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Abstract—Silent Speech Brain-Computer Interfaces try to de-
code imagined or silently spoken speech from brain activity. This
technology holds big potential in various application domains,
e.g. restoring communication abilities for handicapped people,
or in settings where overtly spoken speech is not an option due
to environmental conditions, e.g. noisy industrial or aerospace
settings. However, one major drawback of this technology still
is the limited number of words which can be distinguished at
a time. This work therefore introduces the concept of Semantic
Silent Speech BCIs, which adds a layer for semantic category
classification prior to the actual word classification to multiply
the number of classifiable words in Silent Speech BCIs many
times over. We evaluated the possibilities of classifying 5 different
semantic categories of words during a word imagination task by
comparing various feature extraction and classification methods.
Our results show remarkable classification accuracies of up to
95% for the single best subject with a Common Spatial Pattern
(CSP) feature extraction and a Support Vector Machine (SVM)
classifier and a best average classification accuracy of 60.44% for
a combination of CSP and a Random Forrest (RF) classifier. Even
a cross-subject analysis over the data of all subjects lead to results
above the chance level of 20%, with a best performance of 43.54%
for a self assembled feature vector and a RF classifier. Those
results clearly indicate that the classification of the semantic
category of an imagined word from EEG activity is possible
and therefor lay the foundation for Semantic Silent Speech BCIs
in the future.

Index Terms—Silent Speech, BCI, EEG, Semantic Processing

I. INTRODUCTION

Silent Speech Interfaces (SSI) are defined in Human-
Computer Interaction as the the concept of speech commu-
nication in the absence of an audible acoustic signal [1] and
have become a widely researched topic in the field of Brain-
Computer Interfaces (BCIs) over the last years [2]–[4]. Studies

showed that it is possible to decode imagined words from brain
activity measured invasively at the surface of the brain [5], [6]
but even with non-invasive measures like Electroencephalogra-
phy (EEG) [7]–[10]. One major drawback of the existing non-
invasive approaches for such an alternative communication
pathway however, is the maximum number of distinguishable
words. The presented approach in [11] achieved a classification
accuracy of 70% for a three word classification problem on
EEG data, which makes those approaches appear applicable
even in real world scenarios. However, three words result
in limited possibilities concerning communication. As soon
as the number of words increases the classification accuracy
decreases significantly. [12] reported a classification accuracy
of 58.41% for 5 silently spoken words and [13] even managed
to classify 12 words from EEG activity with an accuracy of
around 34.2%. These results are astonishing and clearly above
chance level, but far below the expectations towards a classifier
applied for a real world communication and application.

We propose to bridge this gap arising from the trade-off be-
tween number of classifiable words and classification accuracy
in EEG-based SS-BCIs by a 2-layer approach similar to those
mentioned in [14], [15] and start with a classification of the
semantic category of a word before proceeding to classifying
the word itself. Some researchers have been exploring this
direction in the past: [14] used a limited set of 2 categories
and the results of [15] are questionable due to their study setup
as pointed out in [16] but the concept itself has the potential
to multiply the number of classifiable words in Silent Speech
BCIs many times over.
In one of our last studies we showed the feasibility of classify-
ing words from 5 different semantic categories, namely action
words, living, locational, non-living, and numbers, in object
based decision tasks [17]. The participants had to answer978-1-7281-4707-9/20/$31.00 ©2020 IEEE



simple yes/no-questions concerning the words in order to
trigger conscious processing. The results yield a classification
accuracy of 84.61% for the single best subject for a Common
Spatial Pattern (CSP) feature extraction method and Random
Forrest (RF) classifier and 57,29% classification accuracy on
average with the same setup. Those results clearly indicated
the potential of this method for the use in SS-BCIs. In
this study we went one step further and classified semantic
categories during actual word imagination in order to prove
the feasibility in SS-BCI applications.

With this paper we provide 3 primary contributions to the
field of Silent Speech BCIs:

• We introduce the concept of Semantic Silent Speech BCIs
which makes use of semantic classification prior to word
classification in order to increase the number of detectable
words in SS-BCIs.

• We show the feasibility of classifying semantic categories
from EEG activity for the first time for 5 different
semantic categories during actual word imagination.

• We provide recommendations for the best setup for
semantic category detection in SS-BCIs by comparing
the performance of different feature extraction and clas-
sification methods.

II. MATERIAL AND METHODS

The goal of this study was to classify semantic categories
of imagined words from EEG activity and to compare the
results to our previous study for classification of semantic
categories in object based decision tasks. [17] This study
therefore followed a similar setup and used the same data
analysis methods in order to make the results of both studies
comparable. The following section gives an overview over the
material and methods used and introduces the concept of the
Semantic Silent Speech BCI.

A. Semantic Silent Speech BCI

The concept of the Semantic Silent Speech BCI tries to
increase the number of distinguishable words of a Silent
Speech BCI by integrating a second layer of semantic category
classification prior to the actual word classification layer. The
idea is based on a study of Huth et al [18] which showed, that it
is possible to cluster patterns of similar brain activity for words
with the same semantic category while the participants were
listening to short stories with those words embedded. Those
similar patterns could not only be shown for the individual but
also among the brain activity of all subjects which indicates
that it might be possible to train a classifier on certain patterns
of brain activity for semantic categories and achieve single-
trail classification. The main advantage and purpose in the
scope of our work however lies on the increased number of
words which might be classified by adding this additional
semantic layer to Silent Speech BCIs.

Let n be the number of different semantic categories and m
be the number of different words equally distributed among
those categories in a Silent Speech task. With the additional se-
mantic layer, we can divide the original m-class classification

task (resulting from the overall m numbers of words) into a n-
class classification task followed by an m

n -class classification
task. Given the fact that the semantic processing in the brain
was shown to be present spread over the whole cortex [18]
and that imagined speech production mainly evokes the left
hemisphere around Wernicke’s area [19], the feature space
and sources of those two related cognitive processes, speech
production and semantic processing, should be separable and
provide distinguishable features. By decomposing the original
n-class classification task into smaller classification tasks with
a separated feature space, we expect the number of classifiable
words to increase by n (= number of semantic categories) in
the best case.

B. Subjects

The study was conducted with 20 healthy subjects (age
21–29). All subjects were native German speakers who were
right-handed and had a normal or corrected-to-normal vision.
Subjects where chosen to have the same mother tongue,
to prevent confounding neurolinguistic effects on the EEG
due to foreign language use [20], and prevent multilingual
requirements to the setup and subject population [21]. The
subjects were asked not to consume caffeinated substances
at least three hours before the starting of data collection as
they have a proven potential to affect the EEG recordings
[22]. Each subject was introduced to the task, and informed
consent was obtained from all subjects for scientific use of the
recorded data. The data was acquired in a dim light room with
minimized distractions like external sound, mobile devices and
others, where the voluntary participants were asked to sit in a
comfortable chair to prevent unnecessary muscle movements
to reduce noise and artifacts in the EEG, which could emerge
from mental stress, unrelated sensory input, physiological
motor activity and electrical interference. Three subjects (1,2
and 19) were excluded due to poor electrode-to-skin contact
later, leaving a total of 17 subjects (8 male, 9 female).

C. Recording

EEG signals were recorded using a wireless 32 channel elec-
troencephalograph system namely g.Nautilus with g.Scarabeo
electrodes (g.tec medical engineering GmbH, Austria). The
sampling rate was set to 500 Hz. The 10-20 International
System of electrode placement was used to locate the elec-
trodes. This configuration is believed to cover the whole scalp
resulting in the capturing of spatial information from the brain
recordings effectively which provided the optimal setup for our
study based on the findings of [18].

D. Study Setup

The objective of this study was to decode semantic cat-
egories of imagined words using EEG signals. Therefor the
task included the imagination of words from different semantic
categories. The overall experimental paradigm for recording
the silent speech part is depicted in Figure 1. Each trial
starts with a fixation cross shown in the time interval of t1.
Subsequently, the word was presented on the computer screen,



which was later followed by the blinking of the fixation cross
once. Then the participant was instructed to imagine the word
by making use of sub-vocalization, i.e., saying the word in
your mind once. A short break of 2s followed the next trial.
The same 5 semantic categories were selected as during our
last study [17], originally based on the findings of [18],
namely: living, non-living, numbers, locations and action
verbs. Each category contained 10 words to be processed,
Table I gives an detailed overview.
In order to prevent classifying arbitrary brain states based on
block-level temporal correlations rather than stimulus-related
activity [23], we chose the partial-block-wise presentation
paradigm which was introduced in [17]. In this procedure
the words were presented in blocks of 10 according to their
category. The words inside the blocks were randomly shuffled,
each block was presented randomly once per trail and the
experiment consisted of 4 trails, resulting in a total number of
200 samples per participant.

Fig. 1. Procedure of visual output on the screen during the silent speech
imagination task, as done for 5 semantic categories in each trial (t0 = ∞,
t1 = (15.± 5.)s, t2 = 2s, t3 = .30s and t4 = 2.5s).

E. Data analysis

Preprocessing A basic preprocessing, including filtering and
referencing, was applied to remove unwanted artifacts. Chan-
nels containing obvious signal quality issues as well as data
segments identified to contain strong artifacts were labeled bad
and thus, excluded from further analysis. The EEG was filtered
with a second-order Butterworth notch filter with a lower
cutoff frequency of 48Hz and an upper cutoff frequency of
52Hz, to remove power line noise. A fourth-order Butterworth

TABLE I
SELECTED SEMANTIC CATEGORIES AND ITEMS PRESENTED IN THE SILENT

SPEECH TASK, ORIGINALLY IN GERMAN, TRANSLATED TO ENGLISH.

Category Items

Locational
Kitchen, Bathroom, Cellar, Garden, Court,
Bedroom, Living room, Staircase, Corridor,
Attic

Actions Throw, Open, Lift, Lower, Switch on,
Switch off, Put, Place, Push, Pull

Living Dog, Cat, Peacock, Lamb, Pigeon, Mother,
Father, Grandmother, Grandfather, Doctor

Non-living
Light, Shutters, Heater, Television,
Telephone, Computer, Stove, Refrigerator,
Washing machine, dryer

Numbers One, Two, Three, Four, Five, Six, Seven,
Eight, Nine, Ten, Eleven

was applied for high pass filtering at a cutoff frequency of
1Hz as recommended by [24]. Lowpass filtering was done
using a 17th order Chebyshev type 2 filter with a cutoff
frequency of 200Hz preserving the frequency range up to
high-gamma [25], and a minimum of 60dB attenuation in the
stop band, to obtain adequate roll-off. All the electrodes were
referenced to common average over all electrodes to achieve
low signal-to-noise ratio [26]. Further denoising of the EEG
was done using a joined method of Independent Component
Analysis (ICA) and wavelet denoising, referred to as wavelet-
enhanced independent component analysis (wICA) [27] to
remove artifacts.
Epoching The continuous EEG signal was cut into smaller
epochs of different length for further analysis. Epochs were
extracted in reference to the stimulus onset from the pre-
processed data. To further analyze the impact of different
epoching duration, three intervals were chosen, namely, T1 =
0.3s − 0.8s, T2 = 0.3s − 1.5s and T3 = 0s − 2s. T1 and
T2 were supposed to cover the point around 400 ms after
stimulus onset, as studies on semantics assume this to be the
earliest point information is consciously processed [14]. The
third interval was chosen as the entire period between stimulus
onset and end of the task in order to cover as much information
as possible.
Feature Extraction We investigated two feature extraction
methods, first we assembled a feature vector containing fea-
tures from the time and frequency domain and based on the
different state-of-the-art literature in silent speech detection
[28]–[31]. The features were extracted with the open-source
python module PyEEG [32]. As a second feature extraction
method we chose Common Spatial Patterns (CSP) which is a
frequently used technique in BCI applications [33], [34].
Originally the CSP algorithm is developed for binary clas-
sification problems, but there are some studies showing the
multiclass classification with One-vs-all scheme [35]–[37]. In
this study, we implemented the multiclass classification setup
as mentioned in [17] with five labels and a chance level at
20%.

Classification Classification was done based on two strate-
gies, cross-subject and within-subject. In the cross-subject



analysis, the data from all subjects is taken together as a single
input in order to find similar patterns among subjects while
in within-subject analysis, the performance of the classifier is
computed on the individual subjects data set. We used Support
Vector Machine (SVM) and Random Forest (RF), because of
their frequent use in EEG-based Silent Speech BCIs [7], [10],
[38], both evaluated using grid search and five-fold cross-
validation with a test train split of 0.1. For the cross-subject
data set, we further used a deep artificial neural network, the
Multilayer Perceptron using the ADAM and SGD optimizer
with mean-squared error as loss function. In this case grid
search was performed to find the optimal number of hidden
layers and chose the best learning rate in addition to the
activation function. Unfortunately, within-subject analysis with
neural networks was not possible due to the limited availability
of data of an individual subject. All the experiments were
multi-class classification problems with five labels resulting
in a chance level of 20%.
Performance metrics To evaluate the performance of the
classifiers, we have calculated the classification accuracy.
Accuracy is the most commonly used performance metric and
defined as the ratio of the total number of correct predictions
to the total number of predictions overall. We have further-
more created the confusion matrix and classification reports
including F1-score, Precision and Recall and present them in
this work for the best performing subjects.

III. RESULTS

Table II shows the results for the cross-subject data set
evaluated with the different classifiers (SVM, RF, MLP),
feature extraction methods (CSP, FV) and concerning the
different epoching intervals (T1, T2, T3). For the CSP feature
extraction condition, the classifiers did not manage to exceed
chance level. In all other cases, the classifiers evened out
around 40% which is significantly above chance level and
RF classifier achieved the highest accuracy for all epoching
intervals.

TABLE II
MEAN ACCURACY FOR THE CROSS-SUBJECT CLASSIFICATION DEPENDING

ON THE DIFFERENT EPOCHING INTERVALS, FEATURE EXTRACTION
METHODS (CSP AND FV) AND CLASSIFIERS (SVM, RF, MLP) USED.

Classifier T1 = 0.3s - 0.8s T2 = 0.3s - 1.5s T3 = 0s - 2s
SVM-CSP 19.93± 1.90% 20.05± 2.11% 20.94± 1.35%
RF-CSP 22.54± 2.64% 20.64± 2.07% 21.65± 1.24%
SVM-FV 38.45± 2.27% 37.21± 2.06% 41.59± 1.79%
RF-FV 42.18± 1.61% 40.05± 2.25% 43.54± 2.13%

MLP-ADAM 38.92± 2.75% 38.69± 2.77% 39.64± 1.10%
MLP-SGD 40.17± 1.08% 40.94± 3.74% 40.88± 2.50%

Figures 2 – 5 show the results for the within-subject condition
and the different classifiers used on the assembled feature
vector and the CSP feature extraction methods. For within-
subject analysis using the support vector machine and the
feature vector, Figure 2 summarizes the results for all three
intervals. Overall, the highest accuracy of 68.42% is achieved

by subject 4 in the duration T1. The mean accuracies were
reported to be 46.08%, 45.81%, and 47.81% in the duration
of T1, T2 and T3 respectively. Except for subjects 5 and 6,
all the other subjects managed to achieve classification results
above chance level as represented by the blue horizontal line
across all the data arrangements and epoching intervals.
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Fig. 2. SVM Within-subject Accuracy using the assembled feature vector for
three different epoching intervals, T1 = 0.3s − 0.8s, T2 = 0.3s − 1.5s,
T3 = 0s− 2s

Figure 3 shows the Accuracy versus Subject plot for all three
epoching intervals using the random forest classifier and the
feature vector. The overall highest accuracy of 70% is achieved
by subjects 16 and 11 in the epoching interval T3 and T2,
respectively. The mean accuracies are 52.81%, 52.52%, and
55.18% in the duration of T1, T2 and T3 respectively. In this
case, al the subjects managed to score above chance level, i.e.,
20% represented by the horizontal blue line. As compared
to SVM, RF reported better accuracies for all the subjects.
Figure 4 presents the results obtained with the implemented
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Fig. 3. RF Within-subject Accuracy using the assembled feature vector for
three different epoching intervals, T1 = 0.3s − 0.8s, T2 = 0.3s − 1.5s,
T3 = 0s− 2s

CSP algorithm using a support vector machine. The overall
highest accuracy of 95% is achieved by subject 10 in the
interval of T3. The confusion matrix for this condition can be
found in figure 6 and the classification report in table III. The
highest accuracies of 90%, 85%, and 95% are achieved in
the interval T1, T2, and T3, respectively. The mean accuracies
are 56.91%, 51.08%, and 55.77% in interval of T1, T2 and
T3 respectively. The worst performing subject is subject 13,
in the interval T1. However, in the other two intervals T2 and
T3, subject 13 manages to achieve accuracies above chance
level.

Figure 5 illustrates within-subject accuracy for all three
epoching duration’s using random forest with horizontal line
representing the chance level. Overall, the highest accuracy
achieved is 90% by subject 20 in the epoching interval of
T1 = 0.3s − 0.8s. The confusion matrix for this condition
can be found in figure 7 and the classification report in table
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Fig. 4. SVM Within-subject Accuracy using CSP for three different epoching
intervals, T1 = 0.3s− 0.8s, T2 = 0.3s− 1.5s, T3 = 0s− 2s

TABLE III
CLASSIFICATION REPORT FOR SUBJECT 10 USING SVM-CSP AND T3

Labels F1-Score Precision Recall Support
actions 0.85 0.75 1 3
living 1 1 1 6

Non-living 1 1 1 4
Locational 0.67 1 0.5 2
Numbers 1 1 1 5

IV. The mean accuracies are 60.44%, 51.43%, and 51.93%, in
T1, T2, and T3, respectively. The worst performing subject is
13, below chance level in the interval T2. However, in other
two intervals T1 and T3, subject 13 manages to achieve above
chance level. Subject 15 is at chance level in the interval
T2, while in the interval T1, subject 15 manages to reach
an accuracy of 60%. Therefore, we can observe a lot of
fluctuation in accuracy in different epoching durations.
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Fig. 5. RF Within-subject Accuracy using CSP for three different epoching
intervals, T1 = 0.3s− 0.8s, T2 = 0.3s− 1.5s, T3 = 0s− 2s

actions living non-living locational numbers
Predicted Label

actions

living

non-living

locational

numbers

Tr
ue

 L
ab

el

3 0 0 0 0

0 6 0 0 0

0 0 4 0 0

1 0 0 1 0

0 0 0 0 5

0

1

2

3

4

5

6

Fig. 6. Confusion Matrix for Subject 10 in the interval T3 using SVM-CSP

IV. DISCUSSION

The main goal of this study was to classify EEG activity
related to semantic processing during word imagination. In
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Fig. 7. Confusion Matrix for Subject 20 in the interval T1 using RF-CSP

TABLE IV
CLASSIFICATION REPORT FOR SUBJECT 20 USING RF-CSP AND T1

Labels F1-Score Precision Recall Support
actions 0.85 0.75 1 3
living 0.90 1 0.83 6

Non-living 1 1 1 4
Locational 1 1 1 2
Numbers 0.8 0.8 0.8 5

our attempt to train different classifier and feature extraction
methods on the recorded EEG data of all participants in
the cross-subject condition, we can say, that the assembled
feature vector as well as the Multi-Layer-Perceptron approach
managed to exceed chance level witch classification accu-
racies of up to 43.54% for the Random Forrest Classifier
and the assembled Feature Vector. These results indicate that
the classification of semantic categories of imagined words
based on cross-subject data might be possible. This hypothesis
should be further investigated however with a larger dataset,
especially to make use of the potential of the neural networks.
The hypothesis, that the imagination of words from the same
semantic category produces similar spatial patterns of EEG
activity across all subjects, as shown for fMRI measurements
in [18], could not be proven by the Common Spatial Pattern
method, with classification accuracy around the chance level
of 20%. These results are consistent with the findings of our
previous study for the classification of semantic categories
during object based decision tasks. [17]

The within-subject condition yield similar results as well.
Our analysis clearly indicates that it is possible to classify
the semantic category of a word a person was subvocalizing
in his/her head with a remarkable single best classification
accuracy of 95% for subject 10 with CSP feature extraction
and SVM classifier. However, there does not seem to be one
best setup or combination of epoching, feature extraction or
classification methods. Comparing the two feature extraction
methods used we can say that CSP deliverd better results
on average than the assembled feature vector. While the
feature vector managed to produce a more uniform distribution
amongst the subjects with no significant outliers, the results
for CSP vary strongly among subjects.

The two classifiers used do not produce significantly differ-



ent results within the two feature extraction methods but again
on average the Random Forrest classifier performed slightly
better than the Support Vector Machine with one exception
for SVM and CSP at T3 where the single best subject was
reported.

Although those results show that on average the best method
for semantic category classification in word imagination tasks
(among those presented in this study) is a Common Spatial
Pattern feature extraction combined with a Random Forrest
Classifier with an epoching interval of 300 - 800 ms after
word imagination onset, we clearly recommend to tailor those
methods to the individual. As shown in our previous study for
object based decision tasks, the word imagination task appears
to be highly subject specific. While subject 14 managed to
achieve classification accuracies of above 60% for the Feature
Vector it hardly manages to exceed chance level for the Com-
mon Spatial Pattern method. The opposite holds for subjects
5 and 6 although improvement can be shown when switching
from a Support Vector Machine to a Random Forrest Classifier
in the Feature Vector condition. While subject 10 achieved the
best results in all feature extraction and classification methods
within the epoching interval T3, subject 3 performed best
within the interval T1, and the results of subject 4 regarding
the epoching interval vary completely under the different
conditions.

V. CONCLUSION AND FUTURE WORK

The goal of this work was to explore the potential of
classifying the semantic categories of imagined words from
EEG data for the use in Silent Speech BCIs. We introduced
the concept of Semantic Silent Speech BCIs and implemented
various feature extraction and classification methods as well
as different epoching intervals with the aim to provide a
recommendation for a best possible setup concerning se-
mantic category classification during word imagination. We
furthermore analysed the data in a cross-subject approach
with the intention to find similar patterns in brain activity
among subjects but also investigated a within-subject condition
where the classification was done on the data of each subject
individually.

The cross-subject results did not show the expected common
spatial patterns among all participants but promising results
could be achieved on temporal and spectral features. With
classification accuracies of up to 43.54% the proposed method
with a Random Forrest classifier clearly exceeded the chance
level of 20% but is still far from an accuracy needed for real
world applications. This approach should be further evaluated
in the future on a larger data set to fully exploit the potential
of Neural Networks for classification which usually work with
a tremendous amount of input data, larger than what could be
provided in this study.

The results for the individual subjects were promising as
well but highly distributed among the different epoching inter-
vals, feature extraction and classification methods. The results
clearly indicate that it is possible to classify the semantic
category of a word during word imagination, with a best

average classification accuracy of 60.44% for CSP feature
extraction and SVM classifier in a time interval of 0.3s - 0.8s
after imagination onset, and a best single subject classification
accuracy of even 95% for CSP and RF classifier for the full
length time interval of 0s - 2s. As shown in our last study on
semantic category classification in object based decision tasks,
the epoching intervals, feature extraction and classification
methods are highly subject specific. There was no clear best
setup to recommend for semantic category classification but
rather the conclusion to select the different methods tailored
to the individual based on predefined training sessions.

As future work we plan to extend our collected datasets
and go the last step on the way to a real Semantic Silent
Speech BCI by actually implementing the 2-layer approach of
classifying the semantic category of an imagined word first
followed by the classification of the word itself in an applied
Semantic Silent Speech BCI scenario.
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