
MASTER THESIS

Daniel Kondratyuk

Multilingual Learning using Syntactic
Multi-Task Training

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Milan Straka, Ph.D.

Study programme: Informatics

Study branch: Computational Linguistics

Prague 2019

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Prague, 10/05/2019

i

This thesis would have not been possible without the guidance of RNDr. Milan Straka,
Ph.D., who spurred me on to experiment in his deep learning course and is what led to
the creation of this thesis. I received additional astute ideas from Dr. Günter Neumann
and Dr. Josef van Genabith. For that, I am very grateful for all their time and attention
listening to my thought processes and giving insightful advice. I am also deeply grate-
ful for the scholarship funding from the Erasmus Mundus program, allowing me to
study abroad while also enjoying the beauties of Europe. I appreciate RNDr. Markéta
Lopatková, Mrs. Bobbye Pernice, Dr. Jürgen Trouvain, and Ms. Tessa Libowski for
their unwavering help in answering my endless barrages of questions. Finally, I extend
my heartfelt thanks to my colleagues in the LCT, UFAL, and LST programs who made
this whole experience enjoyable, my family for encouraging me, and you, dear reader,
for taking your interest in looking at my thesis.

ii

Title: Multilingual Learning using Syntactic Multi-Task Training

Author: Daniel Kondratyuk

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Linguistics

Abstract: Recent research has shown promise in multilingual modeling, demonstrating
how a single model is capable of learning tasks across several languages. However,
typical recurrent neural models fail to scale beyond a small number of related lan-
guages and can be quite detrimental if multiple distant languages are grouped together
for training. This thesis introduces a simple method that does not have this scaling
problem, producing a single multi-task model that predicts universal part-of-speech,
morphological features, lemmas, and dependency trees simultaneously for 124 Uni-
versal Dependencies treebanks across 75 languages. By leveraging the multilingual
BERT model pretrained on 104 languages, we apply several modifications and fine-
tune it on all available Universal Dependencies training data. The resulting model, we
call UDify, can closely match or exceed state-of-the-art UPOS, UFeats, Lemmas, (and
especially) UAS, and LAS scores, without requiring any recurrent or language-specific
components. We evaluate UDify for multilingual learning, showing that low-resource
languages benefit the most from cross-linguistic annotations. We also evaluate UD-
ify for zero-shot learning, with results suggesting that multilingual training provides
strong UD predictions even for languages that neither UDify nor BERT have ever been
trained on. Finally, we provide evidence to explain why pretrained self-attention net-
works like BERT may excel in multilingual dependency parsing.

Keywords: syntax multilingual universal dependencies BERT

iii

Contents

Introduction 3

1 Background and Related Work 6
1.1 The Importance of Processing Syntax 6
1.2 Universal Dependencies . 7

1.2.1 Part-Of-Speech Tags . 8
1.2.2 Morphology Tags . 9
1.2.3 Lemmas . 9
1.2.4 Dependency Trees . 10

1.3 Distributional Semantics & Word Vectors 11
1.4 Neural Networks . 12

1.4.1 Deep Learning . 12
1.4.2 Feedforward Neural Networks 13
1.4.3 Recurrent Neural Networks 14
1.4.4 Self-Attention Networks & the Transformer 14

1.5 Transfer Learning with Contextualized Word Representations 22
1.5.1 Word2Vec: Unsupervised Pretraining of Word Embeddings . 22
1.5.2 ELMo: Deep Contextualized Word Representations 23
1.5.3 BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding . 23
1.5.4 ULMFiT: Universal Language Model Fine-tuning for Text

Classification . 25
1.6 Multilingual Learning . 26

2 Predicting Universal Dependencies from Raw Text 28
2.1 The CoNLL 2018 Shared Task . 28
2.2 Part-of-Speech Tagging . 28
2.3 Morphological Tagging . 28
2.4 Lemmatization . 29
2.5 Dependency Parsing . 30
2.6 Multi-Task Learning with LemmaTag 31
2.7 Multi-Task Learning with UDPipe Future 33
2.8 Metrics for Scoring UD Predictions 33

3 The UDify Model 35
3.1 Design Considerations . 35

3.1.1 Training on all Universal Dependencies Training Data Simul-
taneously . 36

3.2 Layer Attention . 37
3.3 Model Architecture . 38

3.3.1 Model Tasks . 40
3.3.2 Extremely Long Sentences 40

3.4 Regularization Strategies . 40
3.4.1 Layer Dropout . 41
3.4.2 Transfer Learning with ULMFiT 41

1

3.4.3 Input Masking . 41
3.4.4 Dropout . 42

3.5 Hyperparameters & Training Details 42

4 Experiments and Results 44
4.1 Datasets . 44
4.2 Training on All Treebanks vs. One Treebank 44
4.3 Effect of Syntactic Fine-Tuning on BERT 45

4.3.1 Overall Performance . 47
4.3.2 Layer Attention Preference 48
4.3.3 Zero-Shot Learning . 49
4.3.4 Probing for Syntax . 50
4.3.5 Attention Visualization . 51

4.4 Factors that Enable BERT to Excel at Dependency Parsing and Multi-
linguality . 56

4.5 Full Results . 57

Conclusion 63

Bibliography 65

List of Figures 72

List of Tables 74

2

Introduction
Advances in Deep Learning have spurred the growth of several initiatives in the Natu-
ral Language Processing (NLP) community, introducing useful techniques that enable
models to score higher on common metrics, predict faster, and fit into less memory.
One such initiative is in multilingual learning, where a machine learning model is
tasked to incorporate the information content of two or more languages to solve a task
at hand. In the same way learning a new language can enhance the proficiency of a
speaker’s first language [Abu-Rabia and Sanitsky, 2010], a model which has access
to multilingual information can begin to learn generalizations across languages that
would not have been possible through monolingual data alone.

Multilingual models share a number of benefits. Works such as McDonald et al.
[2011], Naseem et al. [2012], Duong et al. [2015], Ammar et al. [2016], de Lhoneux
et al. [2018] consistently demonstrate how pairing the training data of similar lan-
guages (e.g., Czech and Russian, Chinese and Japanese) can boost evaluation scores
of models predicting syntactic information like part-of-speech and dependency trees.
Other models like Johnson et al. [2017], Ha et al. [2017] show how multilingual train-
ing enables zero-shot learning, where a model can accurately perform a task despite
being given a language it has never seen before. And because a multilingual model
can process multiple languages, this typically reduces the space requirements when
compared to training separate monolingual models for each language.

Current NLP models have shown issues in scaling beyond a small number of lan-
guages, especially if they are distant from each other. Prior to 2019, the research
community produced models trained on up to 12 languages [Johnson et al., 2017],
which may be indicative of potential issues in training across more than 20 languages.
This was likely due to a lack of training resources, as neural models require copious
amounts of data to properly regularize them and prevent the overfitting of their input
[Popel and Bojar, 2018].

But recently, the works of Howard and Ruder [2018], Peters et al. [2018], Devlin
et al. [2018] have enabled several unsupervised methods that can surpass this overfit-
ting limitation. By training model on raw text with the simple task of predicting unseen
words in sentences, the models can learn contextual representations of text that can be
transferred to other tasks, boosting evaluation scores. As there exists an enormous
supply of unannotated raw text on the web, this can be used to regularize self-attention
networks to prevent overfitting and eliminate many of the scaling issues. This forms
the foundation for this thesis, which will provide a few additional key methods to scale
multilingual learning of up to 75 languages on Universal Dependency parsing and
show the extent to which multilingual information can boost evaluation scores over
monolingual models.

The Universal Dependencies (UD) framework provides syntactic annotations con-
sistent across a large collection of languages [Nivre, 2018, Zeman et al., 2018]. This
makes it an excellent candidate for analyzing annotations across multiple languages.
UD offers tokenized sentences with annotations ideal for multi-task learning, including
lemmas, treebank-specific part-of-speech tags, universal part-of-speech tags, universal
morphological features, and dependency edges and universal dependency labels for
each sentence.

This thesis introduces and analyzes a model we call UDify, a semi-supervised

3

multi-task model for automatically producing UD annotations based on UDPipe Fu-
ture, a winner of the CoNLL 2018 Shared Task on Multilingual Parsing from Raw
Text to Universal Dependencies [Straka, 2018, Zeman et al., 2018]. By modifying
a multilingual pretrained BERT model and further training it on all treebanks con-
catenated together, UDify is able to accurately predict UD annotations for any given
language, i.e., any of 124 treebanks across 75 languages. We evaluate UDify with re-
spect to UDPipe Future as a strong baseline, provide additional analysis for languages
that multilingual training benefits prediction the most, and analyze treebanks which do
not have a training set for zero-shot learning. We also use a method by Hewitt and
Manning [2019] to probe the internal structure of the model for dependencies between
words, showing how UDify structures its word representations very close to that of
annotated dependency trees. Finally, we examine and visualize the attention heads of
UDify, revealing an attention structure more sensitive to constituents like clauses and
prepositions after fine-tuning.

Contributions
The main contributions this thesis provides are as follows.

1. We empirically demonstrate the first singular model, UDify, capable of predict-
ing all Universal Dependencies annotations across all available treebanks (124
treebanks, 75 languages) while also being competitive with state-of-the-art per-
formance.

2. We provide methods to regularize BERT fine-tuning to reduce overfitting that
would otherwise prevent UDify from producing accurate predictions.

3. We observe many cases where the simple strategy of multilingual pretraining and
fine-tuning benefit prediction with low-resource languages, and even languages
which have never been trained on.

4. We show that fine-tuning BERT on Universal Dependencies causes its inter-
nal word representations to more closely resemble human-annotated dependency
trees in both the attention heads and as a global property of its vector space.

Research Questions
This thesis will keep in mind a few important research questions related to multilingual
learning for Universal Dependency parsing. Answers to these questions can help better
understand how to construct massively scalable multilingual models for processing
syntax.

1. What specific architectural choices allow for building a model capable of scaling
to annotate Universal Dependencies across all supported languages?

2. How does multilinguality affect the performance of parsing Universal Depen-
dencies, and which languages benefit the most from cross-lingual annotations?

3. In what ways does unsupervised pretraining help for training self-attention net-
works for dependency parsing?

4

4. What evidence is there to support why pretrained self-attention networks excel
in dependency parsing?

This thesis additionally uses information from the following sources written by the
author. All experiments in Chapter 3 and Chapter 4 have been conducted by the author
unless explicitly indicated otherwise.

• Kondratyuk, D., Gavenčiak, T., Straka, M., and Hajič, J. LemmaTag: Jointly
Tagging and Lemmatizing for Morphologically Rich Languages with BRNNs.
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 4921–4928, 2018.

• Kondratyuk, D. 75 Languages, 1 Model: Parsing Universal Dependencies Uni-
versally. 2019.

Chapter 1 and Chapter 2 provide background information relevant to understanding
UDify. Chapter 3 describes the UDify model, and Chapter 4 details and analyzes
the results related to predicting UD annotations with the model. Finally, Chapter 4.5
concludes with a summary of the major results of this thesis.

5

1. Background and Related Work
This chapter provides a brief summary of the background information necessary to
support this thesis. The background consists of an overview of the Universal De-
pendencies framework, neural networks, self-attention networks, contextualized word
representations for transfer learning, and related work in multilingual learning.

1.1 The Importance of Processing Syntax
Syntax is the set of rules that dictates sentence structure. It is the branch of linguistics
that analyzes the low-level interactions between words in a sentence [Hana, 2011].
For example, these interactions include the order of words1,

I wrote a thesis — *Wrote I a thesis,

the agreement between words,

I write a thesis — *I writes a thesis,

the number of allowed complements,

I handed [my thesis] [to my advisor] — *I saw [my thesis] [to my advisor],

and the hierarchical structure of words and phrases,

I wrote [my thesis] [with joy] — *I wrote [my thesis [with joy]].

When processing any kind of natural language text, a degree of awareness of the
syntax of a language is a must. The interactions of words in a language are non-trivial
and can combine in many unexpected ways. When conducting a Natural Language
Processing (NLP) task, the first step to better understanding the content of a sentence
is most often to analyze its syntax.

Over the decades, linguists have defined formalisms, frameworks to better visu-
alize and understand the syntax of a given sentence. These include part-of-speech,
context-free grammars, constituency trees, and dependency trees. From a given exam-
ple sentence one can construct these representations to see how the meaning of smaller
parts of a sentence can compose to form new meaning. Rising interest in developing
more sophisticated and accurate tools for processing natural language has produced
models that are effective and efficient at analyzing the syntax of a given text.

Machine learning models have become increasingly popular to process syntax. A
model is given a set of example sentences with annotations that it is expected to output
and is tasked with learning the implicit linguistic rules to produce those annotations,
even for examples the model has never seen before. To allow models to generalize
well across most of the linguistic rules of a language, human annotators have produced
large datasets consisting of hundreds or even millions of example sentences. One such

1Each sentence marked with an asterisk * is considered ungrammatical in context

6

collection of datasets is the Universal Dependencies corpus, which will provide the
data that this thesis will use to learn models to process a series of syntactic tasks.
These models will provide insight into how incorporating the syntax of not just one
language but many languages can improve a model’s syntactic understanding of each
considered language.

1.2 Universal Dependencies
According to the Universal Dependencies Website [Zeman et al., 2018], “Universal
Dependencies (UD) is a framework for cross-linguistically consistent grammatical an-
notation and an open community effort with over 200 contributors producing more
than 100 treebanks in over 70 languages.” The introduction to UD continues on,

“Universal Dependencies (UD) is a project that is developing cross-
linguistically consistent treebank annotation for many languages, with
the goal of facilitating multilingual parser development, cross-lingual
learning, and parsing research from a language typology perspective.
The annotation scheme is based on an evolution of (universal) Stanford
dependencies, Google universal part-of-speech tags, and the Interset
interlingua for morphosyntactic tagsets. The general philosophy is to
provide a universal inventory of categories and guidelines to facilitate
consistent annotation of similar constructions across languages while
allowing language-specific extensions when necessary.”

The UD project grew from a need to keep annotations consistent across languages.
Prior to research efforts like UD, researchers independently defined their own formal
rules and tagsets to capture the syntax of their respective language. The UD annota-
tion scheme provides an abstraction over these formats, allowing any UD-supported
treebank to have the same basic rules and tags like any other treebank. This signifi-
cantly reduces the complexity of models trained and evaluated on UD, as a properly
constructed model can swap between any UD treebank and not need any code changes
with regards to data preprocessing and data representations.

Every supported language in UD possesses one or more treebanks produced by
independent research groups. Each treebank contains a list of annotated sentences
formatted to suit the UD annotation guidelines. These sentences are further are split
into three main files: the training, development, and test sets. The training set is used
to feed directly into machine learning models to process and predict UD annotations,
while the development and test sets are used purely for evaluation purposes, i.e., to test
to what extent a given model is able to predict examples it has never seen before.

The training, development, and test sets are all preformatted into the CoNLL-U
format. This format specifies each file to contain 10 tab-separated columns containing
different morphological and syntactic annotations. These columns are represented as
6 different features of a given word. Table 1.1 provides a description and example of
each feature.

The Form column provides the word itself, within the broader context of a sentence.
The Lemma column provides the root form of the word form. The XPOS column op-
tionally provides treebank-specific part-of-speech tags of the word forms which may be

7

FEATURE DESCRIPTION EXAMPLE

Form Word tokens nominated
Lemma Root form nominate
XPOS Treebank-specific part-of-speech tags VBD
UPOS Universal part-of-speech tags VERB
UFeats Universal morphological features Mood=Ind|Tense=Past|VerbForm=Fin
Deps Dependency head, child, and label 0 root

Table 1.1: A table of Universal Dependencies features along with an example of each
feature.

different across treebanks and languages, while the UPOS column contains language-
agnostic universal part-of-speech tags. Similarly, the UFeats column specifies a list
of universal morphological features related to the given word form. And lastly, the
Deps columns specify dependency relations between words that are constructed in a
sentence to form a dependency tree.

The following sections provide more detail into each of the UD features mentioned
above and explain the broader context of how and why they are used in practice.

1.2.1 Part-Of-Speech Tags
All words have a part-of-speech (POS), a classification that fits into one of several
structural categories. The word fish is a noun, destroy is a verb, and incredible is
a an adjective. A linguist can classify the parts-of-speech of words in a sentence,
associating one a POS tag per word. POS tags can be very coarse like noun or can
contain fine-grained attributes of a word like active, past participle, informal. The
Prague Dependency Treebank (PDT), for instance, employ fine-grained features in
their tagset. An example can be seen in Figure 1.1 where each character in the tag
represents a different feature of a word.

V B - S - - - 3 P - A A - - -

Pa
rt
of
Sp
ee
ch
(1
2)

D
et
ai
le
d
PO

S
(7
5)

G
en
de
r
(1
1)

N
um
be
r
(6
)

C
as
e
(9
)

Po
ss
es
so
r’s

G
en
de
r
(5
)

Po
ss
es
so
r’s

N
um
be
r
(3
)

Pe
rs
on
(5
)

Te
ns
e
(6
)

C
om
pa
ris
on

D
eg
re
e
(4
)

N
eg
at
io
n
(3
)

Vo
ic
e
(3
)

R
es
er
ve
d
(1
)

R
es
er
ve
d
(1
)

Sp
ec
ia
l (
10
)

Figure 1.1: The tag components of the Czech PDT treebank with the numbers of valid
values. Around 1500 different tags are in use in the PDT [Kondratyuk et al., 2018].

UD provides universal coarse-grained POS tags. Table 1.2 lists all the different
types of UPOS tags that are used to classify each word across all languages.

Many treebanks in UD have been ported over from preexisting treebanks possess-
ing their own POS tagset. As such, UD also provides an optional column for treebank-
specific POS tags denoted XPOS. Figure 1.1 is an example of an XPOS tag in the
Czech PDT treebank. This is the only non-universal feature provided by UD.

Part-of-speech tags are useful in that they can generalize across certain categories
of words and allow one to think about a sentence more abstractly. For instance, words

8

OPEN CLASS WORDS CLOSED CLASS WORDS OTHER

ADJ ADP PUNCT
ADV AUX SYM
INTJ CCONJ X
NOUN DET
PROPN NUM
VERB PART
PRON
SCONJ

Table 1.2: A listing of all universal part-of-speech (UPOS) tags in the UD framework.

tagged as adjectives (ADJ) can be replaced with other adjectives without breaking the
structural rules of grammar. Subjects of a sentence in English precede verbs (VERB)
and are represented as nouns (NOUN). Part-of-speech tags offer an abstraction of syn-
tax that makes it easier for linguists to study language.

1.2.2 Morphology Tags
Morphology studies how words are formed in a sentence, and how they change with
respect to context. Certain inflections of a word can affect the word’s meaning, e.g., in
English, the ending “s” typically pluralizes a noun to indicate there are more than one
of the entity the noun describes. English does not encode a high degree of morphology
like many other morphologically-rich languages. Instead, English uses word order to
convey much of the structural information in a sentence. But morphologically-rich lan-
guages can convey this meaning in their many word forms, and in some languages like
Czech, can freely change their word order without fundamentally altering the meaning
of the sentence or breaking the rules of grammar.

To capture this morphological information, UD defines an inventory of universal
morphological features along nearly 50 dimensions, including case, number, gender,
mood, and more. Each dimension can be assigned a value like nominative, future, first
person, etc.

Morphologically rich languages are often difficult to process in many NLP tasks
[Tsarfaty et al., 2010]. When processing text, one typically constructs a vocabulary
of unique words that have been observed in that text. The addition of several in-
flectional variants across many words dramatically increases the vocabulary size of
a language. The number of possible combinations of words with their morphological
variants quickly explodes in size, to the point where most combinations of word forms
have never been observed. This results in data sparsity and out-of-vocabulary (OOV)
issues, and several additional techniques are necessary to reduce the effects of these
issues. For instance, morphological tags can make it easier to determine root forms of
words to reduce vocabulary sizes.

1.2.3 Lemmas
Closely related to morphology tags are lemmas. A Lemma of a word is its root or
dictionary form. For instance, the root of “ate” is “eat.” Alongside each word, UD pro-
vides a lemma column that lists corresponding lemmas of each word form. Lemmatiza-

9

tion is the process of converting a word to its root form. Lemmatization can normalize
the morphology of a text, keeping vocabulary sizes manageable and making it easier
to infer certain word patterns.

If one knows all the morphological information associated with a word (e.g., in a
morphology tag), it should not be too difficult to come up with a rule that transforms
a word into its lemma and vice-versa. However, it is not always possible, as different
words can have overlapping senses. For instance, “found” can either be a past tense
verb (I found it) or a present tense verb (to found a town). Given a word form of
“found,” it may be difficult to determine what sense the word form refers to. In most
cases, the broader context of the sentence or text passage can clue in on what the lemma
or morphological features of a word form should be.

1.2.4 Dependency Trees
Dependency parsing is the process of analyzing the lexical structure of a sentence to
produce relations between words. A dependency parser works by receiving a sen-
tence’s word tokens as input and produces a dependency tree consisting of a set of
directed and labeled binary relationships between words. Figure 1.2 provides an ex-
ample of a dependency tree using the UD annotation scheme.

Figure 1.2: An example of a non-projective dependency tree using UD labels [Hersh-
covich, 2017].

A relation in a dependency tree consists of a head where an arrow originates and
a dependent where the arrow terminates. Each relation arrow also carries a label that
indicates the type of relationship between the head and the dependent. This can alter-
natively be formulated as a directed spanning tree where each word is represented as a
node in the tree and each labeled edge is a binary relation (arrow).

Dependency trees also possess additional constraints to enforce a tree structure.

• There exists a root node which has no incoming edge.

• All paths from the root to any other node are unique.

• Each node except the root has exactly one incoming edge.

One special property of dependency trees is projectivity, where a tree can be con-
structed without crossing any lines. This is a nice property that makes processing
language on projective sentences easier than on non-projective sentences, as projec-
tivity allows all the dependencies to be grouped into localized compositional chunks

10

without any discontinuities. Non-projective dependencies can result in long-range de-
pendencies which can be more difficult for models to predict.

UD utilizes two columns in the CoNLL-U format to provide the dependency tree
of each sentence. For each word, the head column indicates the integer position of
the head of a dependency or 0 if the word is the root of the sentence. The deprel
column specifies the type of relation as one of several categories of labels. For instance,
“amod” stands for adjectival modifier, and is a dependency relation typically used by
adjectives that point to a noun. Optionally, UD also supports enhanced dependency
annotations, allowing for a larger set of dependency labels.

Dependency trees reveal a higher degree of the syntactic structure of a sentence
than the POS tags, morphological tags, or lemmas alone. It shows not only the function
of each word in the sentence, but also the broader context of how that word plays a role
in building the meaning of a sentence. Dependency trees can also be used to separate
the roles of words from the order in which they are uttered in a sentence. The use of
dependency trees is broadly useful for a wide variety of NLP tasks, from information
retrieval and question answering [Cui et al., 2005, Lin and Pantel, 2001, Yih et al.,
2013], to machine translation [Sennrich and Haddow, 2016].

The next several sections will provide the additional background necessary to un-
derstand how one may use modern methods to predict Universal Dependencies from
text.

1.3 Distributional Semantics & Word Vectors
In the last several years, there has been an explosion of research in leveraging neural
networks for processing natural language. The success of neural networks in pro-
cessing text can be largely attributed to the distributional hypothesis, which in simple
terms states that words in similar contexts have similar meanings. By the words of
Firth [1957], “You shall know a word by the company it keeps.” Using statistical mod-
eling, one can begin to categorize the meanings and functional aspects of words with
respect to their context. For instance, search engines have exploited this hypothesis by
building large tables of word frequencies of documents found on the web and retrieving
these documents based on similarity to user queries.

A popular use of the distributional hypothesis is to represent each word in a text
with as a high-dimensional vector. Each vector contains a list of real values, each
representing a feature of a vector space. This re-frames the original linguistic problem
as a geometry problem, asking what series of operations are necessary to transform
these word vectors into the desired result.

Figure 1.3 illustrates an example vector space of related words in 2D space. One
important feature of the vector space that models exploit is a similarity measure. For
instance, this can be is cosine similarity, where vectors that point in a similar direction
are said to be semantically similar, i.e., convey nearly the same meaning. This gives
rise to simple and intuitive linear vector operations on words that preserve semantic
relatedness between them, e.g., king − man + woman = queen.

Words can be represented as vectors in any number of ways, including word fre-
quency and co-occurrence, or using more advanced deep learning methods to produce
word embeddings. Modern word embeddings methods were popularized by Mikolov
et al. [2013a], which provided a method to produce word vectors by predicting the

11

Figure 1.3: An example of a word-based vector space with semantically related words
pointing in the same direction [Zafranyj, 2019].

context in which each word appears. By iteratively refining these estimates, a high-
quality vector representation of a vocabulary of words can be produced and used in
many NLP models. Most models which use neural networks to process text also use
word embeddings of some kind, particularized to the task that they are used in.

1.4 Neural Networks
This thesis will focus on utilizing special representations of word vectors that demon-
strate superior performance across a variety of metrics, and adapt them for parsing
Universal Dependencies. The next sections will provide further background into how
to calculate these special representations and furthermore how to use them for Univer-
sal Dependency parsing.

1.4.1 Deep Learning
Deep Learning has grown in popularity in the greater NLP community due to its flex-
ibility, scalability, and distinguished performance across an increasingly wide variety
of NLP tasks [LeCun et al., 2015]. It provides a framework for solving certain kinds
of problems by training universal function approximators to solve a given task. By
providing these approximators a large number of examples of inputs and outputs, they
can begin to correlate certain relationships in the input to produce the correct output.
This forms the basis of machine learning, and deep learning provides an additional set
of tools, i.e., neural networks, to create and iteratively improve such function approxi-
mators.

Given an input, a neural network applies a series of weighted operations on that
input to produce an output. These weights, also called parameters, are not tuned ex-
plicitly, but are updated automatically through implicit relationships in the provided
input data. By feeding the network more examples, it can refine its parameters so that
it approaches closer to generalizing across all the given examples. Initially, a neural

12

network is given a (relatively) random arrangement of parameter weights which are
then continually updated until a stopping criterion is met. Typically, examples are
batched together, computed in parallel, and then averaged. The idea is to provide a
better statistical representation of the entire dataset than using just one example which
can be very noisy.

An optimizer is used in conjunction with the neural network, which specifies how
those parameters should be updated with every successive iteration of example data.
The optimizer is paired with a loss function, which dictates the amount of error the
network produces with respect to each input example. The goal of the optimizer is
to minimize this error or loss. However, this is no guarantee that the network will
learn to find patterns and generalize across the data and instead may overfit to the
training set. Sufficient regularization is required to reduce overfitting, and the later
sections will detail some of the important regularization techniques necessary for good
generalization performance.

1.4.2 Feedforward Neural Networks
Several neural architectures have been developed to handle various kinds of input data
and exploit their properties to more accurately solve the given problem. The feedfor-
ward neural network, otherwise known as the multilayer perceptron (MLP), is one of
the simplest and most commonly used neural architectures.

Figure 1.4: An example of a feedforward neural network with two hidden layers
[Karpathy, 2019].

Figure 1.4 illustrates an example feedforward neural network with an input layer,
an output layer, and two hidden layers. A layer or state is said to be hidden if it is
internal to the network itself, whose parameters do not directly relate to the inputs
or outputs. Each layer consists of a number (or dimension) of neurons that are fully
connected to all the neurons of the previous layer. Each neuron receives a weighted
sum of all outputs of neurons it is connected to in the previous layer plus some bias
factor, producing a new scalar output for that neuron. But before sending this output
to the next neuron, networks typically introduce a non-linear activation function that
distorts the output. Instead of summing each neuron individually, the mathematical
operations can be expressed as matrix operations. For example, suppose that x is the
vector corresponding to the input layer outputs, W is a matrix of weights providing a
weighted sum for each input, and b is a simple bias term after the weighted sum. Then

13

the output of all neurons in hidden layer 1 h can be written as the vector

h = ReLU(Wx + b) (1.1)

where and where ReLU is a popular non-linear activation function defined as

ReLU(x) = max(0, x) (1.2)

By applying successive hidden layers in this fashion, a properly trained network
will produce a representation of hidden parameters such that for any input, it can pro-
duce a reasonable guess at the output. Initially, these weights are randomized and
require successive weight updates to minimize the loss function that identifies the net-
work’s error.

Feedforward neural networks have a notable deficiency that makes it hard to pro-
cess text on their own: they do not possess any inherent mechanism to capture the order
of input data. One can attempt to apply word vectors as an input to a feed-forward net-
work to perform a given task on text, but notice that the implicit ordering information
in the input layer is lost after summing up the values of the input layer to produce the
hidden layer. In effect, this would produce a bag-of-words model that is only sensitive
to the types and frequencies of the input word embeddings.

1.4.3 Recurrent Neural Networks
To allow a neural network to explicitly model word order, one popular neural archi-
tecture that has been devised is the recurrent neural network (RNN). As opposed to a
feedforward network, RNNs persist state for multiple durations of their input. Given
an input, an RNN computes an intermediate state and uses this information when com-
puting the next state for the next input, in turn affecting the output state. One can view
an RNN as a kind of memory cell that can remember and forget pieces of information
as it receives new input. RNNs are the most widely used architectural component when
processing words in a text, as they lend themselves well to sequential data. Word vec-
tors can be input to RNNs sequentially, producing a sequence of output vectors, one
output vector produced per input, while the hidden states related to previous inputs and
states are passed along.

One widely-used type of RNN cell is the Long Short Term Memory (LSTM) unit
seen in Figure 1.5 [Hochreiter and Schmidhuber, 1997]. It provides a series of oper-
ations on the input that control information flow. Another widely-used type of RNN
is the Gated Recurrent Unit (GRU), which provides a slightly different formulation to
calculate its hidden and output states [Chung et al., 2014]. We only briefly mention
them here and do not detail the specific operations as seen in the figure, as they will
not be necessary to discuss the main model introduced in the core of this thesis. The
important point is that the operations performed in an RNN are purposefully built to
help a neural network remember past inputs and use this information to better process
output states for the current input.

1.4.4 Self-Attention Networks & the Transformer
Prior to 2017, state-of-the-art models in NLP were dominated by recurrent neural net-
works. Machine translation systems used a popular architecture known as sequence-
to-sequence, which takes an input sentence word-by-word through an RNN encoder,

14

Figure 1.5: A visual representation of the operations performed inside an LSTM unit
[Olah, 2015].

produces a single vector representing the information content of a sentence, and uses
another RNN decoder to output a sentence translation word-by-word.

Then Vaswani et al. [2017] released a new architecture for machine translation
called the Transformer or the self-attention network. The authors completely elim-
inate RNNs as an architectural feature, and introduce several architectural concepts
like multi-head self-attention and positional encoding to create a novel architecture
that achieved (and continues to achieve) state-of-the-art performance in machine trans-
lation.

Scaled Dot-Product Self-Attention

According to Vaswani et al. [2017], self-attention is an attention mechanism relating
different positions of a sequence to produce a representation of each part of the se-
quence. The use of self-attention has been observed in prior works [Cheng et al., 2016,
Parikh et al., 2016, Paulus et al., 2017], but the work of Vaswani et al. [2017] was the
first to focus solely on self-attention as a method to create vector representations for
sequence processing, without requiring any recurrent or convolutional components.

The self-attention mechanism (see Figure 1.6) consists of three primary inputs: the
query Q, the key K, and the value V . The scaled dot-product attention Attention
computes the dot products of the query with all the keys, scales them, and applies
a softmax function to obtain the weights on the values. In practice, the queries, keys,
and values are bundled together into matrices, as this operation will be used to compute
dot-products of a query with respect to all keys and further across all possible queries.

To put it more formally,

Attention(Q,K,V) = softmax(QKT

√
dk

)V (1.3)

where dk is the dimension (number) of the keys. The softmax function is defined

15

as

softmax(αi) = eαi∑
j eαj

(1.4)

where e is the natural constant. In this instance, the softmax is a way to normalize
a vector of values with respect to log-space.

Figure 1.6: Transformer self-attention head (left) consists of a query Q, key K, and
value V . Multi-Head Attention (right) combines h of these heads together, running
them in parallel [Vaswani et al., 2017].

Intuitively, one can think of the scaled dot-product attention as a kind of continuous
lookup table for vectors. Given a query vector and key vector, they are multiplied
together in a dot-product, which means that the output will be a large scalar if the
vectors match very closely to each other (small angle between the vectors), equal to 0
if the vectors are orthogonal, and negative if the vectors are very dissimilar (an angle
of more than 90 degrees). By considering a sequence of keys and multiplying them
with the query, this produces a set of scalars which indicate the “strength” to which
the key matches with the query. These scalars (after softmax normalization) are then
multiplied by their respective value vectors to scale each value based on how closely
the key matched the query. In other words, high key-query similarity will produce a
high corresponding value that will be passed along as useful information, while low
similarity will be less likely to make a contribution to the final output.

This dot-product attention is computed between every pair of words in a sentence,
where the queries, keys, and values all represent the same sequence of (projected)
vectors. See Figure 1.7 for a visualization of the attention mechanism with respect to
an example sentence. The words on the left represent the keys of the sentence, and the
words on the right represent the keys. Before the calculation, the word vectors are first
projected to different vector spaces. For a particular word representing a query, this is
multiplied with all the keys of the sentence, and the highest similarity will produce the
highest weight.

Instead of computing a single attention function, one can compute multi-head at-
tention, where h separate self-attention operations are computed in parallel and whose

16

Figure 1.7: A visualization of the self-attention mechanism working on an example
sentence [Vig, 2019]. High positive and negative values are illustrated as blue and
orange bars respectively.

outputs are concatenated together. Note that before the dot-product operation, all in-
puts are first projected through separate linear (feedforward) layers so that the input
vectors can be “viewed” differently with respect to each attention head. Otherwise, the
highest dot-product would always be the query dot-product with respect to itself, as
they are the same vector and therefore have the highest similarity.

Encoder Layers

The encoder of the Transformer model consists of a number of encoder layers stacked
on top of each other as seen in Figure 1.8. Each layer has two sub-layers, the multi-
head self-attention mechanism, and a simple position-wise feed-forward network with
ReLU activation. The layer employs residual connections, adding the input prior to
computing the sub-layer to the output after the sublayer. All the outputs are then
normed with layer normalization [Lei Ba et al., 2016]. The final output of each layer
is a series of vectors, one for each position of each input word.

The Transformer model also possesses a separate decoder with masked multi-head
attention, but this thesis will only focus on the encoder architecture as thus described.

Positional Encoding

Another relevant aspect of self-attention networks is the positional encoding scheme.
The self-attention encoder has no recurrence and therefore by itself has no inherent
information related to the order of the inputs. To inject some information about the
positions of each word, the authors add a positional term to each input embedding that
is a function of the position of each word.

Figure 1.9 plots the different values of the positional encoding of the first 20 word
vectors in a sentence assuming each word vector is of dimension 512. The authors use
sinusoidal functions to calculate the positional embedding and sum it with the word
vector. The authors chose this particular formulation, as each positional vector with
an offset can be represented as a linear combination of the positional vector with the
position of the offset vector, and so the network can learn relative positions between
words.

17

Figure 1.8: Transformer self-attention model introduced by Vaswani et al. [2017] used
for machine translation.

18

Figure 1.9: Positional encoding for 20 words (y-axis increasing downward) with an
embedding dimension of 512 (x-axis increasing rightward). Lighter colors indicate
activations closer to 1, and darker colors indicate activations closer to -1 [Alammar,
2018].

Byte-Pair Encoding (BPE) & Wordpieces

Up until this point, all neural processing has been dealing with operating on word
vectors. However, a major disadvantage of using word vectors is dealing with large
vocabulary sizes and new unknown words not seen in the vocabulary. The larger a
dataset becomes, the more unique vocabulary items will be observed, and this will
continue unbounded. This is a natural consequence of Ziph’s law [Zipf, 1949, Fa-
gan and Gençay, 2011], and creates problems in storing observed words and handling
previously unobserved words.

To alleviate some of the effects of this problem, researchers have developed and
used methods for generating subword units. As more text is processed, it becomes
increasingly likely that new words are simply inflected variants of previously known
words. By breaking apart words into their smaller constituent parts, models can mix
and match different subword units to represent new words without having to increase
their vocabulary, so long as those individual units have been observed before. This is
especially helpful for morphologically-rich languages, which contain many inflected
versions of the same underlying root word.

One popular method to generate such subword units is to use the byte-pair encod-
ing (BPE) scheme. Introduced by Gage [1994] and adapted by Sennrich et al. [2015]
for use in machine translation, the idea is to start from characters and iteratively com-
bine them based on word frequency to create larger and larger units until a stopping
criterion is met. Initially, all subword units are just represented as characters. Then
through each successive iteration, the most commonly consecutively occurring units
are concatenated together, forming a new unit in the vocabulary. The algorithm con-
tinues until a sufficiently large vocabulary of units has been reached. Once completed,
text can be tokenized to fit these subword units. Wu et al. [2016] introduce a sim-

19

ple language-independent tokenizer to produce such BPE-generated units given raw
text, and apply some additional conventions in processing to handle word boundaries
like whitespace. Variants of this tokenization scheme for producing subword units
are commonly paired with self-attention networks [Kudo and Richardson, 2018], and
the output of such a tokenization scheme to produce BPE-defined units are commonly
called wordpieces. For instance, definitely can be split into units definite and
##ly. Vaswani et al. [2017] use the convention that all subword units that are contin-
uations of a previous unit within a word are prefixed with the characters ## to make it
easier for a model to identify word boundaries (e.g., ly would be considered the start
of a new word).

One could think of just representing all text with just characters to bypass this
problem entirely. However, this approach is usually empirically worse for evaluation
performance, as not only do neural networks need to identify word boundaries, but
this also greatly lengthens the maximum number of dependencies between words from
less than a dozen steps to potentially hundreds. There has been work in improving
purely character-based models, e.g., for machine translation [Lee et al., 2017], but
current models have yet to demonstrate performance on par with the state-of-the-art.
In practice, a combination of subword units and character-level recurrent units can be
used for the greatest boost in performance.

Inverse Square-Root Learning Rate Decay with Linear Warmup

When training any neural network, one must be conscious of the learning rate. This
hyperparameter is what scales the gradient update (i.e., the degree to which the weights
are updated) globally. By increasing the learning rate, the gradient updates increase
proportionally, causing a greater change in the weights. The effect of learning rates
on model performance has been widely explored [Smith and Topin, 2018, Vaswani
et al., 2017, Howard and Ruder, 2018], showing that decaying (i.e., slowly reducing)
the learning rate benefits a network’s evaluation performance.

In the Transformer paper, Vaswani et al. [2017] propose the use of an inverse
square-root learning rate decay scheme (otherwise referred to as Noam learning rate),
where the learning rate is first rapidly increased for a number of training iterations
and then gradually decreased for the remainder of training. As opposed to recurrent
networks, self-attention models introduce training instability that can make it difficult
for the model to learn a good set of initial parameters early on in training. To combat
this, the model is first trained with a linear warmup for a few hundred iterations and
then decreases proportionally to the inverse square root of the current number of itera-
tions. The idea is to allow the model which starts from a bad set of random parameters
to slowly adjust to better parameters before making larger parameter updates. More
specifically, this learning rate scheme is defined as

learning rate = d−0.5
modelmin(step num−0.5, step num · warmup steps−1.5) (1.5)

where step num is the current iteration number, warmup steps is a hyperparam-
eter specifying the number of steps to warm up before decaying, and dmodel is a hyper-
parameter scaling the learning rate proportional to the size of the model.

A visualization of such a learning rate scheme is given in Figure 1.10.

20

Figure 1.10: A plot of the inverse square-root learning rate decay scheme applied to
Transformer models with different hyperparameters, where the x-axis represents the
number of training steps and the y-axis represents the learning rate [NLP, 2018]. With
respect to the different plots, the left number represents a global factor dmodel scaling
the learning rate, and the right number represents the number of steps warmup steps
to warm up before decaying.

Self-Attention Networks for Processing Syntax

One natural observation arising from the introduction of the Transformer model is
that self-attention could be used for tasks other than machine translation. But in the
years since the introduction of the state-of-the-art transformer model which continues
to provide superior machine translation score over recurrent networks, few models
have shown the same for applying the same basic self-attention architecture for other
tasks. For instance, Strubell et al. [2018] define a self-attention multi-task network
for semantic role labeling by predicting intermediate syntactic tasks. In lower layers,
the network predicts a dependency tree over the input sentence and uses this tree to
guide the network attention heads to attend to dependents for each given word. While
this does show to improve performance for the downstream semantic role labeler, one
notable result is that the self-attention parser produces lower quality dependency trees
than with recurrent (LSTM) networks, and so results in slightly lower semantic role
labeling performance.

A major difficulty in adapting self-attention for NLP tasks other than machine
translation lies with adequate regularization. Self-attention networks tend to overfit
much more than their RNN counterparts, meaning that stronger regularization is neces-
sary. Machine translation does not have this problem to the same degree, as enormous
datasets of translated sentences are usually available for the most widely used lan-
guages. By seeing more training examples, the network can rule out certain patterns
in the data that do not hold in general and better represent the task at hand. However,
this regularization does not apply to most syntactic NLP tasks like parsing Universal
Dependencies, as most annotated datasets are comparatively small. Therefore, alter-
native regularization techniques are required. The next section will provide a notable
technique in contextualized word representations which will allow the use of external
resources to regularize self-attention networks.

21

1.5 Transfer Learning with Contextualized Word Rep-
resentations

The landscape for developing powerful new neural models for NLP is quickly evolving
from isolated components trained on single datasets to models that learn from multiple
sources of information and can transfer this knowledge to new domains. In 2018, the
release of several landmark papers led to the development of scalable, multi-purpose
contextualized word embeddings that can quickly transfer their knowledge about raw
text to any other NLP model that also utilizes word embeddings [Howard and Ruder,
2018, Peters et al., 2018, Devlin et al., 2018].

The presence of raw text resources on the web completely dwarf the total col-
lection of available annotated datasets. It would be especially useful if the raw text
could be exploited using unsupervised methods to improve existing models. More
specifically, neural models could benefit from using embeddings that somehow incor-
porate the types of information seen in arbitrary text. This would greatly widen the
available resources for training word embeddings from a potentially tiny dataset to a
massive collection of linguistic data. By pretraining word embeddings using the sta-
tistical properties of the words in an arbitrary text, the word embeddings can learn
properties of the language and observe rare vocabulary items that otherwise would not
have appeared in a given dataset, and this information can then be transferred to exist-
ing models that use word embeddings. Clark et al. [2018] report that semi-supervised
learning methods scale well enough that they are capable of enabling the development
of larger and more sophisticated models for NLP tasks with limited amounts of labeled
training data. The following sections will provide a brief history of recent methods in
pretraining word representations for knowledge transfer to provide insights into how
these methods can regularize self-attention networks.

1.5.1 Word2Vec: Unsupervised Pretraining of Word Embeddings
Mikolov et al. [2013a,b] introduce methods, called word2vec, to pretrain word embed-
dings on unsupervised text using statistical properties of that text. Motivated by the
distributional hypothesis, the skipgram method trains word vectors by using a simple
predictor to predict the surrounding context of a word, i.e., the nearby words that ap-
pear alongside the word in the text. This simple unsupervised method has been shown
to create word embeddings that can transfer information to other neural models that
use word vector representations as inputs, boosting performance.

While word2vec does capture global contextual information with respect to each
word, one important observation is that when these word vectors are represented as
a sequence of words in a sentence, the word vectors are independent of each other
and carry no direct contextual information with respect to that sentence. A word2vec
embedding vector provides the exact same information no matter what sentence it is
in. It provides no dependency information with respect to any other words in the
sentence, which can erase a lot of information with respect to the unsupervised text
resources the embedding was trained on. The following sections detail more recent
methods that incorporate contextual dependencies between word vectors to improve
knowledge transfer over word2vec.

22

1.5.2 ELMo: Deep Contextualized Word Representations
The ELMo model (Embeddings from Language Models) [Peters et al., 2018] intro-
duces the notion of deep contextualized word representations, where word embeddings
are calculated not only based on the surrounding context of other words, but more ex-
plicitly by the sequence of words that directly surround the word in a sentence. The
authors apply a simple method used in neural language models: given a sequence of
words, predict the next word. This is easily calculated in recurrent neural networks as a
prediction of the next word from an output state pertaining to the inputs of all previous
words up to the current word.

The ELMo model trains two language models in parallel, a forward language model
by processing words left-to-right as usual in an RNN, and a backward language model
predicting words right-to-left by reversing the order of words. The model then stacks
multiple recurrent layers on top of each other much like a multi-layer feedforward
network in hopes that the network can compute hierarchical representations of text.
Finally, the model computes a weighted sum along each layer, allowing the network
to mix together different hidden states for a given word to better incorporate different
views of the context.

By training ELMo on sentences of raw text, the model learns different embedding
representations of each word based on the context of the surrounding words in the
sentence. The authors show that using these embeddings empirically result in better
evaluation performance when transferred to many neural NLP models than using non-
contextualized representations like word2vec.

1.5.3 BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Shortly after the release of ELMo, Devlin et al. [2018] introduced BERT, a model
providing contextualized word representations that broke several records in many NLP
tasks, and continues to provide state-of-the-art performance. BERT can be thought
of as a natural extension of ELMo for self-attention networks with a few additional
tweaks. BERT is essentially a slightly modified version of the self-attention encoder
of the Transformer network applied to language modeling.

Note that BERT does not calculate a language model in the traditional sense, but
instead calculates a masked language model. While a standard language model is used
to calculate the probability of the next word given the previous context of the text, a
masked language model utilizes both directions and therefore cannot be directly used
as a standard language model due to being able to “peek” into the future and cheat its
predictions.

Instead, BERT takes the simple approach of masking a small proportion of input
words and train the network to predict those masked words. The model masks words by
randomly selecting wordpieces with 15% probability and replacing them with a special
[MASK] token. The goal of training BERT is to get the self-attention network to learn
the contexts of words with respect to their surrounding words in a sentence. This
allows the network to learn not only semantic relatedness of words as in word2vec,
but also the implicit syntactic rules necessary to build a grammatically likely sentence.
As will be seen in the coming chapters, this simple training procedure encodes a very
rich representation of words that makes it easy for NLP models to fine-tune these

23

representations to suit their purposes.
In addition to inputting a sequence of tokens representing a sentence, BERT also

adds a next sentence prediction task, where the network is given two sentences sepa-
rated by a [SEP] token and tasked with predicting whether the second sentence di-
rectly follows the first sentence in a text. To aid this process, the model adds a special
[CLS] token to the beginning of each input sentence and applies a binary classifier
to the final layer at that token position for next sentence prediction. To differentiate
between sentences, the network also trains two segment embeddings that are summed
with each respective sentence. An example of the final input representation can be seen
in Figure 1.11. This allows BERT to accumulate information in each successive layer
to better capture not only dependencies between words in a sentence, but also words
between sentences. The authors show how the resulting embedding corresponding to
the [CLS] token acts as a sentence embedding representing the content of the entire
sentence.

Figure 1.11: BERT input representation consisting of a sum of wordpiece token em-
beddings with special separator tokens, segment embeddings for sentence A or sen-
tence B, and relative positional embeddings [Devlin et al., 2018].

Devlin et al. [2018] extract article text from the entirety of English Wikipedia and
use it as the unsupervised training data for BERT. They released two sizes of the model:
a base model with 12 layers, 12 attention heads per layer, and hidden vector dimensions
between each layer of 768, and a large model with 24 layers, 16 attention heads per
layer, and hidden dimensions of 1024. And by applying the training scheme described
above, the authors demonstrate an empirically powerful model that generates contex-
tualized embeddings that can be applied to many NLP tasks to achieve state-of-the-art
performance.

To gain the best performance boost, the authors suggest fine-tuning BERT to each
task. Figure 1.12 illustrates an example of fine-tuning BERT for use in named entity
recognition. Upon generating contextual embeddings with BERT, a feedforward clas-
sifier can be trained and applied to these embeddings to predict named entity tags with
respect to each word. But in addition to training the classifier, the parameters of BERT
can be fine-tuned as well, updated with respect to the gradients of the loss calculated
in the classifiers. While BERT was originally trained with a base learning rate of 1e−4,
better training stability can be achieved when using a lower learning rate like 3e−5 for
fine-tuning. By fine-tuning in this manner for a few epochs, BERT will alter its contex-
tualized representations to best fit the given task, demonstrating high scores for named
entity recognition, sentiment classification, question answering, natural language in-
ference, and more [Devlin et al., 2018]. It can be readily apparent that the high volume
of text resources used to train BERT are what allow the self-attention network to be

24

successful in not overfitting to its input data. This simple pretraining strategy provides
an excellent starting point for fine-tuning to new tasks like dependency parsing, as the
attention heads are properly regularized to recognize important dependencies between
words.

Figure 1.12: BERT model adapted for sequence tagging tasks [Devlin et al., 2018].

1.5.4 ULMFiT: Universal Language Model Fine-tuning for Text
Classification

Howard and Ruder [2018] introduce several key techniques for fine-tuning contextu-
alized word representations, which this thesis will exploit to achieve better evaluation
performance. The authors introduce several relevant concepts:

• Discriminative fine-tuning, the process of applying different learning rates to
different layers. As different layers process different kinds of information, they
should be fine-tuned to different degrees. Higher layers capture less general
information than lower layers [Yosinski et al., 2014], and so can change faster
without introducing instability.

• Gradual unfreezing, where all layers of the network are frozen (held constant)
except the final layer, and then iteratively unfrozen after each epoch. The main
idea is to allow the network to gradually let the top layers converge first before
the more general lower layers that they depend on, as updating low layers too
quickly can risk catastrophic forgetting of the pretrained task.

• Slanted triangular learning rate, where the learning rate quickly increases lin-
early and then decays linearly at a lower rate, as a function of the number of
training iterations. The goal is to get task-specific features to quickly converge
to reasonable parameters early on in training, similar to the inverse square-root
decay introduced earlier.

25

Figure 1.13: A visualization of the slanted triangular learning rate proposed by ULM-
FiT [Howard and Ruder, 2018].

Combined together, these methods allow for faster convergence and higher evalu-
ation performance when using language models for fine-tuning. These methods will
become important when this thesis investigates strategies for fine-tuning BERT on Uni-
versal Dependencies.

1.6 Multilingual Learning
Up until this point, this chapter has discussed purely monolingual models. Models
of this type are exclusively trained and evaluated on a language of choice and do not
incorporate any information related to other languages. For English, this does not tend
to pose a problem, as resources for a given NLP task tends to be abundant in English
compared to many other languages. However, the vast majority of languages are low-
resource, making it difficult for neural networks to learn adequate generalizations to
perform tasks in these languages.

Multilingual learning presents an attractive compromise to collecting larger
datasets for low-resource languages. A multilingual model may be able to learn
from similar languages to improve its performance in a target language, reducing the
overfitting difficulties introduced with low-resource data. In addition, a multilingual
model trained on many languages can further reduce the amount of space required to
save all models to disk.

Recent work has indicated that sharing training sets of similar languages for multi-
lingual parameter sharing can improve not only syntactic tasks like dependency pars-
ing [Naseem et al., 2012, Duong et al., 2015, Ammar et al., 2016, de Lhoneux et al.,
2018], but also more complex tasks like neural machine translation [Dong et al., 2015,
Firat et al., 2016, Lu et al., 2018]. Combining Universal Dependencies treebanks in a
language-agnostic way was first introduced in Vilares et al. [2016], which train bilin-
gual parsers on pairs of UD treebanks, showing similar improvements. More recently,
Mulcaire et al. [2019] have shown a method to produce multilingual contextual word
representations by training a single language model on text from multiple languages,
and use them in dependency parsing. The authors leverage ELMo pretraining, then
using produced embeddings to train bilingual models.

Combining all the prerequisite knowledge above, this thesis will use these concepts
to define a multilingual neural model capable of parsing Universal Dependencies for

26

any language.

27

2. Predicting Universal Dependencies
from Raw Text
The following chapter introduces the task of parsing Universal Dependencies in the
context of the CoNLL 2018 Shared Task. It identifies several notable methods for
producing accurate parsing models, highlights important prior models, and explores
current work in multilingual modeling for Universal Dependency parsing. This will
form the basis for a new model called UDify which will show improvement in several
aspects over these previous models in Chapter 3.

2.1 The CoNLL 2018 Shared Task
The CoNLL 2018 Shared Task in Multilingual Parsing from Raw Text to Universal
Dependencies provided a competition for participating teams to generate all UD an-
notations (UPOS, XPOS, UFeats, Lemmas, and Deps) from raw text. The given text
input was assumed to be non-segmented and non-tokenized, and the participants were
required to predict their own segmentation of words and sentences before predicting
UD annotations. The sections below will highlight notable ways of predicting each
UD task that is relevant to the UDify model introduced in the next chapter.

2.2 Part-of-Speech Tagging
Given an input sequence X = x1, x2, . . . , xn, the goal of sequence tagging is to predict
tags T = t1, t2, . . . , tn associated with each input. Part-of-speech tagging is a type of
sequence tagging problem, where X is an input sequence of words and T is the output
sequence of predicted tags for each input word. The most common neural architecture
for sequence tagging uses a simple RNN followed by a softmax classifier.

An example of a sequence tagger using an RNN for named entity recognition is
given in Figure 2.1. This applies similarly to part-of-speech tagging, just with a differ-
ent set of output labels. Word embeddings are input to an RNN one-by-one, producing
a sequence of hidden states H = h1, h2, . . . hn, one for each word. The hidden states
are then transformed by a feedforward network tk = feedforward(hk) into a one-hot
representation, meaning that every vocabulary item has a corresponding vector dimen-
sion. If the output in a particular dimension is the highest, then that means the network
predicts that vocabulary item with the highest certainty.

2.3 Morphological Tagging
UD provides a set of morphological features associated with each word, e.g.,
Mood=Ind|Tense=Past|VerbForm=Fin. In a sense, this literal string can be
viewed as an example of a “morphology tag.” Assuming all tags are ordered according
to some deterministic scheme (such as alphabetical), then there will be only one
correct morphology tag per word in a sentence. From this perspective, morphological
analysis with respect to UD can be thought of as a sequence tagging problem, and

28

Figure 2.1: An example of sequence tagging applied to named entity recognition using
a recurrent neural network [Sterbak, 2017]. Embeddings (red) of words are input into
an RNN unit (green) sequentially, producing hidden states (blue). The hidden states
are decoded by a feedforward layer followed by a softmax activation function.

so the neural sequence tagging approach can be used identically to part-of-speech
tagging, swapping out the output prediction vocabulary.

However, it is quite apparent that this approach does not take into account any of
the underlying subcategorical features, but treats all combinations as a whole. This can
make it difficult for a model to implicitly know that the difference between two mor-
phological tags can be a much simpler change in one of the morphological features
rather than a change of multiple morphological features. Therefore, one can make a
small modification and factorize the morphological tag into several dimensions. For
instance, there could be separate “mood,” “tense,” and “verb form” aspects of each
word that can be predicted independently of each other. One can either use separate
sequence tagger networks to predict each of these subcategories, or share the encoder
RNN and calculate multiple feedforward decoders on the hidden states. These ap-
proaches to morphological analysis can be seen in works such as Inoue et al. [2017],
Kondratyuk et al. [2018].

2.4 Lemmatization
One can view lemmatization as a machine translation problem. Given a sequence of
characters of the word form, the goal is to generate the sequence of characters of the
lemma. However, we will encounter problems if we try to treat each word form inde-
pendently from each other, as certain word forms need to be disambiguated before ap-
plying the appropriate lemmatization rule. Contextualized embeddings work suitably
for this task. Bergmanis and Goldwater [2018] try this approach using a sequence-to-
sequence architecture to decode lemmas charcter by character, encoding the context of
a sentence by using bidirectional RNNs on the input word embeddings of a sentence.
One major downside to this approach is that there is considerable cost in generating
lemmas. An RNN decoder generates output one character at a time, slowing down con-
siderably over more traditional non-neural lemmatization models. In addition, most
word forms are their inflected lemma, meaning that the majority of the time will be
spent doing no-ops and would therefore be wasteful to decode what is essentially a
non-operation character by character. And for particularly long tokens like URLs, this
can pose a challenge for sequence-to-sequence architectures, as this becomes increas-

29

ingly more difficult for RNNs the longer the character sequence becomes.
An alternative to the machine translation approach is to treat lemmatization as a

sequence tagging problem like what is shown above. Instead of predicting sequences
of characters, another possibility is to predict the operations that transform the word
form into the lemma. Müller et al. [2015] experiment with this approach, precomput-
ing edit trees that each represent a sequence of character operations that transform the
input word into the lemma. For each word-lemma pair, they compute a hierarchical
representation (tree) consisting of finding the longest common substring and then re-
cursively model the prefix and suffixes as sub-trees whose spans correspond to which
substring is being considered. Leaf nodes define rules to explicitly add, change, or
delete characters. Once computed, each edit tree can be considered a “tag” for a given
word in a sentence. By predicting the tag, the edit rules defined by the edit tree “tag”
can be applied to the input word form to produce the lemma.

2.5 Dependency Parsing
There have been many models proposed for dependency parsing [Chen and Manning,
2014, Zhou et al., 2015, Dyer et al., 2015], but one that has consistently demonstrated
state-of-the-art performance in recent years is the graph-based biaffine attention parser
developed by Dozat and Manning [2016], Dozat et al. [2017]. An illustration of the
biaffine dependency parser is given in Figure 2.2.

Figure 2.2: The biaffine graph-based dependency parser developed by Dozat and Man-
ning [2016].

As seen in standard recurrent architectures described previously, all input word em-
beddings in a sentence are passed through bidirectional LSTMs before being decoded
into parse trees. In addition to word embeddings, the authors also experiment with
concatenating part-of-speech tag embeddings alongside words to enrich the source in-
formation with helpful classes for each word. The hidden states of the LSTM are
projected through arc-head and arc-dep feedforward layers, which are combined using
bilinear attention to produce a probability distribution of arc heads for each word. The
bilinear attention can be thought of as a weight matrix relating the strength of a con-
nection between any two input vectors. More precisely, the network computes a vector
of arc scores si such that

s
(arc)
i = H(arc−head)U (arc)h

(arc−dep)
i + H(arc−head)b (2.1)

30

where si is the hidden output produced by the LSTM at token position i, U (arc)

is a matrix computing a bilinear matching operation between projected (feedforward)
LSTM outputs H(arc−head) and projected LSTM outputs h(arc−dep)

i , and bias vector b.
In simple terms, matching scores are computed between all possible combinations of
head-dependent pairs using the bilinear operation, producing probabilities that indi-
cate the likelihood of a word being a dependent of another head word. To produce
each label, a similar bilinear operation is calculated with respect to the computed arc
probabilities and predicted labels for each arc s

(arc−label)
i .

To produce dependency trees from these probabilities, one can try to find an optimal
spanning tree of the complete graph of probabilities that results in the most probable
dependency tree. The simplest approach would to greedily decode each tree, iteratively
finding the largest arc-label probabilities and progressively eliminating alternative con-
nections. However, this does not guarantee a valid dependency tree, as there may be
cycles in the resulting graph. Dozat and Manning [2016] use a strategy of backtracking
when identifying cycles and continuing to iteratively find the best greedy parse. While
not optimal, this simple and efficient approach can nearly reach the performance of
more sophisticated methods.

A more advanced method would be to take the approach of using the Chu-
Liu/Edmonds algorithm [Chu, 1965, Edmonds, 1967] to find the optimal spanning
trees from the output probabilities. While also greedy, the algorithm uses more
clever delayed backtracking techniques to elminiminate suboptimal combinations and
always finds the optimal solution. The algorithm recursively performs two operations,
contraction, which identifies cycles, and expansion, which finds the best path to a
given node.

2.6 Multi-Task Learning with LemmaTag
LemmaTag [Kondratyuk et al., 2018] experiments with multi-task learning by simulta-
neously predicting lemmas and morphology tags. The network shares the parameters
of an encoder, which produces contextualized word representations with bidirectional
RNNs (BiRNNs or BRNNs) as seen in Section 2.2. The morphology tags are predicted
like standard part-of-speech tags, while the lemmas are predicted in a sequence-to-
sequence architecture like Bergmanis and Goldwater [2018].

Both lemmatization and morphology tags require context-sensitive awareness to
disambiguate words with the same form but different syntactic or semantic features
and behavior. Furthermore, lemmatization of a word form can benefit substantially
from the information present in morphological tags, as grammatical attributes often
disambiguate word forms using context [Müller et al., 2015]. Results indicate that
multi-tasking with several related morpho-syntactic tasks can benefit the performance
of all involved tasks. By having the network perform multiple tasks, the idea is to allow
it to generate more generalized representations of text, as the network parameters must
accommodate calculations that produce representations that perform well on all tasks.

To better understand the effect multi-tasking has on neural networks, we add two
additional sequence predictors to the encoder to jointly predict morphological features
(feats), universal part-of-speech (upos), treebank-specific part-of-speech (upos) and
lemmas. See Figure 2.3 for an ablation that compares between the network predicting
all tasks jointly and the network performing just one of the four tasks. The blue lines

31

indicate the sequence accuracy scores calculated on the fully joint model, and the other
colors indicate each task performed separately. The plot shows that overall, multi-
tasking improves the evaluation accuracy of these related tasks over just having four
separate models.

Figure 2.3: A plot of multi-task development scores predicted using a recurrent neural
network on the UD English EWT dataset. Blue lines indicate all tasks are performed
jointly. All other colors indicate the task was performed separately.

LemmaTag additionally combines its initial word vectors with character embed-
dings. The input characters corresponding to each word are represented as charac-
ter embeddings, which are fed through bidirectional RNNs similar to the word vec-
tors. The final hidden states are summed together with the word vectors to produce
character-aware embeddings, which have been shown to improve the performance of
networks modeling syntax and especially morphology [Santos and Zadrozny, 2014,
Ling et al., 2015, Ballesteros et al., 2015, Kim et al., 2016, Heigold et al., 2017].

A natural extension of LemmaTag would be to use external sources of data to im-
prove prediction accuracy. From what was introduced in Chapter 1, one could think
of using contextualized embeddings produced by BERT and inserting them into Lem-
maTag, which would almost certainly boost performance. However, what is more
uncertain is the effect multilinguality has on model performance.

We perform a preliminary experiment on LemmaTag to show that BERT boosts
performance, even on languages it was never pretrained on, seen in Table 2.1. We use a
BERT multilingual model provided by Devlin et al. [2018], pretrained on a collection
of text extracted from Wikipedia containing 104 languages. We modify LemmaTag
by concatenating embeddings produced by BERT with the word embeddings used by
LemmaTag and inputting them into the network. Then we train LemmaTag on the UD

32

Kurmanji MG treebank, which is not one of the 104 languages used for pretraining
BERT, and we train the network both with and without BERT. We ensure we do not
fine-tune the BERT network but instead freeze the weights.

LEMMATAG LEMMATAG + BERT

Lemma 55.22 57.01
XPOS 42.91 60.89
UPOS 40.43 62.73
UFeats 39.56 44.20

Table 2.1: Accuracies of UD tasks on Kurmanji comparing between two network con-
figurations: a recurrent network and a recurrent network with contextual embeddings
provided by multilingual BERT.

The results are clear that despite never observing Kurmanji, BERT somehow pos-
sesses multilingual information that nonetheless can help a network improve its eval-
uation performance. This observation makes it apparent that multilingual BERT can
possibly enable the development of a massively multilingual syntactic parser, and can
further provide improved performance over using monolingual BERT.

2.7 Multi-Task Learning with UDPipe Future
Of the entries submitted to the CoNLL 2018 Shared Task, UDPipe Future developed by
Straka [2018] can be thought of as an extended version of LemmaTag supporting the
prediction of all UD tasks. This will form the basis for a multilingual a singular model
that, similar to how Universal Dependencies provides annotations universal across all
languages, will provide predictions of Universal Dependencies universally across all
supported languages.

Similar to LemmaTag, UDPipe Future uses a bidirectional recurrent network to
provide contextual embeddings of all words in an input sentence, and enriches this
information with character-level embeddings produced by additional BRNNs. The
network also predicts UPOS, XPOS, and UFeats as simple part-of-speech tags. But
the major difference between the networks is in lemmatization and dependency pars-
ing. UDPipe Future uses a lemma tagging approach as opposed to the sequence-to-
sequence approach seen in LemmaTag and Bergmanis and Goldwater [2018]. UDPipe
Future predicts edit scripts that define sequences of character operations to transform
the word form into the lemma. These operations are calculated using Levenshtein
distance to find the minimum operations required for string transduction. Finally, UD-
Pipe Future uses the dependency parser by Dozat and Manning [2016] attached to the
BRNN encoder to predict the UD dependency trees.

2.8 Metrics for Scoring UD Predictions
When predicting UD annotations, it is important to use standard metrics for determin-
ing the quality of parsed outputs. To that end, we define the metric calculations used

33

for scoring:

UPOS, XPOS, UFeats, Lemma We use accuracy scores for all tasks that
have a 1-1 correspondence between the input words and output strings. The basic
calculation is defined as the number of correct predictions divided by the total number
of predictions, over the entire dataset.

UAS, LAS As dependency trees have structural information with respect to the
entire sentence, they require slightly more sophisticated evaluation. An unlabeled
attachment score (UAS) is defined as the percentage of words that have the correct
head, i.e., the number of words having the correct head in the dataset divided by the
total number of words in the dataset. This is possible due to the dependency tree
constraint specifying each word must be the dependent of exactly one other word in
the sentence. The labeled attachment score (LAS) is similar, except only counting
correct cases when the word has both the correct head and the correct label for that
head.

All scores are macro-averaged, meaning that we do not calculate intermediate aver-
ages over sentences, but accumulate counts over the entire treebank before averaging.

34

3. The UDify Model
In this chapter, we provide a detailed overview of UDify, a single multilingual multi-
task model that annotates Universal Dependencies on text in any of 75 supported lan-
guages. Our work uses the AllenNLP library built for the PyTorch framework. Code
for UDify and a release of the fine-tuned BERT weights are available at https:
//github.com/hyperparticle/udify.

3.1 Design Considerations
UDify is a continuation of Kondratyuk et al. [2018], which presents a multi-task net-
work jointly processing part-of-speech tags and lemmas. This thesis expands the joint
model, extending to all Universal Dependencies Tasks, replacing the recurrent com-
ponents with a properly regularized self-attention encoder network, and training the
network on an expanded multilingual dataset.

This new UDify model is based on UDPipe Future, a winner of the CoNLL 2018
shared task, as it introduces a simple model similar to LemmaTag which provides a
natural extension to all UD tasks. We perform three primary modifications to UDPipe
Future [Straka, 2018]:

1. We replace all recurrent components with a pretrained multilingual BERT self-
attention network which provides contextual embeddings and introduce a novel
layer-wise attention for each task.

2. We apply a heavy amount of regularization to BERT, including dropout, input
masking, weight freezing, discriminative fine-tuning, and layer dropout.

3. We train UDify on the entirety of UD by concatenating all available training sets
together, as seen in McDonald et al. [2011].

The final outcome of the UDify model would not be possible without the recent ad-
vances in contextualized word representations, the development of BERT, the release
of a multilingual BERT model, and the fact that the Universal Dependencies anno-
tations are truly universal across all languages. Devlin et al. [2018] released several
versions of the BERT model, including a multilingual model pretrained on the entirety
of the top 104 resourced languages of Wikipedia. Conveniently, the 104 languages pre-
trained on the multilingual model nearly completely overlap with languages supported
by the Universal Dependencies treebanks. This connection spurred the development of
a method to exploit this model for state-of-the-art Universal Dependency parsing using
as simple of an approach as possible. We leverage the provided BERT base multilin-
gual cased pretrained model1, with a self-attention network of 12 layers, 12 attention
heads per layer, and hidden dimensions of 768. This particular model uses a wordpiece
tokenizer [Wu et al., 2016] which segments all text into unnormalized sub-word units.

We note that the architecture of UDify could be enhanced with more advanced
recent methods in sequence modeling and dependency parsing which would boost per-
formance, but this thesis opts to show that these additional features are unnecessary

1https://github.com/google-research/bert/blob/master/multilingual.
md

35

https://github.com/hyperparticle/udify
https://github.com/hyperparticle/udify
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md

to reach state-of-the-art performance. We desired to not use any recurrent structures
like LSTMs so that the model can be highly parallelizable, and show that recurrent
structures are not necessary for good performance on the sequence modeling of small
datasets, which is something that has been shown only very recently [Strubell et al.,
2018, Kitaev and Klein, 2018a, Baevski et al., 2019]. We also desired explicitly not to
include any treebank or language-specific components like language identifiers in the
input or language classifiers in the output, which would encourage the model to create
representations that either recognize the languages automatically or create language-
invariant generalizations.

While the architecture is based on UDPipe Future, the multilingual modeling idea
is most similar to the Uppsala system for the CoNLL 2018 Shared Task [Smith et al.,
2018]. Uppsala combines treebanks of one language or closely related languages to-
gether over 82 treebanks and parses all UD annotations in a multi-task pipeline archi-
tecture. This approach reduces the number of models required to parse each language
while also showing results that are no worse than training on each treebank individu-
ally, and in especially low-resource cases, significantly improved.

To the best of our knowledge, this is the first massively multilingual self-attention
network processing Universal Dependencies capable of meeting or exceeding state-of-
the-art accuracy (we note that this thesis was under development, Artetxe and Schwenk
[2018] have also recently also demonstrated a highly scalable approach to produce
multilingual embeddings for natural language inference with up to 93 languages using
more traditional BiLSTMs). And as a nice side-effect, we are also able to analyze the
self-attention heads of BERT to see if the representations it has learned resemble that
of the dependency trees it is tasked to predict.

3.1.1 Training on all Universal Dependencies Training Data Si-
multaneously

To enable UDify to produce one model capable of processing any UD language, we
take the simple approach of concatenating all training data together to form one large
dataset, similar to McDonald et al. [2011]. Before each epoch, we shuffle all sen-
tences and feed mixed batches of sentences to the network, where each batch may
contain sentences from any language or treebank. Surprisingly, this approach is all
that is required, and no special preprocessing other than BERT’s wordpiece tokenizer
is necessary. This can be owed to the fact that the BERT model has already implicitly
learned to identify each language during pretraining.

However, it is very important to consider just how large the combined Universal
Dependencies corpus is. If we concatenate all training, development, and test data
across all treebanks, we can reveal an enormous number of unique tokens. Table 3.1
displays a list of vocabulary sizes, showing that UD treebanks possess nearly 1.6 mil-
lion unique tokens combined across more than 12 million sentences. Due to memory
limitations, embedding tables typically do not exceed 200,000 unique words, so this
vocabulary must be reduced in size. The simplest approach would be to replace the
tokens that are not in the top most frequent word list with a special unknown token
[UNK], but since we are dealing with multilingual data, we would inadvertently ex-
clude the tokens of many low-resource languages.

To sidestep the problem of a ballooning vocabulary, the UDify model uses BERT’s
wordpiece tokenizer directly. We observe that BERT’s tokenizer is originally intro-

36

TOKEN VOCAB SIZE

Word Form 1,588,655
BERT Wordpieces 119,547
UPOS 17
XPOS 19,126
UFeats 23,974
Lemmas (tags) 109,639
Deps 251

Table 3.1: Vocabulary sizes of words and tags over all of UD v2.3, with a total of
12,032,309 word tokens and 668,939 sentences.

duced precisely to circumvent this issue by breaking words up into smaller sequences
of characters. This drastically reduces the vocabulary size to a manageable 120,000
tokens, and eliminates the need to keep a separate embedding table. UD expects pre-
dictions to be along word boundaries, so we take the simple approach of applying the
tokenizer to each word using UD’s provided word segmentation. For prediction, we
use the outputs of BERT corresponding to the first wordpiece per word, ignoring the
rest. We found there was no discernable difference in using the first wordpiece, last
wordpiece, taking an average, or taking the max wordpiece with respect to evaluation
performance. Kitaev and Klein [2018b] report similar results when fine-tuning BERT
for dependency parsing.

In addition, the XPOS annotations are not universal across languages, or even
across treebanks. The part-of-speech tags may have a small number of coarse cate-
gories like the 17 different types of UPOS tags, or the nearly 1,500 tags defined by the
Prague Dependency Treebank which encode more fine-grained morphological charac-
teristics. Because each treebank can possess a different annotation scheme for XPOS
which can slow down inference, we omit training and evaluation of XPOS from our
experiments. However, we note that it may be possible to include a treebank identifier
in the input that provides the model with enough information to infer which XPOS an-
notation to produce. But because this requires knowledge of the underlying language
and treebank, we leave this out for future work to keep the model simple.

One caveat we had prior to developing the model was that despite having “Univer-
sal” annotations, treebanks of one language usually have different annotators whose
text come from different domains, and so may not completely agree with each other.
However, as shall be seen in Chapter 4, this discrepancy must be relatively small (or
perhaps the network can easily identify which tricky sentences belong with which tree-
bank). The model frequently performs just as well or even better on multi-treebank
training as on single treebanks.

3.2 Layer Attention
The authors of BERT have observed that when fine-tuning BERT, combining the output
of the last several layers is more beneficial for the downstream tasks than just using the
last layer [Devlin et al., 2018]. Table 3.2 illustrates this point, showing F1 scores when
fine-tuning BERT on the CoNLL 2003 shared task on named entity recognition.

37

LAYERS DEV F1

Finetune All 96.4

First Layer (Embeddings) 91.0
Second-to-Last Hidden 95.6
Last Hidden 94.9
Sum Last Four Hidden 95.9
Concat Last Four Hidden 96.1
Sum All 12 Layers 95.5

Table 3.2: Ablation comparing fine-tuning strategies on various layers of BERT. These
results are taken from the original paper of Devlin et al. [2018].

This leads to the interesting observation that not only do different layers encode
different information, the different layers also encode non-overlapping information
that can be combined to boost evaluation performance. This is an observation also
echoed by the authors of ELMo who found that combining all layers of a language
model in some fashion is superior to just using the last layer [Peters et al., 2018].

Instead of restricting the model to any subset of layers, we devise a simple layer-
wise dot-product attention where the network computes a weighted sum of all inter-
mediate outputs of the 12 BERT layers using the same weights for each token. This
is very similar to how ELMo combines its own RNN layers to produce its contextual
embeddings. More formally, let αi be a trainable scalar for BERT embeddings Bij at
layer i with a token at position j, and let β be a trainable scalar. We compute contextual
embeddings e such that

ej = β
∑

i

Bij · softmax(α)i (3.1)

This corresponds to a normalized weighted sum of the embeddings of all BERT
layers, scaled by β.

3.3 Model Architecture
For predicting UD annotations, we employ a multi-task network like UDPipe Future
[Straka, 2018], but with all embedding, encoder, and projection layers replaced with
BERT. The remaining parts include layer attention and the prediction layers for each
task detailed below.

See Figure 3.1 for an architecture diagram. A given sentence is passed through
BERT’s wordpiece tokenizer, possibly breaking up words into smaller sequences of
characters. If a word is broken up into more than one subunits, the position of the em-
beddings corresponding to the first subunit is used to represent the word. The whole
tokenized sentence is passed through BERT by using embedding lookups and succes-
sively applying self-attention at each of the layers. Once the outputs of all 12 layers
are calculated, task-specific layer attention successively computes a weighted average
of the layers of BERT for a total of 4 separate averages. Each averaged result is then
passed to a classifier which predicts one of 4 tasks.

38

...

multilingual model

Wordpiece Tokenizer

multi ##lingual model

 ADJ

Degree=Pos

x→x (multilingual)

BERT

2 (model)

amod

Lemma

UFeats

UPOS

Dep. Head Index

Dep. Tag

Layer

Attn.

Figure 3.1: An illustration of the UDify network architecture with task-specific layer
attention, inputting word tokens and outputting UD annotations for each token.

39

3.3.1 Model Tasks
A short description of the model tasks are below.

UPOS As is standard for neural sequence tagging, we apply a softmax classifier
along each word input, predicting the annotation string.

UFeats Identical to UPOS prediction, we treat each UFeats string as a separate
token in the vocabulary. We found this to produce higher evaluation accuracy than
predicting each morphological feature separately. Only a small subset of the full
Cartesian product of morphological features is valid, eliminating invalid combinations.
We could have also factored the morphological tags to also predict each individual
morphological dimension as in Kondratyuk et al. [2018], but we observe only marginal
improvement for training a larger model requiring more training time, so we did not
take this approach.

Lemmas Similar to Chrupała [2006], Müller et al. [2015], we reduce the problem
of lemmatization to a sequence tagging problem by predicting a class representing
an edit script, i.e., the sequence of character operations to transform the word form
to the lemma. To precompute the tags, we first find the longest common substring
between the form and the lemma, and then compute the shortest edit script converting
the prefix and suffix of the form into the prefix and suffix of the lemma using the
Wagner–Fischer algorithm [Wagner and Fischer, 1974]. Upon predicting a lemma edit
script, we apply the edit operations to the word form to produce the final lemma. We
take this tagging approach over a sequence-to-sequence approach like Bergmanis and
Goldwater [2018], as it requires much less computation time to predict lemmas while
also not hurting evaluation performance significantly.

Deps We use the graph-based biaffine attention parser developed by Dozat and
Manning [2016], Dozat et al. [2017], replacing the bidirectional LSTM layers with
BERT. The final embeddings are projected through arc-head and arc-dep feedforward
layers, which are combined using biaffine attention to produce a probability distribu-
tion of arc heads for each word. We then decode each tree with the Chu-Liu/Edmonds
algorithm [Chu, 1965, Edmonds, 1967].

3.3.2 Extremely Long Sentences
BERT limits its positional encoding to 512 wordpieces, causing some sentences in
UD to be too long to fit into the model. We use a sliding window approach to break
up long sentences into windows of 512 wordpieces, overlapping each window by 256
wordpieces. After feeding the windows into BERT, we select the first 256 wordpieces
of each window and any remaining wordpieces in the last window to represent the
contextual embeddings of each word in the original sentence.

3.4 Regularization Strategies
UDify employs several strategies for fine-tuning BERT for Universal Dependency pre-
diction, and we find that regularization is absolutely crucial for producing a high-

40

scoring network. Without this, the network would not be able to surpass the UDPipe
Future baseline and would quickly overfit to the training data. We observed in pre-
liminary experiments that this would likely produce a model that on average evaluates
10% lower in score than typical state-of-the-art UD parsers.

3.4.1 Layer Dropout
Most of the time the addition of layer attention would not be very useful on its own,
as the attention weights would be scaled such that the final output would be effectively
equivalent to taking the output of the final one or two layers. To prevent the UD clas-
sifiers from overfitting to the information in any single layer, we devise layer dropout,
where at each training step, we set each layer-scaling parameter αi to −∞ with prob-
ability 0.1. Due to the properties of the softmax function, this effectively redistributes
probability mass to all other layers, forcing the network to incorporate the information
content of all BERT layers. We compute layer attention per task, using one set of α, β
parameters for each of the classifiers of UPOS, UFeats, Lemmas, and Deps.

3.4.2 Transfer Learning with ULMFiT
The ULMFiT strategy defines several useful methods for fine-tuning a network on a
pretrained language model [Howard and Ruder, 2018]. We apply the same methods,
with a few minor modifications.

We split the network into two parameter groups, i.e., the parameters of BERT and
all other parameters. We apply discriminative fine-tuning, setting the base learning
rate of BERT to be 5e−5 and 1e−3 everywhere else. We also use gradual unfreezing to
freeze the BERT parameters for the first epoch to increase training stability, and then
unfreeze for all remaining epochs.

While ULMFiT recommends decaying the learning rate linearly after a linear warm
up, we found that this is prone to training divergence in self-attention networks, intro-
ducing vanishing gradients and underfitting. Instead, we apply an inverse square root
learning rate decay with linear warmup (Noam) seen in training Transformer networks
for machine translation [Vaswani et al., 2017].

This allows the classifiers to converge more quickly while keeping the BERT learn-
ing rate low enough to prevent training divergence. This not only stabilizes training,
but we have also observed higher test accuracy when fine-tuning BERT with Noam
over slanted triangular.

3.4.3 Input Masking
The authors of BERT recommend not to mask words randomly with [MASK] when
fine-tuning the network. However, we discovered that masking often reduces the ten-
dency of the classifiers to overfit to BERT. This word dropout strategy has been ob-
served in other works showing improved test performance on a variety of NLP tasks
[Iyyer et al., 2015, Bowman et al., 2016, Clark et al., 2018, Straka, 2018]. The intuition
is that masking words forces the network to rely on the context of surrounding words
to accurately classify a word rather than always relying on the lexical entry itself. This
also makes the model much less likely to overfit to any particular sentence, as it is
never able to see the entire contents of any sentences, at least not directly.

41

3.4.4 Dropout
Despite using all the regularization strategies above, we still observe overfitting and
must apply more aggressive techniques. To further regularize the network, we also
increase the attention and hidden dropout rates of BERT from 0.1 to 0.2, and we also
apply a dropout rate of 0.5 to all BERT layers before computing layer attention for
each of the four tasks and applying a layer dropout with probability 0.1. We increase
the masking probability of each wordpiece from 0.15 to 0.2.

3.5 Hyperparameters & Training Details

HYPERPARAMETER VALUE

Dependency tag dimension 256
Dependency arc dimension 768
Optimizer Adam
β1, β2 0.9, 0.99
Weight decay 0.01
Label smoothing 0.03
Dropout before layer attention 0.5
BERT dropout 0.2
Mask probability 0.2
Layer dropout 0.1
Batch size 32
Epochs 80
Base learning rate 1e−3

BERT learning rate 5e−5

Learning rate warmup steps 8000
Gradient clipping 5.0

Table 3.3: A summary of model hyperparameters.

Upon concatenating all training sets, we shuffle all the sentences, bundle them into
batches of 32 sentences each, and train UDify for a total of 80 epochs before stopping.
We hold the learning rate constant until we unfreeze BERT in the second epoch, where
we and linearly warm up the learning rate for the next 8,000 batches and then apply
inverse square root learning rate decay for the remaining epochs. For the dependency
parser, we use feedforward tag and arc dimensions of 300 and 800 respectively. We
apply a small weight decay penalty of 0.01 to ensure that the weights remain small after
each update. For optimization we use the Adam optimizer and we compute softmax
cross entropy loss to train the network. We use a default β1 value of 0.9 and lower the
β2 value from the typical 0.999 to 0.99. The reasoning is to increase the decay rate
of the second moment in the Adam optimizer to reduce the chance of the optimizer
being too optimistic with respect to the gradient history. We clip the gradient updates
to a maximum L2 magnitude of 5.0. A summary of hyperparameters can be found in
Table 3.3.

To speed up training, we employ bucketed batching, sorting all sentences by their
length and grouping similar length sentences into each batch. However, to ensure that

42

most sentences do not get grouped within the same batch, we fuzz the lengths of each
sentence by a maximum of 10% of its true length when grouping sentences together.

With all these regularization strategies and hyperparameter choices combined, we
are able to fine-tune BERT for far more epochs before the network starts to overfit, i.e.,
80 as opposed to around 10. Even so, we believe even more regularization can improve
test performance.

The final multilingual UDify model was trained over approximately 25 days on an
NVIDIA GTX 1080 Ti taking an average of 8 hours per epoch. We use half-precision
(fp16) training to be able to keep the BERT model in memory. One notable aspect of
training is that while we observed the model start to level out in validation performance
at around epoch 30, the model continually made small, incremental improvements
over each subsequent epoch, resulting in far higher scores than if the model training
was terminated early. This can be partially attributed to the decaying learning rate
explained in Section 3.4.2.

Due to the high training times, we must pick and choose a small number of training
experiments the most relevant and useful results. Prior to developing the final model,
we conducted fine-tuning experiments on pairs of languages to find a set of hyperpa-
rameters that worked best for multilingual learning. After this, we gradually scaled
up training to 3 languages, 5 languages, 15 languages, and then finally the model
presented above. We had high doubts, and wanted to see where the limit was in mul-
tilingual training. We were surprised to find that this simple training scheme was able
to scale up so well to all UD treebanks.

43

4. Experiments and Results
In this chapter, we evaluate UDify with respect to every test set in each treebank,
showing strong performance when compared to UDPipe Future. Then we analyze
the internals of UDify to see what the model has learned and what has changed from
the original BERT pretrained model. We then discuss why pretrained self-attention
networks excel in Universal Dependency parsing.

We do not directly reference metrics from the CoNLL 2018 Shared Task, as the
tables of results do not assume gold word segmentation and may not provide a fair
comparison. Instead, we retrained the open source UDPipe Future model using gold
segmentation and report results here due to its architectural similarity to UDify and its
strong performance.

As there are too many results to discuss all at once, we display a salient subset of
scores below and compare them with UDPipe Future. To see the full contents of all
training results, we display them at the end of Section 4.5.

4.1 Datasets
For all experiments, we use the full Universal Dependencies v2.3 corpus available
on LINDAT [Nivre, 2018]. We assume the gold segmentation of tokens provided by
UD. Due to licensing restrictions, we omit the evaluation of datasets that do not have
their training annotations freely available, i.e., Arabic NYUAD (ar nyuad), English
ESL (en esl), French FTB (fr ftb), Hindi English HEINCS (qhe heincs), and Japanese
BCCWJ (ja bccwj).

4.2 Training on All Treebanks vs. One Treebank
To provide a better comparison that reveals what UDify has learned with respect to
multilinguality, we select 6 high-resource and 5 low-resource languages and perform
two additional experiments.

Aside from training on all treebanks, we also compare with performing the same
setup on just one treebank. A comparison of scores would reveal if languages with
a single treebank will improve in score and therefore incorporate useful multilingual
information when transitioning to the multilingual training setup.

In preliminary experiments, we have noticed that multilingual fine-tuning followed
by a second round of fine-tuning on a single treebank can possibly boost evaluation
scores. Once a model has learned an adequate multilingual representation for UD
parsing, we can fine-tune again on just one treebank. The reasoning is that while mul-
tilingual pretraining can help, the distribution of data it is trained on is very different
from the test set we are evaluating on. The network can be misled by other languages,
especially if they are distant from most other languages, and so we can fine-tune these
representations to focus the most on our language of choice.

44

4.3 Effect of Syntactic Fine-Tuning on BERT
We show scores of UPOS, UFeats (FEATS), and Lemma (LEM) sequence accuracies,
along with unlabeled and labeled attachment scores (UAS, LAS) evaluated using the
offical CoNLL 2018 Shared Task evaluation script1. For comparisons across differ-
ent model configurations, we bold the highest evaluation scores for each treebank and
across each metric. Results for a salient subset of high-resource and low-resource lan-
guages are shown in Table 4.1 and Table 4.2 respectively, with a comparison between
UDPipe Future and UDify fine-tuning on all languages. In addition, the table compares
UDify with fine-tuning on a single language, or both (fine-tuning multilingually, then
fine-tuning on the language with the saved multilingual weights) to provide a reference
point for multilingual influences on UDify.

TREEBANK MODEL UPOS FEATS LEM UAS LAS

Czech PDT
(cs pdt)

UDPipe 99.18 97.23 99.02 93.33 91.31
Lang 99.18 96.87 98.72 94.35 92.41
UDify 99.18 96.85 98.56 94.73 92.88
UDify+Lang 99.24 97.44 98.93 95.07 93.38

German GSD
(de gsd)

UDPipe 94.48 90.68 96.80 85.53 81.07
Lang 94.77 91.73 96.34 87.54 83.39
UDify 94.55 90.65 94.82 87.81 83.59
UDify+Lang 95.29 91.94 96.74 88.11 84.13

English EWT
(en ewt)

UDPipe 96.29 97.10 98.25 89.63 86.97
Lang 96.82 97.27 97.97 91.70 89.38
UDify 96.21 96.17 97.35 90.96 88.50
UDify+Lang 96.57 96.96 97.90 91.55 89.06

Spanish AnCora
(es ancora)

UDPipe 98.91 98.49 99.17 92.34 90.26
Lang 98.60 98.14 98.52 92.82 90.52
UDify 98.53 97.84 98.09 92.99 90.50
UDify+Lang 98.68 98.25 98.68 93.35 91.28

French GSD
(fr gsd)

UDPipe 97.63 97.13 98.35 90.65 88.06
Lang 98.05 96.26 97.96 92.77 90.61
UDify 97.83 96.59 97.48 93.60 91.45
UDify+Lang 97.96 96.73 98.17 93.56 91.45

Russian
SynTagRus
(ru syntagrus)

UDPipe 99.12 97.57 98.53 93.80 92.32
Lang 98.90 96.58 95.16 94.40 92.72
UDify 98.97 96.35 94.43 94.83 93.13
UDify+Lang 99.08 97.22 96.58 95.13 93.70

Table 4.1: Test set scores for a subset of high-resource languages in comparison to
UDPipe Future, with 3 UDify configurations: Lang, fine-tune on the treebank. UDify,
fine-tune on all UD treebanks combined. UDify+Lang, fine-tune on the treebank using
BERT weights saved from fine-tuning on all UD treebanks combined.

1https://universaldependencies.org/conll18/evaluation.html

45

https://universaldependencies.org/conll18/evaluation.html

On average, UDify reveals a strong set of results that are comparable in perfor-
mance with the state-of-the-art in parsing UD annotations. UDify excels in depen-
dency parsing, exceeding UDPipe Future by a large margin especially for low-resource
languages.

Echoing results seen in Smith et al. [2018], UDify also shows strong improvement
leveraging multilingual data. In low-resource cases, fine-tuning BERT on all treebanks
can be far superior to fine-tuning monolingually. A second round of fine-tuning on an
individual treebank using UDify’s BERT weights can improve this further, especially
for treebanks that underperform the baseline. However, for languages that already
display strong results, we typically notice worse evaluation performance across all the
evaluation metrics. This indicates that multilingual fine-tuning really is superior to
single language fine-tuning with respect to these high-performing languages, showing
improvements of up to 20% reduction in error.

TREEBANK MODEL UPOS FEATS LEM UAS LAS

Belarusian HSE
(be hse)

UDPipe 93.63 73.30 87.34 78.58 72.72
Lang 95.88 76.12 84.52 83.94 79.02
UDify 97.54 89.36 85.46 91.82 87.19
UDify+Lang 97.25 85.02 88.71 90.67 86.98

Buryat BDT
(bxr bdt)

UDPipe 40.34 32.40 58.17 32.60 18.83
Lang 52.54 37.03 54.64 29.63 15.82
UDify 61.73 47.86 61.06 48.43 26.28
UDify+Lang 61.73 42.79 58.20 33.06 18.65

Upper Sorbian
UFAL
(hsb ufal)

UDPipe 62.93 41.10 68.68 45.58 34.54
Lang 73.70 46.28 58.02 39.02 28.70
UDify 84.87 48.63 72.73 71.55 62.82
UDify+Lang 87.58 53.19 71.88 71.40 60.65

Kazakh KTB
(kk ktb)

UDPipe 55.84 40.40 63.96 53.30 33.38
Lang 73.52 46.60 57.84 50.38 32.61
UDify 85.59 65.14 77.40 74.77 63.66
UDify+Lang 81.32 60.50 67.30 69.16 53.14

Lithuanian HSE
(lt hse)

UDPipe 81.70 60.47 76.89 51.98 42.17
Lang 83.40 54.34 58.77 51.23 38.96
UDify 90.47 68.96 67.83 79.06 69.34
UDify+Lang 84.53 56.98 58.21 58.40 39.91

Table 4.2: Test set scores for a subset of low-resource languages in comparison to
UDPipe Future, with 3 UDify configurations: Lang, fine-tune on the treebank. UDify,
fine-tune on all UD treebanks combined. UDify+Lang, fine-tune on the treebank using
BERT weights saved from fine-tuning on all UD treebanks combined.

Interestingly, Slavic languages tend to perform the best with multilingual train-
ing. While languages like Czech and Russian possess the largest UD treebanks and
do not differ as much in performance from monolingual fine-tuning, evidenced by the
improvements over single-language fine-tuning, we can see a large degree of morpho-
logical and syntactic structure has transferred to low-resource Slavic languages like

46

Upper Sorbian, whose treebank contains only 646 sentences. But this is not only true
of Slavic languages, as the Turkic language Kazakh (with less than 1,000 training sen-
tences) has also improved significantly.

We also see that despite leveraging the BERT model for monolingual fine-tuning, it
does not perform much better than UDPipe, and for low-resource languages typically
performs worse. Multilinguality is the core reason we are able to surpass many of the
displayed scores.

4.3.1 Overall Performance
To better capture the overall performance of UDify with respect to UDPipe Future,
a more comprehensive overview is shown in Table 4.3, comparing different attention
strategies applied to UDify. We display an unweighted average of scores over all (89)
treebanks with a training set. We do not average all 124 treebanks, as UDPipe Fu-
ture is not trained multilingually, and so requires a training set for each language it is
evaluated on.

MODEL CONFIGURATION UPOS FEATS LEM UAS LAS

UDPipe 93.76 91.04 94.63 84.37 79.76

UDify Task Layer Attn 93.40 88.72 90.41 85.69 80.43
UDify Global Layer Attn 93.12 87.53 89.03 85.07 79.49
UDify Sum Layers 93.02 87.20 88.70 84.97 79.33

Table 4.3: Ablation comparing the average of scores over all 89 treebanks with a
training set: task-specific layer attention, global layer attention for all tasks, and simple
sum of layers.

The results show that while UDify is capable of surpassing UPOS, UFeats, and
Lemma accuracies for many languages, on the whole it is slightly worse than UDPipe
Future. UDify underperforms the most overall with respect to Lemmas and Universal
Features, likely due to UDPipe Future additionally using character-level embeddings,
while UDify does not.

As explained earlier, character-level modeling helps neural networks to identify
patterns in word affixes. Straka [2018] empirically confirms, affixes like prefixes and
suffixes convey information about the morphology of a word, and so certain character
patterns would help train the network to generalize to better predict each task. Lemma-
tization and morphological analysis are both heavily related to the surface-level fea-
tures of words, so this would explain why these scores are the lowest when compared
to UDPipe Future, as opposed to higher-level syntactic tasks like UPOS tagging and
dependency parsing. To keep the model as simple as possible, we leave character-
level processing for future work. But with UPOS, we see the story begin to change,
as part-of-speech tags tend to be more contextual in nature, requiring word-sense dis-
ambiguation in many cases. And with respect to Deps, the scores reverse, owing to
the fact that self-attention networks are excellent in identifying dependencies between
words. The next sections will provide more evidence for this claim.

Table 4.3 also shows that layer attention on BERT for each task is beneficial for
test performance, much more than using a global weighted average. If we use just a

47

simple sum of layers or even just the final BERT layer, UDify would not significantly
surpass UDPipe Future in any of the given tasks. By allowing the sum to be a trainable
weighted sum, we see that this global layer attention produces a small boost in perfor-
mance. But the largest performance boost is in allowing the different tasks to attend to
different layers. The logical conclusion is that each layer encodes distinct information
that each task uses uniquely.

4.3.2 Layer Attention Preference
We plot the layer attention weights α after fine-tuning BERT in Figure 4.1, showing
a set of weights per task. The weights show that each task prefers the layers of BERT
differently. All tasks favor the information content in the last 3 layers, with a tendency
to disprefer layers closer to the input.

However, an interesting observation is that for Lemmas and UFeats, the classifier
prefers to also incorporate the information of the first 3 layers. This meshes well with
the linguistic intuition that morphological features are more closely related to the sur-
face form of a word and rely less on context than other syntactic tasks. Curiously
enough, the middle layers are highly dispreferred, meaning that the most useful pro-
cessing for multilingual syntax (tagging, dependency parsing) occurs in the last 3-4
layers. It appears that BERT’s strong contextual capabilities do not manifest them-
selves until the last few layers.

1 2 3 4 5 6 7 8 9 10 11 12
BERT Layer #

#4

#3

#2

#1

0

1

W
ei
gh

t

UPOS
UFeat
Lemma
Dep

Figure 4.1: The unnormalized BERT layer attention weights αi contributing to layer
i for each task after training. A linear change in weight scales each BERT layer expo-
nentially due to the softmax in Equation 3.1

Figure 4.2 plots the layer attention weights after training the global attention model.
We see that the weights closely resemble a sum of the weights of the tasks shown in
Figure 4.1. As each task is competing for the same weights, we see that the attention
weights compromise on providing the greatest benefit evenly distributed to all tasks.
But by providing weights for the individual tasks, they no longer have to compete for
which layers to attend to, and can freely extract the information most useful for their
task.

48

1 2 3 4 5 6 7 8 9 10 11 12
BERT Layer #

−3

−2

−1

0

1

2

3

W
ei
gh

t

Figure 4.2: The global unnormalized BERT layer attention weights αi contributing to
layer i.

The results released by [Tenney et al., 2019] also agree with the intuition behind
the weight distribution above, showing how the different layers of BERT are most
beneficial to different tasks using a similar weighting strategy. The layers provide in-
formation similar to a traditional NLP pipeline, where low-level tasks like POS tagging
are best performed in lower layers and higher layers compute rely on these lower-level
tasks to generate high-level abstractions useful for e.g., coreference resolution and se-
mantic role labeling. A per-task weighting of the layers, therefore, can work better
because of the rich information generated by these intermediate tasks.

4.3.3 Zero-Shot Learning
We evaluate UDify for zero-shot learning, i.e., evaluating predicted annotations for
languages that have not been trained on UDify. Table 4.4 displays a subset of test set
evaluations of treebanks that do not have a training set. The zero-shot results indicate
that fine-tuning on BERT can result in reasonably high scores on these languages.

TREEBANK UPOS FEATS LEM UAS LAS

Breton KEB br keb 63.67 46.75 53.15 63.97 40.19
Tagalog TRG tl trg 61.64 35.27 75.00 64.73 39.38
Faroese OFT fo oft 77.86 35.71 53.82 69.28 61.03
Naija NSC pcm nsc 56.59 52.75 97.52 47.13 33.43
Sanskrit UFAL sa ufal 40.21 18.45 37.60 41.73 19.80

Table 4.4: Test set results for zero-shot learning, i.e., no UD training annotations
available. Languages that are pretrained with BERT are bolded.

It can be seen that a combination of BERT pretraining and multilingual learning
can improve predictions for Breton and Tagalog, which implies that the network has

49

learned representations of syntax that cross lingual boundaries. Furthermore, despite
the fact that neither BERT nor UDify have directly observed Faroese, Naija, or San-
skrit, we see unusually high performance in these languages. This can be partially
attributed to each language closely resembling another: Faroese is very close to Ice-
landic, Naija (Nigerian Pidgin) is a variant of English, and Sanskrit is an ancient Indian
language related to Greek, Latin, and Hindi.

4.3.4 Probing for Syntax
Hewitt and Manning [2019] introduce a structural probe for identifying dependency
trees in contextualized word embeddings. This probe evaluates whether syntax trees
(i.e., unlabeled undirected dependency trees) are embedded as a linear transformation
of the network’s contextual word embeddings. The probe trains a weight matrix on the
final layer of contextual embeddings produced by BERT, identifying a linear transfor-
mation where squared L2 distance between embeddings encodes the distance between
words in the parse tree, and squared L2 norm encodes depth in the parse tree. Once
trained, the probe can use the resulting probabilities in the matrix to extract the most
probable undirected spanning tree across the sentence. Despite the fact BERT and the
probe are trained without any annotated examples of real dependency trees, the probe
reveals that these global properties of the embeddings result in spanning trees that are
very close to human annotated dependency trees.

We train the structural probe on unmodified and fine-tuned BERT using the default
hyperparameters of Hewitt and Manning [2019] to evaluate whether the representa-
tions affected by fine-tuning BERT on dependency trees would more closely match the
structure of these trees.

Table 4.5 compares the unlabeled undirected attachment scores (UUAS) of depen-
dency trees produced using the structural probe on both the unmodified multilingual
cased BERT model and the extracted BERT model fine-tuned on the English EWT
treebank.

TREEBANK MODEL UUAS

English EWT (en ewt) BERT 65.48
BERT+finetune en ewt 79.67

Table 4.5: UUAS test scores calculated on the predictions produced by the syntactic
structural probe using the English EWT treebank, on the unmodified multilingual cased
BERT model and the same BERT model fine-tuned on the treebank.

We see that even without any supervised training, BERT encodes its syntax in
the embedding’s distance and norm surprisingly close to human-annotated dependen-
cies. The results show that fine-tuning BERT on Universal Dependencies significantly
boosts UUAS scores when compared to the gold dependency trees, an error reduc-
tion of 41%. This indicates that the self-attention weights have learned a linearly-
transformable representation more closely resembling annotated dependency trees de-
fined by linguists.

To provide a more clear illustration of the probe and the differences between before
and after fine-tuning, we provide several examples of trees produced by the probe in

50

Figure 4.3 and Figure 4.4. Sentences are repeated next to each other, showing trees
extracted by the syntactic probe by BERT (before fine-tuning) in red and UDify (after
fine-tuning) in blue. The human annotated dependency trees are provided in black.

Figure 4.3 shows examples where BERT gets close to producing spanning trees in
the attention weights that are the same as the dependency trees, but not quite. In these
instances, the fine-tuned UDify model gets them exactly right. This shows that with
some supervised fine-tuning, BERT will start to encode a property of the distances of
vectors in the embedding vector space that makes it nearly trivial to learn and apply a
linear operation to produce the correct dependency trees.

Figure 4.4 shows probed trees like in Figure 4.3, but with some examples where
UDify is not completely correct. Not only are the probed trees produced by UDify
closer to the gold annotations, we see that UDify is much more aware of constituent
boundaries. The trees show instances where the representations do not cross depen-
dencies across punctuation like commas, and are less likely to cross between adjec-
tives and determiners. The result is that UDify is able to chunk sentences of English,
demonstrating a capability more aware of phrasal boundaries.

This also demonstrates why BERT can produce high-quality syntax so early on in
fine-tuning with just a few epochs, as shown in Devlin et al. [2018]. The syntactic
probe shows that even with just unsupervised pretraining, a global structural property
of the vector space of the BERT weights already produces a decent representation of
the dependency tree in the L2 distance/norm. Following this, it should be no surprise
that further fine-tuning with a non-linear graph-based dependency decoder on human
annotations would result in even higher quality dependency trees embedded in the
vector space.

4.3.5 Attention Visualization
We perform a high-level visual analysis of the BERT attention weights to see if they
have changed on any discernible level. Our observations reveal something notable: the
attention weights tend to be more sparse, and are more often sensitive to constituent
boundaries like clauses and prepositions. Figures 4.5, 4.6 4.7, and 4.8 illustrate this
point, showing the attention weights of a particular attention head on an example sen-
tence. We find similar behavior in 9 additional attention heads for this particular sen-
tence.

In Figure 4.5, we see that some of the attention structure remains after fine-tuning.
Previously, the attention head was mostly sensitive to previous words and punctuation.
But after fine-tuning, it demonstrates more fine-grained attention towards immediate
wordpieces, prepositions, articles, and adjectives. We found similar evidence in other
attention heads, which implies that fine-tuning on UD produces attention that more
closely resembles localized dependencies within constituents. We also find that BERT
base heavily preferred to attend to punctuation, while UDify BERT does to a much
lesser degree. We can see similar behavior in Figures 4.6 and 4.7.

Not all heads become sparse with respect to constituents, however. We see in Fig-
ure 4.8 that there exists an attention head that has become most sensitive to the main
subjects in the sentence, in this case, the pronoun “he.” Other attention heads exhibit
similar behavior, specializing in certain roles more often than taking the combination
of outputs over all words. While we cannot say anything definitive on how this results
in improved performance, we can say that these attention structures more closely re-

51

People of real culture do not smoke at dinner tables .
.

.
. . . .

. .
. .

.
.

... ..

.
.

.

People of real culture do not smoke at dinner tables .
.

.
. . . .

. .
. .

.
. ..

.

... .
.

We land and spill out and go our separate ways .
. .

.
.

. . .
. . .

.. .
.

. ..

.
.

.

We land and spill out and go our separate ways .
. .

.
.

. . .
. . .

. .

.

. ..
.

.. .

This type of drop area is not displayed for single charts .
.

.
.

. . . .
. .

. .

..
..

. ..
. .

.
.

This type of drop area is not displayed for single charts .
.

.
.

. . . .
. .

. .

.
.. . .

.
..

.

.
.

Each category consists of one point from each data series .
. .

.

.

. .
. . . .

.
.

..
....

.

.

Each category consists of one point from each data series .
. .

.

.

. .
. . . .

..
.

.
.

.

.

. ..

Figure 4.3: Examples of minimum spanning trees produced by the syntactic probe are
shown below each sentence, evaluated on BERT (red) and on UDify (blue). Human
annotated dependency trees are shown above each sentence in black.

52

In French , in English , in Hebrew , and occasionally in Russian .
.

.

.

. .
. . .

.

. .
.

.
... .

... .
.

In French , in English , in Hebrew , and occasionally in Russian .
.

.

.

. .
. . .

.

..

.

.. . .
.

.
. ...

The Archbishop , who has himself cooked the eggplant and the leg of lamb , tells the company his recipes .
.

.

.

.

.

.
.

. .

. .

.. .

.

.
. . .

.

. .

..

.

.

The Archbishop , who has himself cooked the eggplant and the leg of lamb , tells the company his recipes .
.

.

.

.

.

.
.

. .

. .

.

... .

.
.

.

.
. ..

.

..
.

Figure 4.4: Examples of minimum spanning trees produced by the syntactic probe are
shown below each sentence, evaluated on BERT (red) and on UDify (blue). Human
annotated dependency trees are shown above each sentence in black.

53

Figure 4.5: Visualization of BERT attention head 4 at layer 11, comparing the at-
tended words on an English sentence between BERT base and UDify BERT. The right
column indicates the attended words (keys) with respect to the words in the left column
(queries). Darker lines indicate stronger attention weights.

Figure 4.6: Visualization of BERT attention head 3 at layer 7, comparing the attended
words on an English sentence between BERT base and UDify BERT. The right col-
umn indicates the attended words (keys) with respect to the words in the left column
(queries). Darker lines indicate stronger attention weights.

54

Figure 4.7: Visualization of BERT attention head 8 at layer 10, comparing the at-
tended words on an English sentence between BERT base and UDify BERT. The right
column indicates the attended words (keys) with respect to the words in the left column
(queries). Darker lines indicate stronger attention weights.

Figure 4.8: Visualization of BERT attention head 12 at layer 10, comparing the at-
tended words on an English sentence between BERT base and UDify BERT. The right
column indicates the attended words (keys) with respect to the words in the left column
(queries). Darker lines indicate stronger attention weights.

55

semble the types of chunking of English phrases that linguists typically employ, and
that they appear to capture more nuanced structures of the input sentence.

4.4 Factors that Enable BERT to Excel at Dependency
Parsing and Multilinguality

Goldberg [2019] assesses the syntactic capabilities of BERT and concludes that BERT
is remarkably capable of processing syntactic tasks despite not being trained on any
supervised data. Conducting similar experiments, Vig [2019] and Sileo [2019] visu-
alize the attention heads within each BERT layer, showing a number of distinct atten-
tion patterns, including attending to previous/next words, related words, punctuation,
verbs/nouns, and coreference dependencies. This neat delegation of certain low-level
information processing tasks to attention heads hints at why BERT might excel at pro-
cessing syntax.

We see that from the analysis on BERT fine-tuned with syntax using the syntac-
tic probe and attention visualization, BERT produces a representation that keeps con-
stituents close in vector space, and improves this representation to more closely resem-
ble human annotated dependency trees when fine-tuned on UD. Furthermore, Ahmad
et al. [2018] claim that self-attention networks can be more robust than recurrent net-
works to the change of word order, observing that self-attention networks capture less
word order information in their architecture, which is what allows them to generally
perform better at cross-lingual parsing. Ahmad et al. [2018] also show results consis-
tent with their claim that self-attention networks perform well on distant languages,
while recurrent networks generally perform poorly with languages that are not struc-
tured similarly with respect to word order. These findings also suggest that this word
order property inherent in recurrent networks provide a bottleneck that prevents the
network from generalizing across word order past a certain point, while large enough
self-attention networks can scale away this bottleneck with very little degradation in
performance. For instance, Devlin et al. [2018] show that the fine-tuning on the mul-
tilingual BERT model only results in about 3% degradation in performance compared
to an equivalent model pretrained only on English.

From the evidence above, we can see that the combination of strong regularization
paired with the ability to capture long dependencies with self-attention and contex-
tual pretraining on an enormous corpus of raw text are large contributors that enable
strong multilingual modeling with respect to dependency parsing. The dependencies
seen in the output dependency trees are highly correlated with the implicit dependen-
cies learned by the self-attention, showing that self-attention is remarkably capable of
modeling syntax, indicating a more interpretable representation modeling word-level
dependencies than plain recurrent networks. The introduction of multilingual data also
shows that these attention heads provide a surprising amount of capacity that does not
degrade the performance significantly when compared to monolingual training, hint-
ing that the BERT model can be compressed significantly without compromising on
evaluation performance.

Our results show that modeling language-specific properties are not strictly neces-
sary to achieve high-performing cross-lingual representations for dependency parsing,
though we caution that the model can also likely be improved by these techniques.

56

4.5 Full Results
We show in Tables 4.6, 4.7, 4.8, and 4.9 UDify scores evaluated on all 124 treebanks
with the official CoNLL 2018 Shared Task evaluation script. For comparison, we also
include the full test evaluation of UDPipe Future on the subset of 89 treebanks with
a training set. We also include additional metrics provided by the CoNLL evaluation
script, whose calculation is explained by the CoNLL 2018 website2.

One aspect to note is that UDify severely underperforms the baseline on a few low-
resource languages, e.g., cop scriptorum in Table 4.6. We surmise that this is due to
using mixed batches on an unbalanced training set, which skews the model towards
predicting larger treebanks more accurately. However, we find that fine-tuning on the
treebank individually with BERT weights saved from UDify eliminates most of these
gaps in performance.

Due to excessive resource requirements, we were unable to perform a more ex-
tensive ablation into all of the architectural choices we made, let alone across all lan-
guages. UDify required approximately one month to train on the whole of UD before
the model stopped improving, using a single NVIDIA GTX 1080 Ti GPU. We would
also like to more directly compare to other models submitted to the CoNLL 2018
shared task which provides predicted segmentations of each model, but we argue that
evaluating UDify on these segmentations would not be a fair comparison, as UDify was
never trained with those segmentations in mind. Therefore, we only include the results
of training UDPipe Future on the gold segmentation to provide a fair representation of
model performance.

2https://universaldependencies.org/conll18/evaluation.html

57

https://universaldependencies.org/conll18/evaluation.html

TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX

Afrikaans AfriBooms af afribooms UDPipe 98.25 97.66 97.46 89.38 86.58 81.44 77.66 77.82
UDify 97.48 96.63 95.23 86.97 83.48 77.42 70.57 70.93

Akkadian PISANDUB akk pisandub UDify 19.92 99.51 2.32 27.65 4.54 3.27 1.04 0.30

Amharic ATT am att UDify 15.25 43.95 58.04 17.38 3.49 4.88 0.23 2.53

Ancient Greek PROIEL grc proiel UDPipe 97.86 92.44 93.51 85.93 82.11 77.70 67.16 71.22
UDify 91.20 82.29 76.16 78.91 72.66 66.07 50.79 47.27

Ancient Greek Perseus grc perseus UDPipe 93.27 91.39 85.02 78.85 73.54 67.60 53.87 53.19
UDify 85.67 81.67 70.51 70.51 62.64 55.60 39.15 35.05

Arabic PADT ar padt UDPipe 96.83 94.11 95.28 87.54 82.94 79.77 73.92 75.87
UDify 96.58 91.77 73.55 87.72 82.88 79.47 70.52 50.26

Arabic PUD ar pud UDify 79.98 40.32 0.00 76.17 67.07 65.10 10.67 0.00

Armenian ArmTDP hy armtdp UDPipe 93.49 82.85 92.86 78.62 71.27 65.77 48.11 60.11
UDify 94.42 76.90 85.63 85.63 78.61 73.72 46.80 59.14

Bambara CRB bm crb UDify 30.86 57.96 20.42 30.28 8.60 6.56 1.04 0.76

Basque BDT eu bdt UDPipe 96.11 92.48 96.29 86.11 82.86 81.79 72.33 78.54
UDify 95.45 86.80 90.53 84.94 80.97 79.52 63.60 71.56

Belarusian HSE be hse UDPipe 93.63 73.30 87.34 78.58 72.72 69.14 46.20 58.28
UDify 97.54 89.36 85.46 91.82 87.19 85.05 71.54 68.66

Breton KEB br keb UDify 62.78 47.12 51.31 63.52 39.84 35.14 4.64 16.34

Bulgarian BTB bg btb UDPipe 98.98 97.82 97.94 93.38 90.35 87.01 83.63 84.42
UDify 98.89 96.18 93.49 95.54 92.40 89.59 83.43 80.44

Buryat BDT bxr bdt UDPipe 40.34 32.40 58.17 32.60 18.83 12.36 1.26 6.49
UDify 61.73 47.45 61.03 48.43 26.28 20.61 5.51 11.68

Cantonese HK yue hk UDify 67.11 91.01 96.01 46.82 32.01 33.35 14.29 31.26

Catalan AnCora ca ancora UDPipe 98.88 98.37 99.07 93.22 91.06 87.18 84.48 86.18
UDify 98.89 98.34 98.14 94.25 92.33 89.27 86.21 86.61

Chinese CFL zh cfl UDify 83.75 82.72 98.75 62.46 42.48 43.46 21.07 42.22

Chinese GSD zh gsd UDPipe 94.88 99.22 99.99 84.64 80.50 76.79 71.04 76.78
UDify 95.35 99.35 99.97 87.93 83.75 80.33 74.36 80.28

Chinese HK zh hk UDify 82.86 86.47 100.00 65.53 49.32 47.84 22.85 47.84

Chinese PUD zh pud UDify 92.68 98.40 100.00 79.08 56.51 55.22 40.92 55.22

Coptic Scriptorium cop scriptorium UDPipe 94.70 96.35 95.49 85.58 80.97 72.24 64.45 68.48
UDify 27.17 52.85 55.71 27.58 10.82 6.50 0.19 1.44

Croatian SET hr set UDPipe 98.13 92.25 97.27 91.10 86.78 84.11 73.61 81.19
UDify 98.02 89.67 95.34 94.08 89.79 87.70 72.72 82.00

Czech CAC cs cac UDPipe 99.37 96.34 98.57 92.99 90.71 88.84 84.30 87.18
UDify 99.14 95.42 98.32 94.33 92.41 91.03 84.68 89.21

Czech CLTT cs cltt UDPipe 98.88 91.59 98.25 86.90 84.03 80.55 71.63 79.20
UDify 99.17 93.66 98.86 91.69 89.96 87.59 79.50 86.79

Czech FicTree cs fictree UDPipe 98.55 95.87 98.63 92.91 89.75 86.97 81.04 85.49
UDify 98.34 91.82 98.13 95.19 92.77 90.99 77.77 88.39

Czech PDT cs pdt UDPipe 99.18 97.23 99.02 93.33 91.31 89.64 86.15 88.60
UDify 99.18 96.69 98.52 94.73 92.88 91.64 87.13 89.95

Czech PUD cs pud UDify 97.93 93.98 96.94 92.59 87.95 84.85 77.39 82.81

Table 4.6: The full test results of UDify on 124 treebanks (part 1 of 5).

58

TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX

Danish DDT da ddt UDPipe 97.78 97.33 97.52 86.88 84.31 81.20 76.29 78.51
UDify 97.50 95.41 94.60 87.76 84.50 81.60 73.76 75.15

Dutch Alpino nl alpino UDPipe 96.83 96.33 97.09 91.37 88.38 83.51 77.28 79.82
UDify 97.67 97.66 95.44 94.23 91.21 87.32 82.81 80.76

Dutch LassySmall nl lassysmall UDPipe 96.50 96.42 97.41 90.20 86.39 81.88 77.19 78.83
UDify 96.70 96.57 95.10 94.34 91.22 88.03 82.06 81.40

English EWT en ewt UDPipe 96.29 97.10 98.25 89.63 86.97 84.02 79.00 82.36
UDify 96.21 96.02 97.28 90.96 88.50 86.25 79.80 83.39

English GUM en gum UDPipe 96.02 96.82 96.85 87.27 84.12 78.55 73.51 74.68
UDify 95.44 94.12 93.15 89.14 85.73 83.03 72.55 74.30

English LinES en lines UDPipe 96.91 96.31 96.45 84.15 79.71 77.44 71.38 73.22
UDify 95.31 91.34 94.50 87.33 83.71 82.95 68.62 76.23

English PUD en pud UDify 96.18 93.50 94.20 91.52 88.66 87.83 75.61 80.57

English ParTUT en partut UDPipe 96.10 95.51 97.74 90.29 87.27 82.58 76.44 80.33
UDify 96.16 92.61 96.45 92.84 90.14 86.28 74.59 82.01

Erzya JR myv jr UDify 46.66 31.82 45.73 31.90 16.38 10.83 0.58 2.83

Estonian EDT et edt UDPipe 97.64 96.23 95.30 88.00 85.18 83.62 78.72 78.51
UDify 97.44 95.13 86.56 89.53 86.67 85.17 79.20 69.31

Faroese OFT fo oft UDify 77.46 35.20 51.09 67.24 59.26 51.17 2.39 21.92

Finnish FTB fi ftb UDPipe 96.65 96.62 95.49 90.68 87.89 85.11 80.58 81.18
UDify 93.80 90.38 88.80 86.37 81.40 81.01 68.16 70.15

Finnish PUD fi pud UDify 96.48 93.84 84.64 89.76 86.58 86.64 77.83 69.12

Finnish TDT fi tdt UDPipe 97.45 95.43 91.45 89.88 87.46 85.87 80.43 76.64
UDify 94.43 90.48 82.89 86.42 82.03 82.62 70.89 63.66

French GSD fr gsd UDPipe 97.63 97.13 98.35 90.65 88.06 84.35 79.76 82.39
UDify 97.83 96.17 97.34 93.60 91.45 88.54 81.61 84.51

French PUD fr pud UDify 91.67 59.65 100.00 88.36 82.76 81.74 25.24 81.74

French ParTUT fr partut UDPipe 96.93 94.43 95.70 92.17 89.63 84.62 75.22 78.07
UDify 96.12 88.36 93.97 90.55 88.06 83.19 63.03 74.03

French Sequoia fr sequoia UDPipe 98.79 98.09 98.57 92.37 90.73 87.55 84.51 85.93
UDify 97.89 88.97 97.15 92.53 90.05 86.67 67.98 82.52

French Spoken fr spoken UDPipe 95.91 100.00 96.92 82.90 77.53 71.82 68.24 69.47
UDify 96.23 98.67 96.59 85.24 80.01 75.40 69.74 72.77

Galician CTG gl ctg UDPipe 97.84 99.83 98.58 86.44 83.82 78.58 72.46 77.21
UDify 96.51 97.10 97.08 84.75 80.89 74.62 65.86 72.17

Galician TreeGal gl treegal UDPipe 95.82 93.96 97.06 82.72 77.69 71.69 63.73 68.89
UDify 94.59 80.67 94.93 84.08 76.77 73.06 49.76 66.99

German GSD de gsd UDPipe 94.48 90.68 96.80 85.53 81.07 76.26 58.82 72.13
UDify 94.55 90.43 94.42 87.81 83.59 80.03 61.27 72.48

German PUD de pud UDify 89.49 30.66 94.77 89.86 84.46 80.50 2.10 72.95

Gothic PROIEL got proiel UDPipe 96.61 90.73 94.75 85.28 79.60 76.92 66.70 72.93
UDify 95.55 85.97 80.57 85.61 79.37 76.26 63.09 58.65

Greek GDT el gdt UDPipe 97.98 94.96 95.82 92.10 89.79 85.71 78.60 79.72
UDify 97.72 93.29 89.43 94.33 92.15 88.67 77.89 71.83

Hebrew HTB he htb UDPipe 97.02 95.87 97.12 89.70 86.86 81.45 75.52 78.14
UDify 96.94 93.41 94.15 91.63 88.11 83.04 72.55 74.87

Table 4.7: The full test results of UDify on 124 treebanks (part 2 of 5).

59

TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX

Hindi HDTB hi hdtb UDPipe 97.52 94.15 98.67 94.85 91.83 88.21 78.49 86.83
UDify 97.12 92.59 98.23 95.13 91.46 87.80 75.54 86.10

Hindi PUD hi pud UDify 87.54 22.81 100.00 71.64 58.42 53.03 3.32 53.03

Hungarian Szeged hu szeged UDPipe 95.76 91.75 95.05 84.04 79.73 78.65 67.63 73.63
UDify 96.36 86.16 90.19 89.68 84.88 83.93 64.27 72.21

Indonesian GSD id gsd UDPipe 93.69 95.58 99.64 85.31 78.99 76.76 67.74 76.38
UDify 93.36 93.32 98.37 86.45 80.10 78.05 66.93 76.31

Indonesian PUD id pud UDify 76.10 44.23 100.00 77.47 56.90 54.88 7.41 54.88

Irish IDT ga idt UDPipe 92.72 82.43 90.48 80.39 72.34 63.48 46.49 55.32
UDify 90.49 71.84 81.27 80.05 69.28 60.02 34.39 43.07

Italian ISDT it isdt UDPipe 98.39 98.11 98.66 93.49 91.54 87.34 84.28 85.49
UDify 98.51 98.01 97.72 95.54 93.69 90.40 86.54 86.70

Italian PUD it pud UDify 94.73 58.16 96.08 94.18 91.76 90.05 25.55 83.74

Italian ParTUT it partut UDPipe 98.38 97.77 98.16 92.64 90.47 85.05 81.87 82.99
UDify 98.21 98.38 97.55 95.96 93.68 89.83 86.83 86.44

Italian PoSTWITA it postwita UDPipe 96.61 96.90 97.00 86.03 81.78 77.05 72.88 74.33
UDify 96.14 95.56 93.60 87.20 82.77 78.27 72.41 71.67

Japanese GSD ja gsd UDPipe 98.13 99.98 99.52 95.06 93.73 88.35 86.37 88.04
UDify 97.08 99.97 98.80 94.37 92.08 86.19 82.99 85.12

Japanese Modern ja modern UDify 74.94 96.14 79.70 74.99 55.62 42.67 30.89 35.47

Japanese PUD ja pud UDify 97.89 99.98 99.31 94.89 93.62 87.92 84.86 87.15

Kazakh KTB kk ktb UDPipe 55.84 40.40 63.96 53.30 33.38 27.06 4.82 15.10
UDify 85.59 65.49 77.18 74.77 63.66 61.84 34.23 45.51

Komi Zyrian IKDP kpv ikdp UDify 59.92 39.32 57.56 36.01 22.12 17.45 1.54 6.80

Komi Zyrian Lattice kpv lattice UDify 38.57 29.45 55.33 28.85 12.99 10.79 0.72 3.28

Korean GSD ko gsd UDPipe 96.29 99.77 93.40 87.70 84.24 82.05 79.74 76.35
UDify 90.56 99.63 82.84 82.74 74.26 71.72 65.94 57.58

Korean Kaist ko kaist UDPipe 95.59 100.00 94.30 88.42 86.48 84.12 80.72 79.22
UDify 94.67 99.98 85.89 87.57 84.52 82.05 78.27 68.99

Korean PUD ko pud UDify 64.43 60.47 70.47 63.57 46.89 45.29 16.26 30.94

Kurmanji MG kmr mg UDPipe 53.36 41.54 69.58 45.23 34.32 29.41 2.74 19.39
UDify 60.23 37.78 58.08 35.86 20.40 14.75 1.42 7.28

Latin ITTB la ittb UDPipe 98.34 96.97 98.99 91.06 88.80 86.40 82.35 85.71
UDify 98.48 95.81 98.08 92.43 90.12 87.93 82.24 85.97

Latin PROIEL la proiel UDPipe 97.01 91.53 96.32 83.34 78.66 76.20 67.40 73.65
UDify 96.79 89.49 91.79 84.85 80.52 77.96 67.18 71.00

Latin Perseus la perseus UDPipe 88.40 79.10 81.45 71.20 61.28 56.32 41.58 45.09
UDify 90.96 82.09 81.08 78.33 69.60 65.95 50.26 51.33

Latvian LVTB lv lvtb UDPipe 96.11 93.01 95.46 87.20 83.35 80.90 71.92 76.64
UDify 96.02 89.78 91.00 89.33 85.09 82.34 69.51 72.58

Lithuanian HSE lt hse UDPipe 81.70 60.47 76.89 51.98 42.17 38.93 18.17 28.70
UDify 90.47 70.00 67.17 79.06 69.34 66.00 36.21 36.35

Maltese MUDT mt mudt UDPipe 95.99 100.00 100.00 84.65 79.71 71.49 66.75 71.49
UDify 91.98 99.89 100.00 83.07 75.56 65.08 58.14 65.08

Marathi UFAL mr ufal UDPipe 80.10 67.23 81.31 70.63 61.41 57.44 29.34 45.87
UDify 88.59 59.22 72.82 79.37 67.72 60.13 21.71 39.25

Table 4.8: The full test results of UDify on 124 treebanks (part 3 of 5).

60

TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX

Naija NSC pcm nsc UDify 55.44 51.32 97.03 45.75 32.16 31.62 4.73 29.33

North Sami Giella sme giella UDPipe 92.54 90.03 88.31 78.30 73.49 70.94 62.40 61.45
UDify 90.21 83.55 71.50 74.30 67.13 64.41 51.20 40.63

Norwegian Bokmaal no bokmaal UDPipe 98.31 97.14 98.64 92.39 90.49 88.18 84.06 86.53
UDify 98.18 96.36 97.33 93.97 92.18 90.40 85.02 87.13

Norwegian Nynorsk no nynorsk UDPipe 98.14 97.02 98.18 92.09 90.01 87.68 82.97 85.47
UDify 98.14 96.55 97.18 94.34 92.37 90.39 85.01 86.71

Norwegian NynorskLIA no nynorsklia UDPipe 89.59 86.13 93.93 68.08 60.07 54.89 44.47 50.98
UDify 95.01 93.36 96.13 75.40 69.60 65.33 56.90 62.27

Old Church Slavonic PROIEL cu proiel UDPipe 96.91 90.66 93.11 89.66 85.04 83.41 73.63 77.81
UDify 84.23 71.30 65.70 76.71 66.67 64.10 46.25 43.88

Old French SRCMF fro srcmf UDPipe 96.09 97.81 100.00 91.74 86.83 83.85 79.91 83.85
UDify 95.73 96.98 100.00 91.74 86.65 83.49 78.85 83.49

Persian Seraji fa seraji UDPipe 97.75 97.78 97.44 90.05 86.66 83.26 81.23 80.93
UDify 96.22 94.73 92.55 89.59 85.84 81.98 76.65 74.74

Polish LFG pl lfg UDPipe 98.80 95.49 97.54 96.58 94.76 93.01 87.04 90.26
UDify 98.80 87.71 94.04 96.67 94.58 93.03 76.50 85.15

Polish SZ pl sz UDPipe 98.34 93.04 97.16 93.39 91.24 89.39 81.06 85.99
UDify 98.36 67.11 93.92 93.67 89.20 87.31 48.47 80.24

Portuguese Bosque pt bosque UDPipe 97.07 96.40 98.46 91.36 89.04 85.19 76.67 83.06
UDify 97.10 89.70 91.60 91.37 87.84 84.13 69.09 78.64

Portuguese GSD pt gsd UDPipe 98.31 99.92 99.30 93.01 91.63 87.67 85.96 86.94
UDify 98.04 95.75 98.95 94.22 92.54 89.37 82.32 87.90

Portuguese PUD pt pud UDify 90.14 51.16 99.79 87.02 80.17 74.10 17.51 74.10

Romanian Nonstandard ro nonstandard UDPipe 96.68 90.88 94.78 89.12 84.20 78.91 65.93 73.44
UDify 96.83 88.89 89.33 90.36 85.26 80.41 64.68 68.11

Romanian RRT ro rrt UDPipe 97.96 97.53 98.41 91.31 86.74 82.57 79.02 81.09
UDify 97.73 96.12 95.84 93.16 88.56 84.87 79.20 79.92

Russian GSD ru gsd UDPipe 97.10 92.66 97.37 88.15 84.37 82.66 74.07 80.03
UDify 96.91 87.45 77.73 90.71 86.03 84.51 67.24 62.08

Russian PUD ru pud UDify 93.06 63.60 77.93 93.51 87.14 83.96 37.25 61.86

Russian SynTagRus ru syntagrus UDPipe 99.12 97.57 98.53 93.80 92.32 90.85 87.91 89.17
UDify 98.97 96.29 94.47 94.83 93.13 91.87 86.91 85.44

Russian Taiga ru taiga UDPipe 93.18 82.87 89.99 75.45 69.11 65.31 48.81 57.21
UDify 95.39 88.47 90.19 84.02 77.80 75.12 59.71 65.15

Sanskrit UFAL sa ufal UDify 37.33 17.63 37.38 40.21 18.56 15.38 0.85 4.12

Serbian SET sr set UDPipe 98.33 94.35 97.36 92.70 89.27 87.08 79.14 84.18
UDify 98.30 92.22 95.86 95.68 91.95 90.30 78.45 84.93

Slovak SNK sk snk UDPipe 96.83 90.82 96.40 89.82 86.90 84.81 74.00 81.37
UDify 97.46 89.30 93.80 95.92 93.87 92.86 77.33 85.12

Slovenian SSJ sl ssj UDPipe 98.61 95.92 98.25 92.96 91.16 88.76 83.85 86.89
UDify 98.73 93.44 96.50 94.74 93.07 90.94 81.55 86.38

Slovenian SST sl sst UDPipe 93.79 86.28 95.17 73.51 67.51 63.46 52.67 60.32
UDify 95.40 89.81 95.15 80.37 75.03 71.19 61.32 67.24

Table 4.9: The full test results of UDify on 124 treebanks (part 4 of 5).

61

TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX

Spanish AnCora es ancora UDPipe 98.91 98.49 99.17 92.34 90.26 86.39 83.97 85.51
UDify 98.53 97.89 98.07 92.99 90.50 87.26 83.43 84.85

Spanish GSD es gsd UDPipe 96.85 97.09 98.97 90.71 88.03 82.85 75.98 81.47
UDify 95.91 95.08 96.52 90.82 87.23 82.83 72.47 78.08

Spanish PUD es pud UDify 88.98 54.58 100.00 90.45 83.08 77.42 18.06 77.42

Swedish LinES sv lines UDPipe 96.78 89.43 97.03 86.07 81.86 80.32 66.48 77.38
UDify 96.85 87.24 92.70 88.77 85.49 85.61 66.99 77.62

Swedish PUD sv pud UDify 96.36 80.04 88.81 89.17 86.10 85.25 57.12 72.92

Swedish Sign Language SSLC swl sslc UDPipe 68.09 100.00 100.00 50.35 37.94 39.51 30.96 39.51
UDify 63.48 96.10 100.00 40.43 26.95 30.12 23.29 30.12

Swedish Talbanken sv talbanken UDPipe 97.94 96.86 98.01 89.63 86.61 84.45 79.67 82.26
UDify 98.11 95.92 95.50 91.91 89.03 87.26 80.72 81.31

Tagalog TRG tl trg UDify 60.62 35.62 73.63 64.04 40.07 36.84 0.00 13.16

Tamil TTB ta ttb UDPipe 91.05 87.28 93.92 74.11 66.37 63.71 55.31 59.58
UDify 91.50 83.21 80.84 79.34 71.29 69.10 53.62 54.84

Telugu MTG te mtg UDPipe 93.07 99.03 100.00 91.26 85.02 81.76 77.75 81.76
UDify 93.48 99.31 100.00 92.23 83.91 79.92 76.10 79.92

Thai PUD th pud UDify 56.78 62.48 100.00 49.05 26.06 18.42 3.77 18.42

Turkish IMST tr imst UDPipe 96.01 92.55 96.01 74.19 67.56 63.83 56.96 61.37
UDify 94.29 84.49 87.71 74.56 67.44 63.87 49.42 54.10

Turkish PUD tr pud UDify 77.34 24.59 84.31 67.68 46.07 39.95 2.61 32.50

Ukrainian IU uk iu UDPipe 97.59 92.66 97.23 88.29 85.25 81.90 73.81 79.10
UDify 97.71 88.63 94.00 92.83 90.30 88.15 72.93 81.04

Upper Sorbian UFAL hsb ufal UDPipe 62.93 41.10 68.68 45.58 34.54 27.18 3.37 16.65
UDify 84.87 48.84 72.68 71.55 62.82 56.04 16.19 37.89

Urdu UDTB ur udtb UDPipe 93.66 81.92 97.40 87.50 81.62 75.20 55.02 73.07
UDify 94.37 82.80 96.68 88.43 82.84 77.00 56.70 73.97

Uyghur UDT ug udt UDPipe 89.87 88.30 95.31 78.46 67.09 60.85 47.84 57.08
UDify 75.88 70.80 79.70 65.89 48.80 38.95 21.75 31.31

Vietnamese VTB vi vtb UDPipe 89.68 99.72 99.55 70.38 62.56 60.03 55.56 59.54
UDify 91.29 99.58 99.21 74.11 66.00 63.34 58.71 62.61

Warlpiri UFAL wbp ufal UDify 33.44 18.15 39.17 21.66 7.96 7.49 0.00 0.88

Yoruba YTB yo ytb UDify 50.86 78.32 85.56 37.62 19.09 16.56 6.30 12.15

Table 4.10: The full test results of UDify on 124 treebanks (part 5 of 5).

62

Conclusion
We have proposed and evaluated UDify, a multilingual multi-task self-attention net-
work fine-tuned on BERT pretrained embeddings, capable of producing annotations
for any UD treebank, and exceeding the state-of-the-art in UD dependency parsing in
a large subset of languages while being comparable in tagging and lemmatization ac-
curacy. To the best of our knowledge, UDify is the largest multilingual part-of-speech
tagger, morphological analyzer, lemmatizer, and dependency parser to date, capable
of parsing 75 languages across 124 treebanks. And this is the first self-attention only
model providing strong results in part-of-speech tagging and dependency parsing.

Strong regularization and task-specific layer attention are highly beneficial for fine-
tuning, while also reducing the number of required models to train down to one by
training multilingually. Multilingual learning is most beneficial for low-resource lan-
guages, even ones that do not possess a training set and can be further improved by
fine-tuning monolingually using BERT weights saved from UDify’s multilingual train-
ing.

Future Work
There are many more possible avenues to explore in UDify. For one, morphologically,
UDify is able to obtain high accuracy in lemmatization and morphology tagging but
leaves much to be desired. To make the model as simple as possible, we did not ex-
periment with character-level embeddings. But with character-level features that have
been shown to model morphological information well, we predict UDify would sur-
pass UDPipe Future on these metrics. Second, some of the fine-tuned languages result
in performance far below the baseline. An improved training strategy that biases the
training towards these underperforming languages would likely improve them. For
instance, we could randomly select uniform batches from each treebank, and increase
the probability of selecting batches of low-resource languages over high-resource ones.
Third, we would like to see if BERT fine-tuned on UD can improve the performance
of benchmarks on GLUE, MNLI, SQuAD, etc. over using just the unsupervised BERT
model. The intuition is that a BERT model biased towards human-annotated syntax
can possibly provide better word representations than through unsupervised pretrain-
ing alone. Fourth, we can try to extend the model to support XPOS annotations. One
simple approach could be to concatenate all XPOS annotations, same as all the other
annotations, and then insert a treebank identifier to allow the network to pick the ap-
propriate XPOS annotation scheme for a treebank.

Summary of Results
To summarize, we provide answers to the research questions listed in the introduction.

1. What specific architectural choices are necessary for building a model capable
of scaling to annotate Universal Dependencies across all supported languages?

Self-attention networks demonstrate a remarkable capability to differentiate be-
tween many languages without harming evaluation performance. To provide

63

accurate annotations, a pretraining strategy like BERT is necessary to bias the at-
tention weights across the majority of the considered languages. To prevent fur-
ther overfitting to any individual language, regularization techniques are crucial,
i.e., increased dropout, discriminative fine-tuning, inverse square root learning
rate decay, input masking, task-specific layer attention, and layer dropout. Com-
bined, these strategies produce a model capable of surpassing UDPipe Future, a
strong state-of-the-art baseline that that must train a model per treebank.

2. How does multilinguality affect the performance of parsing Universal Depen-
dencies, and which languages benefit the most from cross-lingual annotations?

With respect to UDify, multilingual pretraining and fine-tuning often produce
superior annotations when compared to language-specific fine-tuning, especially
if the languages are low-resource and are similar to other provided languages.
Slavic languages tend to have the largest benefit, as there are many supported
Slavic languages provided by UD, and they are all linguistically similar to one
another.

3. In what ways does unsupervised pretraining help for training self-attention
networks for dependency parsing?

Pretraining self-attention networks introduce a strong syntactic bias that is ca-
pable of generalizing across languages. This is evidenced by experiments that
suggest that pretraining improves dependency parsing performance not only for
pretrained languages but also on languages that were never pretrained to begin
with. Furthermore, this shows that even simple multilingual pretraining strate-
gies that do not explicitly define cross-lingual training tasks can still result in
cross-lingual word representations that result in more accurate multilingual de-
pendency parsing. A model that is pretrained on a large collection of languages
is very likely to provide useful syntactic information when encountering a com-
pletely new language, whether it be in pretraining, fine-tuning, or inference.

4. What evidence is there to support why pretrained self-attention networks excel
in dependency parsing?

Evidence provided by a syntactic probe suggests self-attention networks encode
structural dependencies between words as a linearly-separable global property of
the vector space. A visualization of the minimum spanning tree of a linear func-
tion of the L2 norm/distance between the word vectors shows a striking similar-
ity to human-annotated dependency trees, and these get more similar with fine-
tuning. Further analysis of the attention heads reveals attention patterns that ap-
pear to identify syntactic properties of the input sentence like constituent/phrasal
boundaries, and these properties are more prominent after fine-tuning. This ev-
idence all points to the fact that self-attention is remarkably capable of finding
structural patterns in text, i.e., syntax, and closely mimics the structural proper-
ties of dependency trees when processed through multiple layers.

64

Bibliography
Salim Abu-Rabia and Ekaterina Sanitsky. Advantages of bilinguals over monolinguals

in learning a third language. Bilingual Research Journal, 33(2):173–199, 2010.

Wasi Uddin Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard Hovy, Kai-Wei Chang, and
Nanyun Peng. On difficulties of cross-lingual transfer with order differences: A case
study on dependency parsing. arXiv preprint arXiv:1811.00570, 2018.

Jay Alammar. The illustrated transformer. 2018. URL http://jalammar.
github.io/illustrated-transformer/.

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A Smith.
Many languages, one parser. Transactions of the Association for Computational
Linguistics, 4:431–444, 2016.

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings
for zero-shot cross-lingual transfer and beyond. arXiv preprint arXiv:1812.10464,
2018.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and Michael
Auli. Cloze-driven pretraining of self-attention networks. arXiv preprint
arXiv:1903.07785, 2019.

Miguel Ballesteros, Chris Dyer, and Noah A Smith. Improved transition-based parsing
by modeling characters instead of words with lstms. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 349–359,
2015.

Toms Bergmanis and Sharon Goldwater. Context sensitive neural lemmatization with
lematus. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), volume 1, pages 1391–1400, 2018.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio. Generating sentences from a continuous space. CoNLL 2016,
page 10, 2016.

Danqi Chen and Christopher Manning. A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 740–750, 2014.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for
machine reading. arXiv preprint arXiv:1601.06733, 2016.

Grzegorz Chrupała. Simple data-driven context-sensitive lemmatization. Proce-
samiento del Lenguaje Natural, 37, 2006.

Yoeng-Jin Chu. On the shortest arborescence of a directed graph. Scientia Sinica, 14:
1396–1400, 1965.

65

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le.
Semi-supervised sequence modeling with cross-view training. arXiv preprint
arXiv:1809.08370, 2018.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Question answer-
ing passage retrieval using dependency relations. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 400–407. ACM, 2005.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augenstein, and Anders Søgaard. Pa-
rameter sharing between dependency parsers for related languages. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 4992–4997, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning
for multiple language translation. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), volume 1, pages
1723–1732, 2015.

Timothy Dozat and Christopher D Manning. Deep biaffine attention for neural depen-
dency parsing. arXiv preprint arXiv:1611.01734, 2016.

Timothy Dozat, Peng Qi, and Christopher D Manning. Stanford’s graph-based neural
dependency parser at the conll 2017 shared task. Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages
20–30, 2017.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency
parsing: Cross-lingual parameter sharing in a neural network parser. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 845–850, 2015.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith.
Transition-based dependency parsing with stack long short-term memory. arXiv
preprint arXiv:1505.08075, 2015.

Jack Edmonds. Optimum branchings. Journal of Research of the national Bureau of
Standards B, 71(4):233–240, 1967.

Stephen Fagan and Ramazan Gençay. An introduction to textual econometrics. Hand-
book of empirical economics and finance, pages 133–154, 2011.

66

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural
machine translation with a shared attention mechanism. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 866–875, 2016.

John R. Firth. A synopsis of linguistic theory. 1930-55, 1957.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):
23–38, 1994.

Yoav Goldberg. Assessing bert’s syntactic abilities. arXiv preprint arXiv:1901.05287,
2019.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel. Effective strategies in zero-shot
neural machine translation. arXiv preprint arXiv:1711.07893, 2017.

Jirka Hana. Intro to linguistics: Syntax 1. UFAL, 2011.

Georg Heigold, Guenter Neumann, and Josef van Genabith. An extensive empirical
evaluation of character-based morphological tagging for 14 languages. In Proceed-
ings of the 15th Conference of the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, volume 1, pages 505–513, 2017.

Daniel Hershcovich. Non-projective example. 2017. URL https:
//linguistics.stackexchange.com/questions/3640/
non-projective-example.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in
word representations. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 328–339,
2018.

Go Inoue, Hiroyuki Shindo, and Yuji Matsumoto. Joint prediction of morphosyntactic
categories for fine-grained arabic part-of-speech tagging exploiting tag dictionary
information. In Proceedings of the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 421–431, 2017.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep un-
ordered composition rivals syntactic methods for text classification. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), volume 1, pages 1681–1691, 2015.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.

67

https://linguistics.stackexchange.com/questions/3640/non-projective-example
https://linguistics.stackexchange.com/questions/3640/non-projective-example
https://linguistics.stackexchange.com/questions/3640/non-projective-example

Google’s multilingual neural machine translation system: Enabling zero-shot trans-
lation. Transactions of the Association for Computational Linguistics, 5:339–351,
2017.

Andrej Karpathy. Cs231n convolutional neural networks for visual recognition. 2019.
URL http://cs231n.github.io/neural-networks-1/.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware
neural language models. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. arXiv
preprint arXiv:1805.01052, 2018a.

Nikita Kitaev and Dan Klein. Multilingual constituency parsing with self-attention and
pre-training. arXiv preprint arXiv:1812.11760, 2018b.

Daniel Kondratyuk, Tomáš Gavenčiak, Milan Straka, and Jan Hajič. Lemmatag:
Jointly tagging and lemmatizing for morphologically rich languages with brnns. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 4921–4928, 2018.

Taku Kudo and John Richardson. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural ma-
chine translation without explicit segmentation. Transactions of the Association for
Computational Linguistics, 5:365–378, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Dekang Lin and Patrick Pantel. Discovery of inference rules for question-answering.
Natural Language Engineering, 7(4):343–360, 2001.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez, Silvio
Amir, Luis Marujo, and Tiago Luis. Finding function in form: Compositional char-
acter models for open vocabulary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 1520–
1530, 2015.

Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhardwaj, Shaonan Zhang, and Jason
Sun. A neural interlingua for multilingual machine translation. In Proceedings of the
Third Conference on Machine Translation: Research Papers, pages 84–92, 2018.

Ryan McDonald, Slav Petrov, and Keith Hall. Multi-source transfer of delexicalized
dependency parsers. In Proceedings of the conference on empirical methods in nat-
ural language processing, pages 62–72. Association for Computational Linguistics,
2011.

68

http://cs231n.github.io/neural-networks-1/

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013b.

Phoebe Mulcaire, Jungo Kasai, and Noah Smith. Polyglot contextual representations
improve crosslingual transfer. arXiv preprint arXiv:1902.09697, 2019.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and Hinrich Schütze. Joint lemma-
tization and morphological tagging with lemming. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pages 2268–2274,
2015.

Tahira Naseem, Regina Barzilay, and Amir Globerson. Selective sharing for mul-
tilingual dependency parsing. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1, pages 629–637.
Association for Computational Linguistics, 2012.

Joakim et al. Nivre. Universal dependencies 2.3, 2018. URL http://hdl.
handle.net/11234/1-2895. LINDAT/CLARIN digital library at the Institute
of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Harvard NLP. The annotated transformer. 2018. URL http://nlp.seas.
harvard.edu/2018/04/03/attention.html.

Christopher Olah. Understanding lstm networks. 2015. URL https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A de-
composable attention model for natural language inference. arXiv preprint
arXiv:1606.01933, 2016.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for
abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proc. of NAACL, 2018.

Martin Popel and Ondřej Bojar. Training tips for the transformer model. The Prague
Bulletin of Mathematical Linguistics, 110(1):43–70, 2018.

Cicero D Santos and Bianca Zadrozny. Learning character-level representations for
part-of-speech tagging. In Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 1818–1826, 2014.

Rico Sennrich and Barry Haddow. Linguistic input features improve neural machine
translation. arXiv preprint arXiv:1606.02892, 2016.

69

http://hdl.handle.net/11234/1-2895
http://hdl.handle.net/11234/1-2895
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909, 2015.

Damien Sileo. Understanding bert transformer: Attention isn’t all you need. Towards
Data Science, 2019.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, and
Sara Stymne. 82 treebanks, 34 models: Universal dependency parsing with multi-
treebank models. In Proceedings of the CoNLL 2018 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependencies, pages 113–123, Brus-
sels, Belgium, October 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/K18-2011.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of residual
networks using large learning rates. 2018.

Tobias Sterbak. Guide to sequence tagging with neural networks in python. 2017.

Milan Straka. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal
Dependencies, pages 197–207, Brussels, Belgium, October 2018. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/
K18-2020.

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum.
Linguistically-informed self-attention for semantic role labeling. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages
5027–5038, 2018.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline.
arXiv preprint arXiv:1905.05950, 2019.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra Kübler, Marie Candito, Jennifer
Foster, Yannick Versley, Ines Rehbein, and Lamia Tounsi. Statistical parsing of
morphologically rich languages (spmrl): what, how and whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-
Rich Languages, pages 1–12. Association for Computational Linguistics, 2010.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

Jesse Vig. Visualizing attention in transformer-based language models. arXiv preprint
arXiv:1904.02679, 2019.

David Vilares, Carlos Gómez-Rodrı́guez, and Miguel A Alonso. One model, two
languages: training bilingual parsers with harmonized treebanks. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), volume 2, pages 425–431, 2016.

Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

70

http://www.aclweb.org/anthology/K18-2011
http://www.aclweb.org/anthology/K18-2020
http://www.aclweb.org/anthology/K18-2020

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and Andrzej Pastusiak. Question
answering using enhanced lexical semantic models. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1744–1753, 2013.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in neural information processing
systems, pages 3320–3328, 2014.

Samy Zafranyj. Nlp with gensim (word2vec). 2019. URL https://samyzaf.
com/ML/nlp/nlp.html.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov. CoNLL 2018 shared task: Multilingual parsing
from raw text to universal dependencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 1–21,
Brussels, Belgium, October 2018. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/K18-2001.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen. A neural probabilistic
structured-prediction model for transition-based dependency parsing. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 1213–1222, 2015.

George Kingsley Zipf. Human behavior and the principle of least effort. 1949.

71

https://samyzaf.com/ML/nlp/nlp.html
https://samyzaf.com/ML/nlp/nlp.html
http://www.aclweb.org/anthology/K18-2001

List of Figures

1.1 The tag components of the Czech PDT treebank with the numbers of
valid values. Around 1500 different tags are in use in the PDT [Kon-
dratyuk et al., 2018]. 8

1.2 An example of a non-projective dependency tree using UD labels [Her-
shcovich, 2017]. 10

1.3 An example of a word-based vector space with semantically related
words pointing in the same direction [Zafranyj, 2019]. 12

1.4 An example of a feedforward neural network with two hidden layers
[Karpathy, 2019]. 13

1.5 A visual representation of the operations performed inside an LSTM
unit [Olah, 2015]. 15

1.6 Transformer self-attention head (left) consists of a query Q, key K,
and value V . Multi-Head Attention (right) combines h of these heads
together, running them in parallel [Vaswani et al., 2017]. 16

1.7 A visualization of the self-attention mechanism working on an exam-
ple sentence [Vig, 2019]. High positive and negative values are illus-
trated as blue and orange bars respectively. 17

1.8 Transformer self-attention model introduced by Vaswani et al. [2017]
used for machine translation. 18

1.9 Positional encoding for 20 words (y-axis increasing downward) with
an embedding dimension of 512 (x-axis increasing rightward). Lighter
colors indicate activations closer to 1, and darker colors indicate acti-
vations closer to -1 [Alammar, 2018]. 19

1.10 A plot of the inverse square-root learning rate decay scheme applied
to Transformer models with different hyperparameters, where the x-
axis represents the number of training steps and the y-axis represents
the learning rate [NLP, 2018]. With respect to the different plots, the
left number represents a global factor dmodel scaling the learning rate,
and the right number represents the number of steps warmup steps to
warm up before decaying. 21

1.11 BERT input representation consisting of a sum of wordpiece token
embeddings with special separator tokens, segment embeddings for
sentence A or sentence B, and relative positional embeddings [Devlin
et al., 2018]. 24

1.12 BERT model adapted for sequence tagging tasks [Devlin et al., 2018]. 25
1.13 A visualization of the slanted triangular learning rate proposed by

ULMFiT [Howard and Ruder, 2018]. 26

2.1 An example of sequence tagging applied to named entity recognition
using a recurrent neural network [Sterbak, 2017]. Embeddings (red)
of words are input into an RNN unit (green) sequentially, producing
hidden states (blue). The hidden states are decoded by a feedforward
layer followed by a softmax activation function. 29

2.2 The biaffine graph-based dependency parser developed by Dozat and
Manning [2016]. 30

72

2.3 A plot of multi-task development scores predicted using a recurrent
neural network on the UD English EWT dataset. Blue lines indicate
all tasks are performed jointly. All other colors indicate the task was
performed separately. 32

3.1 An illustration of the UDify network architecture with task-specific
layer attention, inputting word tokens and outputting UD annotations
for each token. 39

4.1 The unnormalized BERT layer attention weights αi contributing to
layer i for each task after training. A linear change in weight scales
each BERT layer exponentially due to the softmax in Equation 3.1 . . 48

4.2 The global unnormalized BERT layer attention weights αi contribut-
ing to layer i. 49

4.3 Examples of minimum spanning trees produced by the syntactic probe
are shown below each sentence, evaluated on BERT (red) and on UD-
ify (blue). Human annotated dependency trees are shown above each
sentence in black. 52

4.4 Examples of minimum spanning trees produced by the syntactic probe
are shown below each sentence, evaluated on BERT (red) and on UD-
ify (blue). Human annotated dependency trees are shown above each
sentence in black. 53

4.5 Visualization of BERT attention head 4 at layer 11, comparing the at-
tended words on an English sentence between BERT base and UDify
BERT. The right column indicates the attended words (keys) with re-
spect to the words in the left column (queries). Darker lines indicate
stronger attention weights. 54

4.6 Visualization of BERT attention head 3 at layer 7, comparing the at-
tended words on an English sentence between BERT base and UDify
BERT. The right column indicates the attended words (keys) with re-
spect to the words in the left column (queries). Darker lines indicate
stronger attention weights. 54

4.7 Visualization of BERT attention head 8 at layer 10, comparing the at-
tended words on an English sentence between BERT base and UDify
BERT. The right column indicates the attended words (keys) with re-
spect to the words in the left column (queries). Darker lines indicate
stronger attention weights. 55

4.8 Visualization of BERT attention head 12 at layer 10, comparing the
attended words on an English sentence between BERT base and UD-
ify BERT. The right column indicates the attended words (keys) with
respect to the words in the left column (queries). Darker lines indicate
stronger attention weights. 55

73

List of Tables

1.1 A table of Universal Dependencies features along with an example of
each feature. 8

1.2 A listing of all universal part-of-speech (UPOS) tags in the UD frame-
work. 9

2.1 Accuracies of UD tasks on Kurmanji comparing between two network
configurations: a recurrent network and a recurrent network with con-
textual embeddings provided by multilingual BERT. 33

3.1 Vocabulary sizes of words and tags over all of UD v2.3, with a total of
12,032,309 word tokens and 668,939 sentences. 37

3.2 Ablation comparing fine-tuning strategies on various layers of BERT.
These results are taken from the original paper of Devlin et al. [2018]. 38

3.3 A summary of model hyperparameters. 42

4.1 Test set scores for a subset of high-resource languages in comparison
to UDPipe Future, with 3 UDify configurations: Lang, fine-tune on
the treebank. UDify, fine-tune on all UD treebanks combined. UD-
ify+Lang, fine-tune on the treebank using BERT weights saved from
fine-tuning on all UD treebanks combined. 45

4.2 Test set scores for a subset of low-resource languages in comparison
to UDPipe Future, with 3 UDify configurations: Lang, fine-tune on
the treebank. UDify, fine-tune on all UD treebanks combined. UD-
ify+Lang, fine-tune on the treebank using BERT weights saved from
fine-tuning on all UD treebanks combined. 46

4.3 Ablation comparing the average of scores over all 89 treebanks with a
training set: task-specific layer attention, global layer attention for all
tasks, and simple sum of layers. 47

4.4 Test set results for zero-shot learning, i.e., no UD training annotations
available. Languages that are pretrained with BERT are bolded. . . . 49

4.5 UUAS test scores calculated on the predictions produced by the syn-
tactic structural probe using the English EWT treebank, on the un-
modified multilingual cased BERT model and the same BERT model
fine-tuned on the treebank. 50

4.6 The full test results of UDify on 124 treebanks (part 1 of 5). 58
4.7 The full test results of UDify on 124 treebanks (part 2 of 5). 59
4.8 The full test results of UDify on 124 treebanks (part 3 of 5). 60
4.9 The full test results of UDify on 124 treebanks (part 4 of 5). 61
4.10 The full test results of UDify on 124 treebanks (part 5 of 5). 62

74

	Introduction
	Background and Related Work
	The Importance of Processing Syntax
	Universal Dependencies
	Part-Of-Speech Tags
	Morphology Tags
	Lemmas
	Dependency Trees

	Distributional Semantics & Word Vectors
	Neural Networks
	Deep Learning
	Feedforward Neural Networks
	Recurrent Neural Networks
	Self-Attention Networks & the Transformer

	Transfer Learning with Contextualized Word Representations
	Word2Vec: Unsupervised Pretraining of Word Embeddings
	ELMo: Deep Contextualized Word Representations
	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
	ULMFiT: Universal Language Model Fine-tuning for Text Classification

	Multilingual Learning

	Predicting Universal Dependencies from Raw Text
	The CoNLL 2018 Shared Task
	Part-of-Speech Tagging
	Morphological Tagging
	Lemmatization
	Dependency Parsing
	Multi-Task Learning with LemmaTag
	Multi-Task Learning with UDPipe Future
	Metrics for Scoring UD Predictions

	The UDify Model
	Design Considerations
	Training on all Universal Dependencies Training Data Simultaneously

	Layer Attention
	Model Architecture
	Model Tasks
	Extremely Long Sentences

	Regularization Strategies
	Layer Dropout
	Transfer Learning with ULMFiT
	Input Masking
	Dropout

	Hyperparameters & Training Details

	Experiments and Results
	Datasets
	Training on All Treebanks vs. One Treebank
	Effect of Syntactic Fine-Tuning on BERT
	Overall Performance
	Layer Attention Preference
	Zero-Shot Learning
	Probing for Syntax
	Attention Visualization

	Factors that Enable BERT to Excel at Dependency Parsing and Multilinguality
	Full Results

	Conclusion
	Bibliography
	List of Figures
	List of Tables

