
As the engineer guides the reasoning process,
proof assistants are also called interactive the-
orem provers. The synthesis flow of both Kami
and the one proposed in [5] is sketched in Fig-
ure 2.

To our knowledge, Kami was the first project
that proposes a formal processor specification ex-
tracted to a low-level implementation. Kami
embeds a Domain-specific language (hardware
DSL) into Gallina to describe hardware designs
functional [11]. This language is based on the
Bluespec hardware description language [1]. An
executable Bluespec Verilog model is extracted
from the specification, which is the input lan-
guage for the Bluespec compiler. This compiler
synthesizes a model to a hardware implementa-
tion in Verilog [1].

The hardware design synthesis flow intro-
duced in [5] adds the hardware DSL CλaSH [3]
to Coq’s extraction backend. It uses Coq’s spec-
ification language Gallina to describe the func-
tional behavior of hardware designs. After the
verification process, an executable CλaSH model
is extracted from the specification. CλaSH is
a functional hardware description language that
borrows both its syntax and semantics from
Haskell. The CλaSH model is finally compiled
into a low-level implementation at the Register-
Transfer Level (RTL). The supported HDLs are
SystemVerilog, Verilog, and VHDL.

In contrast to the acceleration-oriented syn-
thesis flows such as implemented by LegUp, both

of these flows formulate a synthesis scheme de-
scribing how the semantics of the specification
propagates to the final implementation. This
synthesis scheme ensures that the proven prop-
erties at the specification level also hold for the
implementation.

Both flows seem capable of addressing the
problem discussed in Section 2.2. They allow
the specification and verification of the 32-bit
MIPS processor and subsequently synthesize the
design on an FPGA. For example, Kami has been
used to implement a RISC-V multi-core proces-
sor as a case study [11]. However, the flow [5],
which we call Coq/CλaSH in the rest of the pa-
per, is more light-weight and flexible, as CλaSH
allows the synthesis of arbitrary combinational
and synchronous sequential hardware designs [3,
5]. Because of its flexibility, we chose this one as
a representative of correctness-oriented hardware
synthesis flows.

However, the question remains whether such
correctness-oriented synthesis flows will result in
less efficient designs concerning the performance
of the synthesized circuit? After all, correctness-
oriented flows emphasized property verification
and not so much on the acceleration of imple-
mentations. For this reason, one would not be
surprised if the implementation synthesized by
the Coq/CλaSH flow would be slower than the
one synthesized by LegUp. Even then, the ques-
tion would remain by how much the design would
be slower.

4 Specification and Verification
of the MIPS Processor

In this section, we describe the specification
of the 32-bit MIPS processor in Gallina, using
the Coq/CλaSH hardware design synthesis flow,
and how properties about it are stated and ver-
ified. By this, we provide an analysis of the
correctness-oriented design flow and a bench-
mark that, afterward, is used to compare to the
acceleration-oriented design flow. The founda-
tion regarding the implemented instructions, reg-
ister file, and memory is the 32-bit MIPS proces-
sor, described in Section 2.1.

4.1 Specification of Sequential
Hardware Designs

To represent sequential circuits functionally in
the Coq/CλaSH synthesis flow, Mealy or Moore
machines are used [5]. These machines abstract
the clock by defining state transitions, which al-
low a time-controlled execution. The advantage
of such a description is that we can prove prop-
erties such as liveness [7] about the hardware de-
sign. The type of the Mealy machine specified
in Gallina is shown in Listing 2. In this case, a
Mealy machine is used, as we need access to the
program counter in the current state for calcu-
lating the output, as we see later.

Fixpoint mealy {S I O: Type}
(f : S −> I −> (S∗O))
(s : S)
(l : l i s t (I))

: l i s t (O)

Listing 2: Function type of the Mealy machine
specified in Gallina [5]. The machine takes a function
as its first argument. This function maps a state (S)
and an input (I) to a tuple of a new state and an
output (S*O). An initial state and a list of inputs is
also required by the function type. The result is a
list of outputs. The types S, I, and O are inferred at
compile time.

The recursive specification of the Mealy ma-
chine calls the function f with the current state
and input, and returns a new state and an out-
put, until every input is processed.

In our case, the program counter, the register
file, and the memory define the state (S). The in-
put (I) is ignored by our specification of function
f, as the benchmark (the program mentioned in
Section 2.1) is a fixed set of instructions. Since an
output (O) is required, the result of an instruc-
tion is returned. Listing 3 shows the instantiated
function type of function f required by the Mealy
machine definition. The registerFileType and the
memoryType are fixed-sized vectors of the length
32 and 64, respectively.

Definition mips
(data : r e g i s t e rF i l eType ∗memoryType∗

Unsigned32 . i n t)
(dummy : bool)

: (r e g i s t e rF i l eType ∗memoryType∗
Unsigned32 . i n t) ∗Unsigned32 . i n t

Listing 3: Function type of the mips function
specified in Gallina.

The first argument is called data. It is a tuple
of the RegisterFileType, the memoryType and the
Unsigned32.int type. The first two types are vec-
tors of a fixed size that represent the arrays of the

LegUp model. The third type represents the pro-
gram counter. The second argument to the mips
function is of the type boolean. The Coq/CλaSH
synthesis flow used in this work extracts a CλaSH
model from a specification. Since the MIPS pro-
cessor model defines a constant set of executed
instructions, there is no actual input, so we call
that argument dummy. The return type is a tu-
ple of the same tuple as the first argument and
a 32-bit unsigned value (Unsigned32.int). This
value defines the output of the Mealy machine,
e.g., the result of an instruction.

After an instruction was executed, the
changed register file, the changed memory, and
the new program counter are returned (the new
state). How the register file or memory is
changed depends on the executed instruction.

4.2 Construction of Instructions

The instructions, together with their operands,
are encoded as 32-bit unsigned integer values.
These instructions are specified in three differ-
ent formats. In addition to the operation code
(op), which they all have in common, they dif-
fer in interpreting their bits. The operation code
always consists of the highest six bits. The first
format is the R-Format that specifies three reg-
isters, one shift amount, and one function code
and has the following layout:

op(6) rs(5) rt(5) rd(5) shamt(5) funct(6)︸ ︷︷ ︸
31 ... 0 bits

The three registers state the first register
operand (rs - 5 bits), the second register operand
(rt - 5 bits), and the register destination (rd - 5
bits). The shift amount (shamt) also has 5 bits,
while the function code (funct) has 6 bits. The
operation code in the R-Format is always zero.
The second format is the I-Format. In addition
to the operation code, this format specifies two
registers and one immediate value and has the
following layout:

op(6) rs(5) rt(5) immediate(16)︸ ︷︷ ︸
31 ... 0 bits

The operation code and the two registers have
the same bit sizes as in the R-Format. The imme-
diate value is 16 bit in size. The third format is
the J-Format and states one address value, which
results in the following format:

op(6) address(26)︸ ︷︷ ︸
31 ... 0 bits

l et i n s t r := nth instructionMemory pc in
let op := getOpCode i n s t r in
match toFormat op with
| RFormat =>
l et funct := getFunct i n s t r in
let shamt := getShamt i n s t r in
let rd := getRD i n s t r in
let r t := getRT i n s t r in
let r s := getRS i n s t r in
match toFunctionCode funct with
| ADDU =>
l et value := add (nth r e g i s t e r F i l e r s)

(nth r e g i s t e r F i l e r t) in
let r e g i s t e r F i l e ’ :=
rep laceAt rd value r e g i s t e r F i l e in
((r e g i s t e r F i l e ’ ,memory ,newPC pc) , value)

| SLL =>
l et value := s l l (nth r e g i s t e r F i l e r t)

(toZ shamt) in
let r e g i s t e r F i l e ’ := rep laceAt
rd value r e g i s t e r F i l e in

let pc ’ := newPC pc in
((r e g i s t e r F i l e ’ ,memory , pc ’) , va lue)

[. . .]
| IFormat =>

l et address := getAddress i n s t r in
let r t := getRT i n s t r in
let r s := getRS i n s t r in
match toOperationCode op with
| ADDIU =>
l et value := add (nth r e g i s t e r F i l e r s)
address in

let r e g i s t e r F i l e ’ := rep laceAt r t value
r e g i s t e r F i l e in

((r e g i s t e r F i l e ’ ,memory ,newPC pc) , value)
[. . .]

| JFormat => match toOperationCode op with
| J =>
l et tgtadr := getTargetAddress i n s t r in
let pc ’ := s l l tgtadr z2 in
((r e g i s t e r F i l e ,memory , pc ’) , pc ’)
[. . .]

end

Listing 4: Extract of the 32-bit MIPS processor
specified using the Coq/CλaSH synthesis flow. It
pattern matches over the instructions to access the
parts of an instruction as defined by the format.

The address value is 26 bits in size.
These formats enable a unique interpretation

of the instruction bits. Our specification of the
32-bit MIPS processor, sketched in Listing 1, is
shown in Listing 4.

To separate an instruction into its parts, we
implemented a couple of functions. We illus-
trate the implementations of these functions by
reference to the ADDU instruction (R-Format),
shown in Listing 4. This instruction adds two
unsigned 32-bit values stored in the register file
under the addresses rs and rt and stores the re-
sult in the register file at the address rd.

• getOpCode: The operation code is selected
by applying right logical shift by the value 26
to the instruction.

• getFunct: The function code is determined
by logical conjunction, which is applied to the
instruction with the hexadecimal value 0x3f.
This value represents a bit vector of 26 0s
followed by six 1s from the most significant

bit (MSB) to the least significant (LSB) (big-
endian).

• getShamt: The shift amount is selected by
first applying right logical shift by the value
6 to the instruction. Afterward, logical con-
junction is applied to that value and the hex-
adecimal value 0x1f. This value represents a
bit vector of 27 0s followed by five 1s, from
MSB to LSB (big-endian).

• getRD: The destination register is selected
by first applying right logical shift by the
value 11 to the instruction. Afterward, logi-
cal conjunction is applied to that value and
the hexadecimal value 0x1f.

• getRT: The first register is selected by first
applying right logical shift operation by the
value 16 to the instruction. Afterward, logical
conjunction is applied, as for the destination
register.

• getRS: The second register is selected by a
right logical shift of the instruction with a
shift amount of 21 first. Afterward, logical
conjunction is applied, as for the destination
register.

After separating the instruction into its parts
as defined by the format, the actual operation
can be performed. The ADDU instruction de-
fines two register file addresses (rs and rt). The
values for these addresses are selected first; nth
registerFile rs and nth registerFile rt. The func-
tion nth returns a fixed-size vector (registerFile)
for a given index (rt). The addition of these two
values is stored in the register file at the index rd
(replaceAt rd value registerFile). The replaceAt
function replaces a value (value) at an index (rd)
of a fixed size vector (registerFile). The final step
is to replace the old register file (registerFile)
with the changed one (registerFile’) and incre-
ment the program counter for the next instruc-
tion.

4.3 Proving Properties

After the MIPS processor was specified in Gal-
lina, properties can be proven about this speci-
fication. Listing 5 shows such a property about
the specified ADDU instruction, which is defined
as a theorem in Coq.

The theorem states that if the operation code
(op) indicates the RFormat and the function
code (funct) indicates the ADDU instruction,
then the values of the register file addresses rs

Theorem mips addu :
f o ra l l r e g i s t e r F i l e : r eg i s t e rF i l eType ,
f o ra l l memory : memoryType ,
f o ra l l pc : Unsigned32 . int ,
f o ra l l dummy : bool ,

l et i n s t r := nth instructionMemory pc in
let op := getOpCode i n s t r in
let funct := getFunct i n s t r in
let rd := getRD i n s t r in
let r t := getRT i n s t r in
let r s := getRS i n s t r in
let value := add (nth r e g i s t e r F i l e r s)

(nth r e g i s t e r F i l e r t) in

toFormat op = RFormat /\
toFunctionCode funct = ADDU −>
mips (r e g i s t e r F i l e , memory , pc) dummy =

((rep laceAt rd value r e g i s t e r F i l e ,
memory ,newPC pc) , va lue) .

Proof .
proveRFormat .

Qed .

Listing 5: Theorem specified in Gallina to verify that
the ADDU instruction adds the two values of the
register addresses (rt and rs) and stores the result at
the register file address (rd).

Ltac proveRFormat :=
i n t r o s ;
match goa l with
| [H : |−] =>

de s t ruc t H as [H1 H2] ;
unfo ld mips ;
match goa l with
| [op : |−] =>

unfo ld op in H1 ;
match goa l with
| [i n s t r : |−] =>

unfo ld i n s t r in H1 ;
r ewr i t e H1 ;
match goa l with
| [funct : |−] =>

unfo ld funct in H2 ;
unfo ld i n s t r in H2 ;
r ewr i t e H2 ;
auto

end
end

end
end .

Listing 6: proveRFormat tactic in Ltac. The tactic
allows the proving of properties that have the format
shown in Listing 5. This format requires splitting the
instruction in op, funct, etc., the instruction format
to be RFormat, and the specification of the function
code, e.g., ADDU.

and rt are added together. The result is stored
in the register file at address rd. To verify the
final result is calculated correctly, a few state-
ments are defined, starting with the let keyword.

Coq’s tactic language Ltac allows the specifi-
cation of user-defined proof methods [14]. We
specified a proof method called proveRFormat
that allows proving properties about instruc-
tions, which implement the R-Format and fol-
low the theorem structure described above. The
tactic is seen in Listing 6.

The proveRFormat tactic is built from tac-
tics already provided by Coq. Coq splits a proof
into a context that contains introduced variables,
hypotheses, and a goal that is to be proven by
the context. The proof is finished if there are
no subgoals to prove. The first tactic that is
used is the intros tactic. This tactic introduces
variables, such as registerFile or op and the hy-
pothesis of the implication. The next step is to
match the hypothesis – Coq names the hypoth-
esis with H by default. Since the hypothesis is
an and expression, we destruct it into two hy-
potheses (H1 and H2) and replace the name mips
with its specification in the subgoal by calling
the unfold tactic. The op and instr variables are
unfolded in the hypothesis H1 to rewrite it in
the context. This rewriting reduces the subgoal
to the second match statement (toFunctionCode
funct seen in Listing 4). The final steps are to
unfold the funct and instr variables in the sec-
ond hypothesis (H2), applying H2 to the context
by the rewrite tactic, and finish the proof ap-
plying the auto tactic. The auto tactic tries to
automatically solve a goal by introducing new
variables and hypotheses to the context and ap-
plying built-in tactics to the resulting subgoals.
If the auto tactic fails, the subgoal remains un-
changed. Similarly, proof methods for instruc-
tions implementing either the I-Format or the
J-Format were specified.

These proof methods simplify the verification
of properties about instructions that have al-
ready been implemented and those that might
be added in the future. The specification and
verification of the theorems for the rest of the
instructions work analogously to the one above.
Due to size constraints, we cannot show them
and the specification of the proof methods here
in detail1.

After verifying that the specified instructions
are correct using the theorem formats and tac-
tics described above, other properties have to
be shown that the processor specification is cor-
rect and functionally behaves as expected. One
of those properties is that the NOP (no oper-
ation) instruction is interpreted as specified by
the MIPS architecture standard [25]. This in-
struction does not change any state but only in-
crements the program counter. For the 32-bit
MIPS processor NOP is not specified as an ex-
tra operation code but maps to the shift logical

1The specification of the 32-bit MIPS proces-
sor can be found under: https://gitlab.informatik.
uni-bremen.de/fritjof/mips-processor

Theorem mips nop :
f o ra l l r e g i s t e r F i l e : r eg i s t e rF i l eType ,
f o ra l l memory : memoryType ,
f o ra l l pc output : Types . Unsigned32 . int ,
f o ra l l dummy : bool ,

l et nop := Ox00000000 in

let r e g i s t e r F i l e ’ := rep laceAt
(and (s r l nop z11) Ox1f)
(s l l (nth r e g i s t e r F i l e
(and (s r l nop z16) Ox1f))
(to In t (and (s r l nop z6) Ox1f)))
r e g i s t e r F i l e in

let output := s l l
(nth r e g i s t e r F i l e
(and (s r l nop z16) Ox1f))
(to In t (and (s r l nop z6) Ox1f)) in

nth instructionMemory pc = nop −>
mips (r e g i s t e r F i l e ,memory , pc) dummy =
((r e g i s t e r F i l e ’ ,memory ,newPC pc) , output) .

Listing 7: The NOP instruction is implemented for
the MIPS processor as: sll r0 r0 0. The value of
register r0 is logically shifted left by 0, and the
result is stored in r0. The theorem mips nop ensures
this behavior. Note that the register r0 returns the
constant zero [25].

left operation (SLL), described in Listing 4. The
theorem shown in Listing 7 verifies this behavior.

The NOP instruction is a 32-bit vector con-
taining only zeros (Ox00000000). This instruc-
tion does not change the content of the initial
register file, but the SLL operation returns a new
register file, as seen in Listing 4. For this reason,
the expression registerFile’ is specified. As the
processor interprets the NOP instruction as the
SLL operation, the output specifies the result of
this operation. Note that this theorem cannot be
proven using the proveRFormat as it does not
contain a conjunction in the hypothesis, i.e., it
does not follow the required format.

In this section, we have specified and verified
a 32-bit MIPS processor using the Coq/CλaSH
synthesis flow. The verification of properties suc-
cessfully addresses the deficiencies of the LegUp
synthesis flow, as described in Section 2.2. The
specification was automatically synthesized to a
Verilog implementation using CλaSH, to answer
the question of how the performance of the two
implementations compares.

5 Evaluation

In this section, we evaluate and discuss the
performance of both the acceleration-oriented
and correctness-oriented synthesis flow. The
foundation is the RTL implementation of the 32-
bit MIPS processor synthesized by LegUp and

https://gitlab.informatik.uni-bremen.de/fritjof/mips-processor
https://gitlab.informatik.uni-bremen.de/fritjof/mips-processor

Coq/CλaSH. Both implementations implement
the same instructions and execute the program,
described in Section 2.1. In the following, the re-
sults obtained by both implementations are sum-
marized first. Afterwards, we discuss what con-
clusions can be drawn from that.

5.1 Results

Table 1 shows the performance results of both
implementations. The values in this table should
be considered an approximation as they highly
depend on the FPGA the hardware design is syn-
thesized for; they indicate rather than quantify
exactly the relation between the two synthesized
designs.

We now explain the individual rows of Ta-
ble 1 in detail. The first row contains the max-
imum clock frequency FMAX at which the final
circuit can be operated. As we see, the circuit
synthesized by the LegUp HLS framework can
be operated at a higher frequency than the one
synthesized by Coq/CλaSH.

The second row contains the clock cycles
needed by the processor implementations to exe-
cute the example program (clock latency). These
values are evaluated by simulation using Intel®

Quartus® ModelSim. For simulation, a clock
cycle of 20 ns was used. Together with the maxi-
mum frequency, this results in the time it takes in
µs to execute the program (Wall-Clock) provided
by the model, described in Section 2.1. The im-
plementation synthesized by LegUp takes 79.5 µs
for execution, while the implementation synthe-
sized by Coq/CλaSH takes 218.76 µs.

The fourth row contains the Adaptive Logic
Modules (ALMs) called Lookup Tables (LUTs)
in the Xilinx Vivado synthesis tool. These are
the basic building blocks for hardware designs
on an FPGA. As seen, the circuit synthesized
by LegUp consumes 2% of the available ALMs,
while the one synthesized by Coq/CλaSH con-
sumes 3% of the available ALMs. To better clas-
sify these values, we take a look at the last row
of the table. This row contains the total block
memory in bits, which is essentially the block
RAM of the FPGA. The memory of an FPGA
is separated into distributed RAM (ALMs) and
block RAM. LegUp stores each local and global
memory in the separated block RAM by default.
For larger memories, the block RAM is much
faster than distributed RAM. The implementa-
tion synthesized by Coq/CλaSH uses no block
Ram but stores the entire design in distributed

RAM.
The fifth row of Table 1 contains the con-

sumed registers. To classify these values, we con-
sider the design of the 32-bit MIPS processor.
The LegUp model of the processor changes the
values of an array in place, so only one array, e.g.
for the register file, is needed. The functional
foundation of the Coq specification and thus the
CλaSH model requires single assignment of vari-
ables. For this reason, the underlying Mealy ma-
chine needs the changed register file as part of the
new state, as seen in Listing 4. The synthesis of
this behavior results in the consumption of more
registers.

The sixth row contains the amount of used
Digital Signal Processing (DSP) blocks. These
blocks describe a dedicated functionality, e.g.
multipliers, which are provided by the synthesis
tool. The usage of those DSP blocks is automat-
ically inferred by analyzing the RTL code.

5.2 Discussion

In this section, we discuss the results of our eval-
uation described above. Acceleration-oriented
synthesis flows such as LegUp define a model
in a hardware DSL embedded into C. The low-
level nature of this language allows a more
acceleration-oriented implementation of hard-
ware designs, but lacks the verification of prop-
erties, as described in Section 2.2.

On the other hand, correctness-oriented syn-
thesis flows such as the Coq/CλaSH flow de-
fine a behavior functionally at a higher level of
abstraction, making them easier to understand,
and hence less error-prone [21], and susceptible
to verification in the first place. It does, how-
ever, have an impact on performance, resulting
in lower clock frequency or a higher amount of
clock cycles.

Our evaluation shows that although the im-
plementation using the correctness-oriented flow
was in general slower than the one using LegUp,
we were able to synthesize a 32-bit MIPS proces-
sor which is in the same ball-park concerning per-
formance indicators like clock frequency or exe-
cution time using the standard tool chain of the
Coq/CλaSH flow. This systematic comparison
shows the huge potential of correctness-oriented
synthesis flows, showing that these flows result
in circuits with competitive performance.

Research projects like Kami show that the
synthesis of verified specifications is a subject
of current research. The successful synthesis

Table 1: Evaluation of the two 32-bit MIPS processor implementations. The LegUp column contains the values
based on the implementation synthesized by the LegUp HLS framework. The Coq/CλaSH column contains the
values of the synthesized design based on the Coq/CλaSH synthesis flow used in this work, which is discussed
in Section 3.

LegUp Coq/CλaSH

FMAX in [MHz] 63.36 55.86
Cycles 5035 12220
Wall-Clock in µs 79.5 218.76
ALMs 1045 / 56480 (2%) 1772 / 56480 (3%)
Registers 939 1644
DSP Block 6 / 156 (4%) 2 / 156 (1%)
Total Block Memory Bits 3072 / 7024640 (< 1%) 0 / 7024640 (0%)

The RTL implementations in Verilog were synthesized for the Cyclone V family using the commercial synthesis tool Intel®

Quartus® Prime.

of a RISC-V processor shows the potential of
correctness-oriented flows [11]. When hardware
is used in safety-critical systems, verifying the
correct functional behavior becomes essential;
our evaluation demonstrates that correctness-
oriented flows can achieve this without sacri-
ficing too much performance. Moreover, there
is still a huge unexplored potential for per-
formance gains in correctness-oriented flows,
whereas adding verification to an acceleration-
oriented flow seems, at first sight, far more chal-
lenging.

For these reasons, our analysis suggests that
correctness-oriented synthesis flows can be em-
ployed when the need for verification arises in a
performance-oriented environment.

6 Conclusion

In this work, we analyzed the acceleration-
oriented hardware design synthesis flows as im-
plemented by Bambu [29], DWARV [27], and
LegUp [8] and showed their missing ability of
property verification. In contrast, we consid-
ered correctness-oriented hardware design syn-
thesis flows, as implemented by Kami [11] or the
Coq/CλaSH synthesis flow [5]. We address the
question of a quantitative analysis of the trade-
off concerning the performance between both
flows by comparing a non-trivial circuit designed
by two representative flows. The designed cir-
cuit was a synthesized RTL implementation of a
32-bit MIPS processor [20]. LegUp was chosen
as a representative of the acceleration-oriented
synthesis flows, while the Coq/CλaSH flow was
chosen as a representative of the correctness-

oriented flows.
Our evaluation, seen in Table 1, allows a

quantitative analysis of the trade-off between
performance and correctness. This paper indi-
cates that using a hardware design flow allow-
ing correctness proofs does not require sacrificing
much performance in the implemented system.
However, if more performance is needed we ar-
gue that it is easier to increase the performance
of circuits synthesized by correctness-oriented
flows than to add correctness to acceleration-
oriented flows. For this reason, we suggest fur-
ther research to enhance the performance of
correctness-oriented flows.

Besides the MIPS instruction set architecture
the open RISC-V instruction architecture set [31]
has got a lot of attention over the last decade.
For example, Kami provides a verified 32-bit
RISC-V processor that implements the integer
instruction set. It would be interesting how the
Coq/CλaSH approach compares to the low-level
implementation synthesized by Kami concerning
performance. This comparision, however, would
be future work as it is outside the scope of this
work.

Acknowledgments

This work was supported by the German
Federal Ministry of Education and Research
(BMBF) within the project SELFIE under
grantno. 01IW16001, the LIT Secure and Cor-
rect Systems Lab funded by the State of Upper
Austria, as well as by the BMK, BMDW, and
the State of Upper Austria in the frame of the
COMET program (managed by the FFG).

References

[1] Arvind. “Bluespec: A language for hard-
ware design, simulation, synthesis and ver-
ification Invited Talk”. In: IEEE Computer
Society, 2003, p. 249.

[2] Christiaan Baaij and Jan Kuper. “Using
Rewriting to Synthesize Functional Lan-
guages to Digital Circuits”. In: Trends
in Functional Programming (TFP).
Vol. 8322. Lecture Notes in Computer
Science. Springer, 2013, pp. 17–33.

[3] Christiaan Baaij et al. “CλaSH: Struc-
tural Descriptions of Synchronous Hard-
ware Using Haskell”. In: Euromicro Con-
ference on Digital System Design (DSD).
2010, pp. 714–721.

[4] Yves Bertot and Pierre Castéran. Inter-
active Theorem Proving and Program De-
velopment - Coq’Art: The Calculus of In-
ductive Constructions. Texts in Theoreti-
cal Computer Science. An (EATCS) Series.
Springer, 2004.

[5] Fritjof Bornebusch et al. “Towards Au-
tomatic Hardware Synthesis from For-
mal Specification to Implementation”. In:
Asia and South Pacific Design Automation
Conference (ASP-DAC). 2020.

[6] Thomas Bourgeat et al. “The essence of
Bluespec: a core language for rule-based
hardware design”. In: Proceedings of the
41st ACM SIGPLAN International Con-
ference on Programming Language Design
and Implementation, PLDI 2020, London,
UK, June 15-20, 2020. Ed. by Alastair
F. Donaldson and Emina Torlak. ACM,
2020, pp. 243–257. doi: 10.1145/3385412.
3385965. url: https://doi.org/10.1145/
3385412.3385965.

[7] Manfred Broy. “Verifying of interface as-
sertions for infinite state Mealy machines”.
In: Journal of Computer and System Sci-
ences 80.7 (2014), pp. 1298–1322.

[8] Andrew Canis et al. “LegUp: An open-
source high-level synthesis tool for FPGA-
based processor/accelerator systems”. In:
ACM Trans. on Embedded Computing Sys-
tems 13.2 (2013), 24:1–24:27.

[9] Andrew Canis et al. “LegUp High-Level
Synthesis”. In: FPGAs for Software Pro-
grammers. Ed. by Dirk Koch, Frank Han-
nig, and Daniel Ziener. Springer, 2016,
pp. 175–190.

[10] Adam Chlipala. Certified Programming
with Dependent Types - A Pragmatic In-
troduction to the Coq Proof Assistant. MIT
Press, 2013.

[11] Joonwon Choi et al. “Kami: a platform for
high-level parametric hardware specifica-
tion and its modular verification”. In: Pro-
ceedings of the ACM on Programming Lan-
guages (PACMPL) 1.ICFP (2017), 24:1–
24:30.

[12] Patrick Cousot et al. “The ASTREÉ An-
alyzer”. In: European Symposium on Pro-
gramming. 2005, pp. 21–30.

[13] Pascal Cuoq et al. “Frama-C - A Soft-
ware Analysis Perspective”. In: Software
Engineering and Formal Methods. 2012,
pp. 233–247.

[14] David Delahaye. “A Tactic Language for
the System Coq”. In: International Confer-
ence on Logic for Programming and Auto-
mated Reasoning (LPAR). Vol. 1955. Lec-
ture Notes in Computer Science (LNCS).
Springer, 2000, pp. 85–95.

[15] Dirk Eisenbiegler and Ramayya Ku-
mar. “Formally embedding existing high
level synthesis algorithms”. In: Cor-
rect Hardware Design and Verification
Methods, IFIP WG 10.5 Advanced Re-
search Working Conference, (CHARME).
Vol. 987. Lecture Notes in Computer Sci-
ence (LNCS). Springer, 1995, pp. 71–83.

[16] Simon Finn et al. “Formal system design —
interactive synthesis based on computer-
assisted formal reasoning”. In: Applied
Formal Methods for Correct VLSI Design.
IMEC-IFIP International Workshop. Else-
vier, Nov. 1989, pp. 97–110.

[17] Mike Gordon et al. “Automatic Formal
Synthesis of Hardware from Higher Order
Logic”. In: Electron. Notes Theor. Comput.
Sci. 145 (2006), pp. 27–43.

[18] Soonhoi Ha and Jürgen Teich, eds.
Handbook of Hardware/Software Codesign.
Springer, 2017.

[19] Keith Hanna, N. Daeche, and M. Longley.
“Formal Synthesis of Digital Systems”. In:
International Workshop on Applied Formal
Methods For Correct VLSI Design. 1989,
pp. 532–548.

https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965

[20] Yuko Hara et al. “Proposal and Quantita-
tive Analysis of the CHStone Benchmark
Program Suite for Practical C-based High-
level Synthesis”. In: Journal of Informa-
tion Processing (JIP) 17 (2009), pp. 242–
254.

[21] J. Hughes. “Why Functional Program-
ming Matters”. In: Computer Journal 32.2
(1989), pp. 98–107.

[22] Cheng-Tsung Hwang, Yu-Chin Hsu, and
Youn-Long Lin. “Scheduling for Func-
tional Pipelining and Loop Winding”. In:
Design Automation Conference (DAC).
ACM, 1991, pp. 764–769.

[23] Ramayya Kumar et al. “Formal Synthe-
sis in Circuit Design - A Classification and
Survey”. In: International Conf. on Formal
Methods in CAD. Vol. 1166. Lecture Notes
in Computer Science (LNCS). Springer,
1996, pp. 294–309.

[24] Chris Lattner and Vikram S. Adve.
“LLVM: A Compilation Framework for
Lifelong Program Analysis & Transfor-
mation”. In: International Symposium
on Code Generation and Optimization
(CGO). IEEE Computer Society, 2004,
pp. 75–88.

[25] MIPS. MIPS® Architecture for Program-
mers Volume II-A: The MIPS32® Instruc-
tion Set Manual. Revision 6.06. https :
/ / s3 - eu - west - 1 . amazonaws . com /
downloads - mips / documents / MD00086 -
2B-MIPS32BIS-AFP-6.06.pdf. 2016.

[26] Razvan Nane et al. “A Survey and Evalua-
tion of FPGA High-Level Synthesis Tools”.
In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems
35.10 (2016), pp. 1591–1604.

[27] Razvan Nane et al. “DWARV 2.0: A CoSy-
based C-to-VHDL hardware compiler”. In:
International Conference on Field pro-
grammable Logic and Applications (FPL).
IEEE, 2012, pp. 619–622.

[28] John W. O’Leary et al. “HML: A Hard-
ware Description Language Based on Stan-
dard ML”. In: Computer Hardware De-
scription Languages and their Applica-
tions, Proceedings of the International
Conference on Computer Hardware De-
scription Languages and their Applica-
tions CHDL. Vol. A-32. IFIP Transactions.
North-Holland, 1993, pp. 327–334.

[29] Christian Pilato and Fabrizio Ferrandi.
“Bambu: A modular framework for the
high level synthesis of memory-intensive
applications”. In: International Conference
on Field programmable Logic and Applica-
tions (FPL). IEEE, 2013, pp. 1–4.

[30] Programming languages — C. ISO/IEC
Standard 9899:1999(E). Second Edition.
1999.

[31] RISC-V. The RISC-V Instruction Set
Manual Volume II: Privileged Architec-
ture. Version 1.12-draft. https : / / github .
com / riscv / riscv - isa - manual / releases /
download/draft-20200727-8088ba4/riscv-
privileged.pdf. 2020.

https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-AFP-6.06.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200727-8088ba4/riscv-privileged.pdf

