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Abstract. This paper presents a system for case-based retrieval of ar-
chitectural designs in the form of graph-based room configurations by
means of applying a case preselection process using a convolutional neu-
ral network and the subsequent graph and subgraph matching on the
preselected cases. An integral part of the system is its specific user inter-
face that visualizes the architectural concepts of the system in the way
familiar for the target user group. The goal of the system is to support
higher architectural education with digital assistance methods by provid-
ing a tool that can be used to enhance early design phases. The evaluation
showed that the system outperforms its predecessor and is suitable for
use in education. The approach was developed in context of a bigger
framework, however, the research can be considered self-contained and
the methods transferred to the domains other than architecture.
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1 Introduction

Architectural design process is a multi-faceted discipline that combines many
creative phases and iterative decision-making stages in order to create the ar-
chitectural unit (e.g. a floor plan or 3D model) that satisfies the requirements of
the client or the teaching supervisor. Common to all kinds of the architectural
design process is that they usually start with an early conceptual design phase
during which the first design ideas are created and elaborated, for example in
the form of pen-drawn sketches that represent differently layouted variations of
the architectural design that has to be detailed out in the later design phases.



Considering this early design phase essential for setting up the design direc-
tion, future space layout, and utilization of the building, many designers use past
design references from digital or printed collections to find inspiration or take a
look at how the current design variation is used in similar contexts. While every
architect is familiar with this process, as the search for similar references has
proven itself over the years as a robust tool in early as well as in later phases, it
is still an absolute exception that digital assistance methods are used to perform
this search replacing the currently usual method of manual search.

One of the reasons that using digital assistance tools is still not considered
a standard procedure for early design phases is their absence in higher archi-
tectural education. Currently, the architecture students are taught to make use
of pen and paper for sketching their ideas and manually search for similar de-
sign references in the digital or printed collections. A digital assistance tool,
however, can speed up the search process providing methods for standardized
digital sketching of architectural designs and contextualized search with seman-
tic parameters defined by the user and/or derived by the system through analysis
of the different design variations for which the references should be found.

In this work, we present a combined digital system for support and assistance
during the early design phases, aimed specifically at architects in academia, i.e.
architecture students, teaching personnel, and researchers from the domain of
computer-aided architectural design (CAAD). The system consists of a design
retrieval component, that is based on the artificial intelligence (AI) methods
convolutional neural networks (CNN) and case-based reasoning (CBR), and a
visual component in the form of a user interface (UI) that uses standardized
methods of architectural design description to digitally configure and modify a
room layout and display the retrieval results in the user-friendly way.

The goal of the research work behind the system is to help to establish AI-
based digital assistance as the method of choice for designing of initial versions of
floor plans among designers in academia and so help to prepare the students for
digitization of early conceptual phases in the industry. The future of architectural
design was already linked with the AI-based digitization [5]. The system is a
result of research for the CAAD+AI projects Metis-I and Metis-II 1 and is the
successor to the other design retrieval approaches of the projects.

2 Concepts and Foundations of the System

2.1 Artificial Intelligence Methods

Case-based reasoning is a methodology for analogy-driven search and adaptation
of a suitable solution for the given problem. CBR is known for its robustness
when dealing with feature-rich data. Data in CBR is organized in cases – knowl-
edge units that are kept in a case base. CBR-based systems mostly implement
the 4R CBR cycle [1] whose steps Retrieve, Reuse, Revise, and Retain are re-
sponsible for finding the most similar case, adapting its solution to the current
problem and recording the new case based on evaluation of the solution.

1 Funded by German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).



The ability to handle knowledge-intensive data organized in particular units,
makes CBR a logical choice for retrieval approaches for support of architec-
tural design, as the knowledge base of such approaches consists of structurized
architectural data entities, e.g. floor plans. Approaches, such as ARCHIE [21],
PRECEDENTS [16], CBArch [7], or VAT [14] can be named as some of the
essential representatives of this research direction. These approaches provided a
number of foundational concepts as well as insightful experimental paradigms.

In the Metis-I project, different approaches for case-based retrieval of floor
plans in the form of graphs or attribute-value-based cases, were developed and
evaluated with the target user group [3,18]. The combined retrieval + UI system
presented in this paper is the continuation of this CBR research direction in the
Metis-II project and the evolution of the systems named above.

Convolutional Neural Networks are the sub-type of artificial neural networks,
whose showcase application is image classification using machine learning (ML)
methods of image convolution on multiple layers. CNNs were already applied for
the architectural design and related domains as well [2, 19].

2.2 Room Configuration

In the early design phases, architectural building designs are represented by ab-
stract floor plan sketches that contain the essential space layout information only,
for example, which types of rooms are available and how they are connected to
each other. Shapes of the planned rooms are available in very abstract forms only
(e.g. as simple rectangles or bubbles), room connections are usually represented
by dashes (number of dashes stands for the type of connection). This type of
representation is also known as room configuration or spatial configuration and is
one of the core concepts of the early conceptual phases. In computational terms,
room configuration is a graph and can be formalized using Definition 1.

Definition 1 Room configuration is an undirected graph G = (R,C) where the
set of vertices R 6= ∅ represents the rooms available in the floor plan, and the set
of edges C 6= ∅ represents the connections between the rooms. Each room r ∈ R
possesses at least one connection c ∈ C to another room of the configuration.

For the definition above, a number of room types were defined during the
Metis-I project, some examples are LIVING, SLEEPING, WORKING, BATH, CORRIDOR,
or KITCHEN. To complement them, a number of connection types were defined
as well, e.g. DOOR, WALL, PASSAGE, or ENTRANCE. These types are based on the
established architectural space description language Space Syntax. In Fig. 1, an
example of a room configuration graph derived from an early sketch is shown.

Closely related to room configuration is the concept of semantic fingerprints
of architecture [12], a collection of graph-based patterns for representation of se-
mantic spatial features. Based on established topological concepts such as Acces-
sibility or Adjacency of rooms, the fingerprints (FP) can be applied as semantic
search patterns during retrieval of floor plan references, acting as a similarity
measure template between the query and the reference.
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Fig. 1: An example of a room configuration graph and ARZ assignment.

2.3 Architectural Room Zones

Another essential concept that is used throughout the system presented in this
paper is the paradigm of architectural room zones (ARZ) introduced as an ex-
tensible taxonomy for housing architecture [13]. Each such zone represents a
building functionality and contains a selection of room types typical for this
zone. Room types (see Section 2.2) were assigned to the zones, such that each
room type is in at least one and maximum three ARZs. In a spatial configuration,
zones can overlap, that is, each room can be part of multiple zones.

The ARZ taxonomy (see Table 1) was conceptualized for modern housing de-
velopment in Germany, however, it can be extended for use in other architectural
disciplines and cultural contexts. Fig. 1 shows an example of zone assignment to
the room types in the room configuration, including the overlapping of zones.

While room configuration and semantic FPs are established foundations for
almost all approaches of the Metis projects, the concept of ARZs was never
implemented before and makes its debut in the system presented in this paper.

ARZ Name Description Room Types

Wet zone Frequent contact to water KITCHEN, TOILET, BATH

Dry zone No frequent contact to water
LIVING, SLEEPING, WORKING
CORRIDOR, CHILDREN

Living zone Social + free time activities LIVING, KITCHEN

Sleeping zone Rest + relax activities SLEEPING

Habitation zone Frequent human contact
LIVING, SLEEPING, WORKING
KITCHEN, CHILDREN, EXTERIOR

Service zone Rare presence of humans
CORRIDOR, TOILET, BATH
STORAGE, PARKING, BUILDINGSERVICES

Table 1: Architectural room zones with the corresponding room types.



2.4 Zoned Connection Map

The room configuration data for use in CBR methods is usually represented
in the form of attribute-value-based cases. To extend the research range and
use the room configuration cases in hybrid ML+CBR methods and so make
them available for application in the modern machine learning frameworks, such
as Keras, it is required to represent them as numerical tensor data. Different
methods were examined by us to convert the room configuration graphs into
tensors. In the end, a 2D-matrix-based data structure, the connection map (also:
ConnMap), was created. It is partially inspired by the concept of architectural
morphospaces [20] and related to the geometry-based connectivity maps [15].

A ConnMap is a modified adjacency matrix of the graph that replaces the
relation indicators and weights with specific numerical connection codes that
encode relations between the rooms available in the room configuration. Each
code provides information about which room types are connected to each other
and by which connection type. To each room and edge type, a specific number
was assigned. For example, the connection code 542 represents the room types
KITCHEN (5) and CORRIDOR (4) connected by a PASSAGE (2). The ConnMap data
is then converted to a grayscale image and can be used, for example, in CNNs.

The original version of the case-to-map conversion was already used in our
approach for ML+CBR-based evolution of room configurations [9]. However, the
crucial issue with this version is that the ConnMap data produced by it does
not allow for versatile use in ML methods as many connection codes repeat.

Therefore, to allow for manifoldly differentiable ConnMaps, it was decided to
include the ARZ data in the tensor, producing the Z-ConnMap (zoned connec-
tion map) that adds information about zones of the connected rooms to the code.
For example, the connection code 51422 represents the room types KITCHEN (5)
from the Wet zone (1) and CORRIDOR (4) from the Dry zone (2) connected by a
PASSAGE (2). In Fig. 2, an example of a zoned connection map can be seen.

3 Combined Retrieval + UI System

This section contains the detailed description of the combined retrieval + UI
approach for digital assistance during the early phases of architectural design.
The system is part of the digital assistance framework MetisCBR2, it is the
next version of the retrieval component of the framework. The crucial factor for
examination and implementation of methods for the next version were the results
of the user study [3] (referred further as the coordinator study), in which the
previous version of the retrieval component was evaluated against the rule-based
retrieval coordination system that uses graph matching to find similar references.
In the next sections, the components of the new retrieval + UI system will be
presented in detail describing their mode of operation and available features.
The complete graphical overview of the approach is shown in Fig. 2.

2 http://veisen.de/metiscbr
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Fig. 2: Overview of the retrieval process of the combined system.

3.1 Data Augmentation

During the coordinator study as well as other evaluations of Metis-related ap-
proaches, one of the main issues was the insufficient amount of room configura-
tion data. This precluded the systems from working with diversified references
and so increasing the inspiration space. In many search scenarios, the same refer-
ences were provided. Additionally, the quantitative performance tests could not
be performed on big datasets. That is, for the retrieval component of the com-
bined system, one of the foremost tasks was to examine and implement methods
for data augmentation of cases in the room configuration case base.

To solve this task, it was decided to apply the currently widely used approach
GAN (Generative Adversarial Nets) [11]. In combination with CBR, GAN was
already used for the previously mentioned design evolution approach and showed
good results for this task [9]. This approach consisted of three modules: ap-
plication of the room-replacement-based merge of query configuration with the
feature-wise most similar case configurations (Generator module), decision on
how strong the merge should be (Classificator), and rating if the results of the
merge can be considered a real evolution of the configuration (Discriminator).

For data augmentation, the design evolution GAN was reworked and adapted
for the requirements of the combined system. While the evolution version used
the non-zoned connection maps for the conversion of room configurations and
training of the Discriminator CNN, the data augmentation approach makes use
of the Z-ConnMaps (see Section 2.4) to convert graphs and train the CNN and



decide if the produced design can be considered real. Additionally, the room
replacement method was reworked: the classification step was skipped so that the
merge level remained constant for all augmentations, and the room replacement
method was modified in the way that a room in the query could be replaced
with the room from case only if they are in the same ARZ (see Section 2.3).

We assumed that the modifications will allow for generation of a sufficiently
large and diverse but at the same time structurally close to the original dataset of
room configurations that can be used in the comprehensive system evaluations.

3.2 Context-Based Preselection of Cases

A paramount task for all retrieval systems is to provide the most relevant results
that satisfy the expectation of the user. Especially in our case, it is also important
to decrease the retrieval time as much as possible, because the graph-based cases
are known for the complexity of knowledge they contain. I.e. our search strategy
should return the most relevant case references in the least possible time.

In MetisCBR’s previous retrieval component a case preselection method
based on MAC/FAC [10] was used to select the most relevant references: for
each query floor plan, the system looked for a certain amount of the most similar
rooms and edges in the case base and then filtered out all non-paired floorplans,
i.e. those whose elements were represented only by one entity type (i.e. either
rooms or edges). The remained cases were considered relevant and ordered by
the room type distance measure building the final result set. While this preselec-
tion method worked quite fast for a small amount of cases, there were reasonable
doubts that it will take too long for a bigger amount (see Section 3.1).

To improve the selection of the most relevant cases, it was decided to use
the Z-ConnMaps of query and cases. Using a multi-label classifier in the form
of a specifically configured CNN, the system analyzes the query’s Z-ConnMap
and assigns labels to it, and then selects the cases from the case base that have
the same labels. It can be configured how many labels should match between
query and case to add the case to the set of relevant cases. The labels represent
different design contexts that correspond to structural, temporal or typological
properties of the room layout (see Table 2). The contexts were either defined
during the Metis-II project or represent the well-known architectural concepts.

Type Contexts Explanation ×

Structural
SparseConnections

RoomTypeDominance

Number of edges < number of rooms
A room type dominates the configuration

OR

Temporal
PreDesign

FullDesign

Different states of the room configuration
during the early design phases

XOR

Typological
SocialHousing

StandaloneHousing

UnknownHousing

Housing category of the room configuration XOR

Table 2: Currently implemented design contexts.



In order to train the multi-label CNN on room configuration cases in the case
base, structural contexts are initially assigned to these cases using a histogram
of the room configuration’s room types for the RoomTypeDominance context and
comparing the room and edge counts for SparseConnections.

However, for the more important temporal and typological contexts, no
heuristics could guarantee correct labels, except the labels are explicitly avail-
able in the meta data of the floor plan. If they are not available, these contexts
are assigned manually by a CAAD expert and/or MetisCBR system designer.

3.3 Graph Matching

After the cases were preselected using the Z-ConnMap-based contexting, the
search for similar room configurations continues with the actual similarity as-
sessment between the query and cases in the case base using graph matching
(also known as graph isomorphism). This method was selected as a superior one
to the distance-measure-based sorting of cases used in the previous retrieval com-
ponent (see Section 3.2), because it provides possibilities to match exact as well
as inexact and complete as well as partial (also known as subgraph) structures
between the graphs providing a wide range of reference recommendations.

In the combined retrieval system two different graph matching algorithms
are currently used: VF2 [8] and Color Refinement Isomorphism (CRI) [6]. VF2
showed the best performance in a previous evaluation [18] and was migrated
to MetisCBR with extension of its tasks (e.g. inexact subgraph matching was
added). CRI was tested afterwards as an alternative and showed a faster perfor-
mance on the important task of pure structure matching (without preselection, as
identical structures are very rare). The algorithms were assigned to the semantic
fingerprints (see Section 2.2) used in the system as shown in Table 3.

At this point it should be explained in detail what we mean with the term
‘inexact matching’. While exact matching matches the structure and semantic
data in the case exactly as provided in the query (i.e. room and edge semantics
as well as structure should be fully identical), the inexact type of matching
applies the so-called replacement rules if the structure could be matched exactly
but the semantics could not. In this case, room for room and connection for
connection in the matched structure, the system looks if the currently compared
rooms are in the same ARZ (see Section 2.3) and if the connections have certain
type relationships. Such rooms and edges are considered interchangeable. The
ARZ-based replacement is the new inexact matching method, while the edge
replacement was already used in a similar manner in the coordinator study.

For example, LIVING and SLEEPING are interchangeable as both of them are
members of the habitation zone and the dry zone, while LIVING and BATH are not
interchangeable. DOOR and PASSAGE are interchangeable as both of them provide
an open connection to another room, while WALL is a closed connection and not
interchangeable with DOOR or PASSAGE. All rooms and edges in the case should
provide either exact or inexact match to be included in the final result set.



Sem. Fingerprint Algo. Matching types Features

Room Graph CRI
Exact graphs
w/o preselection

Matches exact structure only
All semantics are ignored

Adjacency VF2
Exact and inexact
graphs and subgraphs

Semantics of edges are ignored
Matches rooms semantics only

Accessibility VF2
Exact and inexact
graphs and subgraphs

Semantics of rooms are ignored
Matches edges semantics only

Full Room Graph VF2
Exact and inexact
graphs and subgraphs

Matches rooms as well as
edges semantics

Table 3: Currently implemented graph matching methods and semantic FPs.

3.4 User Interface: RoomConf Editor

Richter [17] published a seminal work that examined CBR in architecture. While
Richter’s main conclusion was that for architects it is not native to use AI/CBR-
based digital assistance tools, our experience during the Metis projects suggests
that the missing link between the architects as user group and such systems
is the proper UI that visualizes relevant architectural concepts and knowledge
available in the room configuration cases in designer-friendly and intuitive way.

As a basis for this hypothesis, the coordinator study [3] revealed the improper
visualization of the results. Mainly, it was criticized that it was hardly possible to
examine similarity between query and result/case. According to the participants
of that study, this was a major issue, because architects, as the user group, are
interested in the effortless examination of similarity between the current design
and the reference. The participants suggested to implement a mapping view that
shows which rooms provide the highest similarity between query and result.

To provide a solution to the knowledge visualization problem, a specific UI
RoomConf Editor3 was developed for MetisCBR. The editor is the successor and
further development of the other UIs developed for the Metis projects, e.g. Metis-
WebUI [4]. In contrast to these other UIs, but also to the room layout editors
of the established architecture modeling software, an explicit goal of RoomConf
Editor is not to mimic the sketching of a full floor plan (i.e. incl. geometry
or detailed light conditions). Instead, the editor was developed to digitize the
process of creation of an abstract spatial configuration using native digital user
interaction methods such as clicking and dragging and to be fully compatible to
MetisCBR (incl. its other functionalities such as design process autocompletion).

The user can quickly create a graph-based room configuration with a couple
of clicks using Add Room and Add Edge functions. Rooms and edges can be
edited after addition and enriched with type (see Section 2.2) and feature data
(area, label etc.). It is possible to send a request to MetisCBR for search for
similar references using the semantic FPs shown in Table 3. Before retrieval, the
user can select if the system should use all case graphs or just the Z-ConnMap-
preselected set and examine and manipulate zones to influence the Smallest

3 Source code and live version: https://github.com/cenetp/roomconf-editor



Degree Last Coloring algorithm-based initial ARZ analysis that delivers basis
for the Z-ConnMap (see Fig. 3 and Fig. 2). After receiving the results, similarity
between query and case can be examined using the mapping view (see Fig. 3).

Fig. 3: RoomConf Editor. Above: Pre-search zone modification window. Below:
The mapping between query (left) and case (right), where the room color codes
indicate matched rooms and the edge colors show the connection direction. The
user can click through different exact and inexact mappings. These are the map-
ping differences to Metis-WebUI that used arrows for rooms and the per-FP
visualization. In the background, the query and the search results can be seen.

4 Evaluation

To evaluate the combined retrieval system, a two-phase experiment was con-
ducted that should confirm that the retrieval process was indeed improved by
applying ARZs and zoned connection maps for context-based preselection in
combination with exact and inexact (sub)graph matching as well as with the
RoomConf Editor UI. It should also be revealed if the system can be used in the
architectural design education as assistance tool for the early design phases.



Both phases of the experiment were performed on 2852 room configuration
references in the case base, from which 250 were manually created ones and the
rest was generated using data augmentation (see Section 3.1). For the context-
based preselection of cases, the corresponding CNN was initially trained using
the Keras framework’s own data augmentator on the manual 250 cases to label
the generated cases, and then the second time on the labeled generated cases.

4.1 Quantitative Analysis

In the first phase of the evaluation, the automated comparative analysis should
reveal if the new system can outperform the old one in terms of performance on
a set of differently complex room configuration queries. 20 queries of different
complexity were used, the complexity value for each query was calculated as
|R| ∗ |C| (see Definition 1). Min. complexity value was 2 and max. was 56.

Preselection Results First of all, we were interested if the new preselection
process is better than the previous one. The previous, CBR-based, process was
set up to use 2900 elements for both rooms and edges (i.e. at least one room
and edge per case in order to ensure a chance for pairing for every floor plan).
The new preselection classifier CNN was configured with 3 Conv2D layers, 3
Dropouts, and 2 MaxPoolings. Fig. 4 shows the preselection evaluation results.
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Fig. 4: Results of the preselection evaluation.

The results (see Fig. 4) showed that the CNN-based preselection clearly beats
the CBR-based. The new preselection method remained almost constantly under
0.3sec regardless of complexity, while the old one needed more than 2sec for the
majority of queries and its time increased with complexity (the times for the old
method would be even higher with a higher number of pairing candidates).



Graph Matching Results Additionally to the preselection phase, we were
interested in how long the (sub)graph matching would take for the sets of relevant
cases produced by both preselection methods and how many graphs will be
eventually matched. The time and matches were counted per semantic FP. As
for RoomGraph no preselection is used, only VF2-based FPs were evaluated.
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Fig. 5: Graph matching results. Upper graph shows a comparison between search
times for CBR- and ARZ-preselected cases. Bottom graph shows amounts of
matched graphs in relation to the amounts of preselected graphs. The semantic
FP Full Room Graph stands representative for all tested FPs as the one with
the most restrictive handling of semantics (results for other FPs are similar).

The results (see Fig. 5) revealed that in this phase of the quantitative evalu-
ation, the new retrieval method showed the better performance as well. Regard-
ing graph matching times, searching for (sub)graphs in the sets produced by the
CNN-based preselection method required less time in a clear majority of queries.
Similar results were achieved regarding relation of preselected/matched graphs.

All things considered, the results achieved during the quantitative experiment
delivered multiple numerical evidences that the new retrieval component clearly
outperforms the old one and can be safely used for the subsequent user study.



4.2 User Study

In the second part of the evaluation, a user study at the Technical University
of Munich was conducted to collect feedback on potential of the new retrieval
system for use in early design phases education. Eight representatives of the
target group of the system, i.e. architects in academia, agreed to take part in
the study. Among them were graduates and undergraduates (for example, master
students with major in architecture), PhD candidates who work on their own
CAAD projects but also have teaching responsibilities, and the industry partners
that offer internship programs for students with CAAD-related research projects.

The participants were required to create a room configuration using the
RoomConf Editor UI, initiate search processes with the CNN-based preselec-
tion and zone modification for similar references using arbitrary semantic FPs,
and rate the relevance of the results using the similarity examination with the
mapping view (see Fig. 3). Afterwards they should tell if they would consider to
use the system for the education process of the early design phases.

The user study was performed as a free exploration session using the thinking
aloud method. That is, the participants explained comprehensively what they
do and why and how they feel about the user experience of the combined system.
We used this method to provide the closest possible setup to the real-world use.
For this part of the experiment, the manually created and validated results were
put before the data-augmented ones in the final result set in the user interface.

4.3 General results

Regarding the general pre-search use of the system, all participants provided a
satisfactory feedback, RoomConf Editor was considered user-friendly, all visible
concepts, such as room configuration or room and edge attributes, were recog-
nized. An exception were the FPs, that were unknown to the industry partners.
The participants were explicitly not explained what the system does and had to
figure it out, all of them eventually found out the purpose of the system.

However, for improvement of the system’s user experience, the participants
made some suggestions. For example, it was suggested to implement multiple
weighted connections and set the bubble size in relation to the area of the room.

The initial ARZ assignment by the system resulted in satisfactory feedback
as well, but some of the participants wished for more explanation on the ARZ
concept to the new users. Most of the participants also edited the zones to see
if they can influence the retrieval process and get other results.

The system managed to leave a good impression on the assignment of design
contexts as well. To evaluate this assignment, some participants tried to create
untypical, non-housing, room configurations. In some of such cases, the system
was irritated first, but then corrected itself when the room configuration was
slightly adapted. An example is the case where the floor plan was on purpose de-
signed as part of office building, was mistakenly classified as StandaloneHousing
first, but then correctly classified as UnknownHousing after the zones were edited.



Likewise for the mapping view, the overall impression was good and the func-
tionality was perceived as user-friendly and worthwhile for the retrieval process.
Some users wished for functionality of a complete transfer of the result design
to the main design area in order to continue with it and not the own design.

The relevance of the delivered results was considered good as well, placing
the manually created and validated floor plans before the data-augmented ones
was considered a good decision. The data-augmented results were also the main
issue named by every participant: some of these results had structural problems,
e.g. the room that replaced the old one did not fit to the current position.

4.4 Feedback on Use in Education

To find out if the system has potential to be used in architectural design educa-
tion, the participants were explicitly asked if they would use it for their teaching
and learning activities. The answers can be seen, overall, as positive, ranging
from complete acceptance and wish to use the digital assistance tools in every-
day academia life (for example, to accomplish homework assignments), to more
moderate and critical reactions stating that the system needs to step-by-step fix
the issues named above first. None of the participants declined the use of the
system. Overall, it can be concluded that the combined system reached its goal.

5 Conclusion and Future Work

We presented and evaluated an AI-based digital assistance system developed for
architectural design education in the area of the early conceptual design phases.
A specific user interface is an inseparable part of the system and integrates deeply
into its concepts visualizing them for the user. The system uses convolutional
neural networks and graph matching to find similar references in a case base
of room configuration graphs. The system was evaluated with a quantitative
experiment and a user study. For the future, it is planned to use the feedback of
the user study to improve the system and evaluate it by professional architects.
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