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Abstract—In this paper, we propose a novel cooperative multi-
relay transmission scheme for mobile terminals to exploit spatial
diversity. By improving the timeliness of measured channel state
information (CSI) through deep learning (DL)-based channel
prediction, the proposed scheme remarkably lowers the proba-
bility of wrong relay selection arising from outdated CSI in fast
time-varying channels. It inherits the simplicity of opportunistic
relaying by selecting a single relay, avoiding the complexity of
multi-relay coordination and synchronization. Numerical results
reveal that it can achieve full diversity gain in slow-fading
channels and substantially outperforms the existing schemes in
fast-fading wireless environments. Moreover, the computational
complexity brought by the DL predictor is negligible compared
to off-the-shelf computing hardware.

Index Terms—Cooperative diversity, outdated CSI, channel
prediction, deep learning, LSTM, opportunistic relaying

I. INTRODUCTION

Cooperative diversity [1] is an effective technique for mobile
terminals without an antenna array to cultivate spatial diversity
that is typically achieved by co-located multi-antenna systems.
A main challenge of cooperative diversity is the inherent
asynchronization among spatially-distributed antennas (relays).
Multiple timing offset and multiple carrier frequency offset
[2] among simultaneously-transmitting relays make multi-relay
transmission such as distributed beam-forming and distributed
space-time coding [3] too complicated for practical systems.
In contrast, a single-relay approach called opportunistic relay
selection (ORS) or opportunistic relaying [4] achieves full
diversity gain while the complexity of multi-relay synchroniza-
tion and coordination is avoided.

However, ORS is applicable only in slow-fading wireless en-
vironments since channel state information (CSI) used to select
the best relay may be outdated quickly in fast-fading channels.
Using a wrongly-selected relay substantially deteriorates the
performance of ORS, as widely verified in the literature such
as [5]–[7]. With the proliferation of high-mobility applications
(such as vehicle-to-X, high-speed train, and unmanned aerial
vehicle) and the utilization of higher frequency bands (e.g.,
millimeter wave and Terahertz) in 5G and beyond systems, the
problem of outdated/aged CSI becomes more challenging. A
cooperative method called generalized selection combining [8]
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shows robustness under aged channel but it suffers from a sub-
stantial loss of spectral efficiency. The authors of [9] proposed
a method utilizing the knowledge of channel statistics, getting
only a marginal gain, whereas the complexity obviously grows.
By far, opportunistic space-time coding (OSTC) proposed by
the author of this paper in [10]–[12] is the best method in fast
fading channel from the perspective of diversity-multiplexing
trade-off. But its performance gap to perfect selection using
the perfect knowledge of channel is still large, motivating our
follow-up works presented here.

In this paper, therefore, we propose a novel cooperative
method coined predictive relay selection (PRS) for mobile
terminals to exploit the gain of spatial diversity. The probability
of wrong relay selection due to outdated CSI is remarkably
reduced by improving the timeliness of CSI through fading
channel prediction [13]–[21]. A deep recurrent neural network
is deliberately built to provide high-accurate CSI predictions.
The proposed scheme inherits the simplicity of ORS by se-
lecting a single opportunistic relay to avoid the complexity
of multi-relay coordination and synchronization. Simulation
results reveal that it can achieve full diversity order in slow-
fading channels and substantially outperforms the existing
schemes in fast-fading wireless environments. Moreover, the
computational complexity brought by the deep learning (DL)-
based predictor is analyzed and compared with commercial off-
the-shelf (COTS) computing hardware. The rest of this paper is
organized as follows: Section II introduces the system model.
Section III and IV present the proposed selection scheme and
the principle of channel predictor, respectively. Complexity
analysis and numerical results are given in Section V and VI.
Finally, Section VII concludes this paper.

II. SYSTEM MODEL

Following the working assumption applied for most of prior
research works [2]–[12], we consider a dual-hop decode-and-
forward (DF) cooperative network where a single source node
s communicates with a single destination node d with the aid
of K relays. Each node is equipped with a single antenna
that is used for both signal transmission and reception over a
narrow-band channel. The received signal in an arbitrary link
A→B is modeled as yB = hA,BxA + zB , where xA ∈ C
is the transmitted symbol from node A with average power
PA = E[|xA|2], zB stands for additive white Gaussian noise



with zero-mean and variance σ2
n, i.e., z∼CN (0, σ2

n), and
hA,B represents the fading coefficient of the channel from
A to B, which is a zero-mean circularly-symmetric complex
Gaussian random variable h∼CN (0, σ2

h) under the assumption
of Rayleigh fading. The instantaneous signal-to-noise ratio
(SNR) is denoted by γA,B=|hA,B |2PA/σ2

n and the average
SNR γ̄A,B=E[γA,B ]=PAσ

2
h/σ

2
n.

In a practical system, there exists a delay between the time
of relay selection and the instant of using the selected relay to
transmit signals. The actual CSI h may differ from its outdated
version ĥ that is applied for selecting relays. To quantify the
quality of CSI, the correlation coefficient between h and ĥ is
introduced, i.e., ρo = E[hĥ∗]√

E[|h|2]E[|ĥ|2]
. With the classical Doppler

spectrum of the Jakes model, it takes the value

ρo = J0(2πfdτ), (1)

where fd is the maximal Doppler frequency, τ stands for the
delay between the outdated and actual CSI, and J0(·) denotes
the zeroth order Bessel function of the first kind.
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Fig. 1. Schematic diagram of a cooperative network using different DF
relaying strategies: ORS, PRS, and OSTC.

Due to severe signal attenuation, a single-antenna relay
should operate in half-duplex transmission mode to prevent
from harmful self-interference between the transmitter and
receiver. Therefore, its signal transmission is organized in two
phases: the source broadcasts a signal in the source-to-relay
(denoted by SR hereinafter) link, and then the relays retransmit
this signal in the relay-to-destination (RD) link. In the first
phase, as shown in Fig.1, the source (e.g., the drone in the
figure) sends a symbol x and those relays who can correctly
decode x form a decoding subset (DS) of the SR link

DS , {k |log2(1 + γs,k) > 2R} , (2)

where R is an end-to-end (EE) target rate for the dual-hop
relaying. Note that the required data rate for either hop is
doubled to 2R due to the adoption of half-duplex transmission.
The best relay (denoted by k̇) in ORS is opportunistically
selected from DS in terms of k̇ = arg maxk∈DS γ̂k,d, where
γ̂k,d is the SNR of the RD link at the instant of relay
selection, which is an outdated version of the actual SNR
γk,d during signal transmission. In contrast, the proposed PRS

scheme replaces the outdated CSI with the predicted CSI ȟ,
and determines k̇ in terms of k̇ = arg maxk∈DS γ̌k,d, where
γ̌k,d = |ȟk,d|2Pk/σ2

n. In addition to the best relay, the OSTC
scheme [10] needs another relay with the second strongest
SNR, i.e., k̈ = arg maxk∈DS−{k̇} γ̂k,d. In the first phase, the
source broadcasts a pair of symbols (x1, x2) to all relays over
two consecutive symbol periods. The regenerated signals are
encoded by means of the Alamouti scheme [11], which is
the unique space-time code achieving both full rate and full
diversity, at the pair of selected relays. In the second phase,
a relay transmits (x1,−x∗2) while another transmits (x2, x

∗
1)

simultaneously at the same frequency.

III. PREDICTIVE RELAY SELECTION

Taking advantage of new degree of freedom opened by
channel prediction, we propose the PRS scheme that can
also achieve high performance in fast time-varying channels.
The prediction horizon relaxes the tight requirement of time
procedure and therefore provides the flexibility to design an
advanced relaying strategy. As depicted in Algorithm 2, the
implementation for PRS is detailed as follows:

1) At frame t, as illustrated in Fig.2, the source broadcasts
a packet containing a pilot called Ready-To-Send (RTS)
[4] and data payload. The CSI hs,k[t] is acquired at
relay k by estimating RTS and is used for detecting data
symbols. Those relays that correctly decode the source’s
signal comprise a DS.

2) Clear-To-Send (CTS) is sent from the destination, so that
relay k can estimate hd,k[t] and then hk,d[t] is known due
to channel reciprocity. It feeds hk,d[t] into its embedded
channel predictor to generate ȟk,d[t + 1], and buffers it
for its usage at the upcoming frame t+ 1.

3) Meanwhile, relay k belonging to the DS fetches ȟk,d[t]
that is buffered at the previous frame t−1. This operation
starts once the CTS arrives, in parallel with Step 2.

4) Then, a timer with a duration Tt proportional (denoted
by ∝) to 1/|ȟk,d[t]| is started at relay k.

5) The timer on the relay with the largest channel gain
expires first, and then it sends a short packet to announce.

6) Once received the best relay’s notification, other relays
terminate their timers and keep silent. The selected relay
forwards the signal until the end of this frame.
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Fig. 2. Frame structure of PRS. CSI-E: CSI Estimation, CSI-P: CSI
Prediction, CSI-B: CSI Buffering, CP: Contention Period.



Algorithm 1 Predictive Relay Selection
for t = 1, 2, ... do
s sends RTS; s sends data payload x[t]
for k = 1, ...,K do

estimate hs,k[t]; x̂[t] = f(ys,k[t], hs,k[t])
if x̂[t] is error-free then

fetch ȟk,d[t]; start a timer Tt ∝ 1
|ȟk,d[t]|

end if
end for
d sends CTS
k̇ = arg maxk∈DS

(
|ȟk,d[t]|

)
notifies its presence

k̇ transmits x̂[t]
for k = 1, ...,K do

estimate hk,d[t]; predict ȟk,d[t+ 1]
write ȟk,d[t+ 1] into Buffer

end for
end for

IV. DL-BASED CHANNEL PREDICTION

This section first introduces the principle of deep recurrent
networks including simple recurrent neural network (RNN)
[16], Long Short-Term Memory (LSTM) [22], and Gated
Recurrent Unit (GRU) [23], followed by the explanation of
applying a recurrent network to build a channel predictor.

A. Deep Recurrent Networks

Unlike uni-direction information flow in feed-forward neu-
ral networks, RNN has recurrent self-connections, which are
applied to memorize historical states, exhibiting great potential
in time-series prediction. The activation of the previous time
step is fed back as part of the input for the current step. In a
simple RNN, its lth recurrent layer is generally modeled as

d
(l+1)
t = R(l)(d

(l)
t ) = δh

(
W(l)d

(l)
t + U(l)d

(l+1)
t−1 + b(l)

)
,

(3)
where W(l) and U(l) are weight matrices of the lth layer,
b(l) is a bias vector, d(l)

t and d
(l+1)
t represent the input and

output for layer l at time t, respectively, d(l+1)
t−1 is the feedback

from the previous step, R(l)(·) stands for the relation function
for the input and output of the lth RNN hidden layer, and
the activation function often selects the hyperbolic tangent
denoted by tanh, which is δh(x) = (e2x−1)/(e2x+1). Using
typical stochastic gradient descent method to train a recur-
rent network, the back-propagated error signals tend to zero
that implies a prohibitively-long convergence time. To tackle
this gradient-vanishing problem, Hochreiter and Schmidhuber
proposed Long Short-Term Memory in their pioneer work of
[22], which introduced cell and gate into the RNN structure.
A typical LSTM cell has three gates: an input gate controlling
the extent of new information flows into the cell, a forget
gate to filter out useless memory, and an output gate that
controls the extent to which the memory is applied to generate
the activation. The upper part of Fig.3 shows the graphical
depiction of a deep LSTM network consisting of an input layer,
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Fig. 3. Block diagram of the receiver of a relay in PRS. The DL-based
predictor consists of an input layer, L LSTM hidden layers, and an output
layer, where the lth hidden layer is opened to illustrate the internal structure
of an LSTM memory block.

L hidden layers, and an output layer. Let’s use the lth hidden
layer as an example to shed light on how an activation signal
goes through the network. There are two hidden states - the
short-term state s

(l)
t−1 and the long-term state c

(l)
t−1. The input

d
(l)
t and s

(l)
t−1 jointly activate four fully connected (FC) layers,

generating the activation vectors for the gates, i.e.,
i
(l)
t = δg

(
W

(l)
i d

(l)
t + U

(l)
i s

(l)
t−1 + b

(l)
i

)
o

(l)
t = δg

(
W(l)

o d
(l)
t + U(l)

o s
(l)
t−1 + b(l)

o

)
f

(l)
t = δg

(
W

(l)
f d

(l)
t + U

(l)
f s

(l)
t−1 + b

(l)
f

), (4)

where W and U are weight matrices for the FC layers, b
represents bias, the subscripts i, o, and f associate with the
input, output, and forget gate, respectively, and δg stands for
the logistic Sigmoid function δg(x) = 1/(1+e−x). The current
long-term state c

(l)
t is obtained by first throwing away outdated

memory at the forget gate and then adding new information
selected by the input gate, i.e., c(l)

t = f
(l)
t ⊗ c

(l)
t−1 + i

(l)
t ⊗ g

(l)
t ,

where the operator ⊗ denotes the Hadamard product (element-
wise multiplication) and g

(l)
t = δh(W

(l)
g d

(l)
t +U

(l)
g s

(l)
t−1+b

(l)
g ).

The output of this hidden layer is computed by

d
(l+1)
t = L(l)

(
d

(l)
t

)
= o

(l)
t ⊗ δh

(
c

(l)
t

)
, (5)

where L(l)(·) represents the input-output function for the lth

LSTM layer.
Despite of its short history, LSTM has achieved a great

success and been commercially applied in many AI products
such as Apple Siri and Google Translate. Since its emergence,
the research community published a number of its variants,
among which GRU proposed by Cho et al. in [23] draws lots
of attention. It’s a simplified version with fewer parameters,



but it exhibits even better performance over LSTM on certain
smaller and less frequent datasets. To simplify the structure,
a GRU memory cell has only a single hidden state, and the
number of gates is reduced to two: the update and reset
gate. The activation vector for the update gate is computed
by z

(l)
t = σg(W

(l)
z d

(l)
t + U

(l)
z s

(l)
t−1 + b

(l)
z ), which decides

the extend to which the memory content from the previous
state will remain in the current state. The reset gate controls
whether the previous state is ignored, and when it tends to 0,
the hidden state is reset with the current input. It is given
by r

(l)
t = σg(W

(l)
r d

(l)
t + U

(l)
r s

(l)
t−1 + b

(l)
r ). Likewise, the

previous hidden state s(l)
t−1 goes through the cell, drops outdated

memory, and inserts some now content, generating the current
hidden state, that is

s
(l)
t = (1− z

(l)
t )⊗ s

(l)
t−1 (6)

+ z
(l)
t ⊗ σh

(
W(l)

s d
(l)
t + U(l)

s (r
(l)
t ⊗ s

(l)
t−1) + b(l)

s

)
.

The hidden state is also equal to its output of this hidden
layer, i.e., d(l+1)

t = G(l)(d
(l)
t ) = s

(l)
t , where G(l)(·) denotes

the input-output function.

B. DL-based Channel Predictor

To shed light on the principle of a DL-based predictor, as
shown in Fig.3, the chain of signal reception at the receiver is
demonstrated. The predictor is inserted at the end of a channel
estimator and generates predicted CSI to replace outdated
CSI as the input for a relay selector. It is transparent and
therefore an ORS system can be smoothly upgraded to a PRS
system without any other modifications. In such a distributed-
selection method, each relay requires to process only local
CSI hk,d[t]. As we know, a complex-valued fading coefficient
can be expressed in polar form as hk,d[t] = ak,d[t]e

jθk,d[t],
where ak,d[t] and θk,d[t] denote the magnitude and phase,
respectively. Because the selection relies on the value of SNR,
only the knowledge of magnitude ak,d[t] is enough, rather
than complex-valued hk,d[t], which in turn can simplify the
implementation of the channel predictor by employing a neural
network with real-valued weights and biases. Feeding ak,d[t]
into the input feed-forward layer obtains one-dimensional
output d(1)

t = d
(1)
t = δh(w(i)ak,d[t]+b

(i)), where w(i) and b(i)

denote the weight and bias of the input layer. The activation
of the 1st hidden layer is exactly d

(1)
t , then d

(2)
t = L(1)(d

(1)
t )

is generated and forwarded to the 2nd hidden layer, where
L(1) (·) is defined in (5). The activation goes through the
network until the output layer gets the predicted CSI, which is
computed by ǎk,d[t+1] = δh(W(o)d

(L)
t + b(o)), where W(o)

and b(o) denote the weight matrix and bias of the output
layer, and the activation of the last hidden layer equals to
d

(L)
t = L(L)(. . .L(2)(L(1)(d

(1)
t ))). The building of a deep

recurrent network is flexible, for example, we can apply a
hybrid network consisting of RNN, GRU, and LSTM layers,
like d

(L)
t = G(L)(. . .L(2)(R(1)(d

(1)
t ))).

V. COMPUTATIONAL COMPLEXITY

In the context of cooperative diversity, the computation-
al complexity mainly arises from multi-relay coordination
and synchronization [2]. The simplicity of ORS is achieved
thanks to single-relay transmission that substantially lowers
the amount of signalling overhead among multiple relays. A
direct comparison of different schemes is not easy and does not
provide real insight. That is why most of the works in this field
[2]–[12] did not provide a quantitative analysis. On the other
hand, the complexity of the proposed scheme comes mainly
from the DL-based predictor, which is always a concern for
the application of deep learning. From a practical perspective,
it is more meaningful to make clear its demand on computing
resources in comparison with the capability of COTS hardware.
Hence, let’s focus on assessing the complexity of the predictors
in terms of floating-point operations per second (FLOPS).

A deep recurrent network can be quantitatively modelled
as follows: an input layer with Ni neurons, an output layer
with No neurons, and L hidden layers, which has N l

h neurons
at layer l = 1, . . . , L. To begin with the input layer, it
computes δh(W(i)d + b(i)), where the matrix multiplication
generates NiN

1
h floating-point multiplicative operations and

(Ni − 1)N1
h additive operations, and the addition of the

bias vector consumes N1
h operations, amounting to a total

of 2NiN
1
h . Note that the amount of computation raised by

the activation function is negligible compared to the matrix
multiplication, which is usually ignored in the calculation of
complexity for deep learning. Likewise, it is easy to know
that the output layer corresponds to 2NL

hNo. For an RNN
hidden layer as given in (3), the number of operations equals
to Ol = (2N l−1

h − 1)N l
h + (2N l

h− 1)N l
h +N l

h, where the first
term corresponds to the calculation of W(l)d

(l)
t , the second is

for U(l)d
(l+1)
t−1 , and the third is due to the addition of the bias.

For simplicity, Ol can be approximated to 2N l−1
h N l

h+2(N l
h)2.

Then, the overall complexity for a simple RNN is given by

Ornn ≈ 2

[
NiN

1
h +NL

hNo +

L∑
l=1

(
N l−1
h N l

h +
(
N l
h

)2)]
,

(7)
where we apply N0

h = Ni for a simpler expression. As
derived from (4)-(5), the number of operations for the matrix
multiplication on an LSTM layer is 4 times that of an RNN
layer, i.e., 4Ol. The computation for the gate control, which
has totally 7N l

h − 3 operations, can be neglected. Therefore,
the complexity of an LSTM network is approximated by

Olstm ≈ 2

[
NiN

1
h +NL

hNo +

L∑
l=1

4
(
N l−1
h N l

h +
(
N l
h

)2)]
.

(8)
Similarly, we can derive the expression for GRU, i.e.,

Ogru ≈ 2

[
NiN

1
h +NL

hNo +

L∑
l=1

3
(
N l−1
h N l

h +
(
N l
h

)2)]
(9)

Note that the above expressions are the complexity per predic-
tion step, we need to multiply (7)-(9) with the frequency of



prediction denoted by fp, i.e., the number of steps performed
per second, to figure out FLOPS.

Given the concrete values of these parameters, the complexi-
ty of the predictor is quantified to compare with the capacity of
COTS computing hardware. Suppose the applied deep neural
network has two LSTM hidden layers with N1

h = N2
h = 25

neurons1. The input for the predictor at the kth relay is ak,d[t],
corresponding to Ni = No = 1. It amounts to Olstm = 15, 300
floating-point operations per prediction in terms of (8). The
interval of prediction step is assumed to be 1ms, the frequency
of prediction equals to fp = 1, 000, resulting in 15.3MFLOPS.
In comparison with off-the-shelf Digital Signal Processors (D-
SPs), e.g., TI C6678, which provides a computation capacity of
up to 179GFLOPS, the required computing resource occupies
less than 0.01% of a single DSP chip. Taking into account
its back-compatibility to legacy hardware, we further check
low-end DSPs. Given TI C6748 that has computation power
of 2.7GFLOPS as an example, the resource required by the
predictor is around 0.6%. In a nutshell, the complexity of the
DL-based channel predictor applied for PRS is quite affordable,
if not negligible.

VI. SIMULATION RESULTS

In this section, we clarify how to select the hyper-parameters
of a deep recurrent network to obtain high prediction accuracy
and then make use of Monte-Carlo simulations to evaluate the
outage probability and channel capacity of PRS, compared with
the existing schemes including ORS and OSTC. Following
the channel assumption adopted by most of the previous
works in this field, we would apply single-antenna flat-fading
i.i.d. channels. Each channel follows the Rayleigh distribution
with an average power gain of 0dB, where its fading coef-
ficient h∼CN (0, 1). The default maximal Doppler frequency
shift is set to fd=100Hz, emulating fast fading environment.
Continuous-time channel responses are sampled with a rate of
fs=1KHz, adhering to the assumption of flat fading, and there-
fore the interval of samples is Ts=1ms. Each channel generates
a series of 106 consecutive samples {h[t]

∣∣t=1, 2, . . . , 106 }.
As usual, an EE target rate of R=1bps/Hz is applied for
outage calculation. The total transmit power P is equally
allocated between two phases, where the source’s power is
Ps=0.5P , resulting in an average SNR γ̄s,k=0.5P/σ2

n, while
γ̄k,d=0.5P/σ2

n for the RD link.

A. Training the Predictor

The hyper-parameters of a deep network such as the number
of layers or neurons have a substantial impact on prediction
accuracy. It is worth clarifying how to tune a deep network on
demand. A training process starts from an initial state where
all weights and biases are randomly selected. The input of the
predictor at the relay is ak,d[t] and the output is its D-step-
ahead prediction ǎk,d[t+D]. To measure prediction accuracy,
the mean squared error (MSE) is applied as the cost function,
namely MSE = 1

T

∑T
t=1 |ak,d[t+D]− ǎk,d[t+D]|2, where T

1The selection of such hyper-parameters will be justified in the next section.

is the total number of channel samples for evaluation. Using the
batch training, a batch of 256 samples is fed into the network
per step. The output is compared with the desired values and
the resultant error signals are propagated back through the
network to update the weights by means of training algorithms
such as the Adam optimizer used in our simulation. After 10
epochs, the trained network is employed to predict CSI.

Fig.4a compares the prediction accuracy of the predictors
with different hyper-parameters. Let’s first look at the impact
of the number of layers and the number of neurons. Starting
from an LSTM network with a single hidden layer, denoted
by LSTM-1 in the legend of the figure, its accuracy curve
as a function of the number of hidden neurons likes an ‘U’
shape. That is because the network suffers from the under-
fitting problem with only 20 neurons in the hidden layer, while
the over-fitting problem appears using over 80 neurons. To
make a fair comparison, the horizontal axis represents the
total number of hidden neurons, which are evenly allocated
across layers. For instance, the point of ‘60’ in the horizontal
axis means a 2-hidden-layer network with 30 neurons at either
layer (denoted by LSTM-2), a 3-hidden-layer network with 20
neurons per layer (denoted by LSTM-3), or a single layer with
60 hidden neurons. No matter how many neurons in its single
hidden layer, LSTM-1 cannot reach the high accuracy achieved
by LSTM-2 and LSTM-3, justifying the benefit of deep learning.
But it does not mean that the more layers, the better, as shown
by the worse result of LSTM-4, which has 4 hidden layers.
After known that 2-hidden-layer is the best choice for LSTM,
we further observe the recurrent networks with 2 RNN or GRU
hidden layers, indicated by RNN-2 and GRU-2, respectively. As
we can see, GRU performs as good as LSTM, whereas RNN is
weak. As a result, we select a 2-hidden-layer LSTM network
with 25 neurons at either layer, upon which the numerical
results in the following figures are derived.

B. Performance Comparison

We further compare the outage performance of three re-
laying schemes in a cooperative network with K=8 relays,
as illustrated in Fig.4b. The relay selection with the perfect
knowledge of CSI (i.e., ρ=1) is used as the benchmark, which
has the diversity order of 8 and decays at a rate of 1/γ̄8,
where γ̄ = P/σ2

n is the average EE SNR. With the delay
of τ = 2 and 3ms, the quality of outdated CSI drops to
ρo = J0(0.4π) ≈ 0.6425 and J0(0.6π) ≈ 0.2906, respectively,
which substantially deteriorates the performance. The diversity
of ORS falls into 1, i.e., no diversity, and the curve decays
slowly at a rate of 1/γ̄ in the high SNR regime. OSTC can
redeem some loss and achieve the diversity order of 2 by
using a pair of relays, but its gap to the benchmark is still
large, more than 7dB at the level of 10−3. Making use of
channel prediction, the quality of CSI can be improved to
ρ > 0.95. The proposed scheme achieves nearly the optimal
performance with the horizon of 2ms (by setting D = 2
steps prediction), and remarkably outperforms OSTC with a
gain of approximately 8dB in the case of 3ms. Moreover, the
channel capacities for different schemes given τ = 3ms are
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Fig. 4. (a) Prediction accuracy in terms of the number of hidden neurons. (b) Comparison of outage probability for ORS, OSTC, and PRS in a cooperative
network with K=8 relays; (c) Comparison of channel capacity for ORS, OSTC, and PRS in a cooperative network with K=8 relays.

comparatively illustrated in Fig.4c. At the SNR of γ̄=20dB,
for instance, ORS, OSTC, and PRS achieves 2.6, 2.75, and
3.5bps/Hz, respectively, where ORS suffers from a loss of
around 1bps/Hz but PRS achieves a near-optimal capacity.

VII. CONCLUSIONS

In this paper, we proposed a deep-learning-aided cooperative
diversity method for mobile terminals without an antenna array
to cultivate the benefit of spatial diversity. A recurrent neural
network was deliberately built to improve the timeliness of
channel state information applied for selecting a single oppor-
tunistic relay. Simply inserting a channel predictor between
the channel estimator and relay selector, an ORS system can
be upgraded to a PRS system without any other modifications,
making it transparent and easier to compatible with the existing
systems and standards. It achieves the optimal performance
with the full diversity order equaling to the number of co-
operating relays in slow fading wireless environments, and
substantially outperforms the existing schemes in fast fading
channels. It inherits the simplicity of ORS by avoiding multi-
relay coordination and synchronization, and the computational
complexity arising from fading channel prediction is negligible
compared with COTS hardware. From the perspective of
performance, compatibility, and complexity, it is viewed as
a good candidate for next-generation cooperative networks.
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