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Abstract

Reduced order models play an important role in the design,
optimization and control of dynamical systems. In recent
years, there has been an increasing interest in the applica-
tion of data-driven techniques for model reduction that can
decrease the computational burden of numerical solutions,
while preserving the most important features of complex
physical problems. In this paper, we use the proper orthogo-
nal decomposition to reduce the dimensionality of the model
and introduce a novel generative neural ODE (NODE) archi-
tecture to forecast the behavior of the temporal coefficients.
With this methodology, we replace the classical Galerkin pro-
jection with an architecture characterized by the use of a con-
tinuous latent space. We exemplify the methodology on the
dynamics of the Von Karman vortex street of the flow past a
cylinder generated by a Large-eddy Simulation (LES)-based
code. We compare the NODE methodology with an LSTM
baseline to assess the extrapolation capabilities of the gener-
ative model and present some qualitative evaluations of the
flow reconstructions.

Introduction
Modeling and simulation of dynamical systems are essential
tools in the study of complex phenomena with applications
in chemistry, biology, physics and engineering, among other
relevant fields. These tools are particularly useful in the con-
trol and design of parametrized systems in which the depen-
dence on properties, initial conditions and other configura-
tions requires multiple evaluations of the system response.
However, there are some limitations when performing nu-
merical simulations of systems where nonlinearities, and a
wide range of spatial and time scales leads to unmanageable
demands on computational resources. The latter is the case
of engineering fluid flow problems where the range of scales
involved increase with the value of the Reynolds number and
the cost of simulating a full-order model (FOM) using tech-
niques such as DNS or LES is very high. One of the possi-
ble solutions to reduce the expensive computational cost is
to introduce an alternative, cheaper and faster representation
that retains the characteristics provided by the FOM without
sacrificing the accuracy of the general physical behaviour.
The idea is to construct a methodology able to generalize
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the physical behaviour for unseen parameters and that can
extrapolate forward in time using the minimal amount of full
order simulations (Benner, Gugercin, and Willcox 2015).

The projection-based reduced order modeling is one of
the most popular approaches to construct surrogate models
of dynamical systems. This framework reduces the degrees
of freedom of the numerical simulations using a transfor-
mation into a suitable low-dimensional subspace. Then, the
state variable in the governing equations is rewritten in terms
of the reduced subspace and finally the PDE equations are
converted into a system of ODEs that can be solved using
classical numerical techniques (Benner, Gugercin, and Will-
cox 2015). In the field of fluid mechanics, the Proper Or-
thogonal Decomposition (POD) method is widely applied in
the dimensionality reduction of the FOM and the Galerkin
method is used for the projection onto the governing equa-
tions. These methodologies are preferred because an orthog-
onal normal basis simplifies the complexity of the projected
mathematical operators and the truncated basis of the POD
is optimal in the least squares sense, retaining the dominant
behaviour through the most energetic modes. The projection
on the governing equations maintain the physical structure
of the model, but the truncation of the modes can affect the
accuracy of the results in nonlinear systems and it may also
be restricted to stationary and time periodic problems. Fur-
thermore, the projection is intrusive, requiring different set-
tings for each problem, and it is limited to explicit and closed
definitions of the mathematical models (San, Maulik, and
Ahmed 2019). Some of these problems have been addressed
with the search of closure models that compensates the in-
formation losses produced by the truncated modes (Mou
et al. 2020; Mohebujjaman, Rebholz, and Iliescu 2019; San
and Maulik 2018b,a) and with the construction of a data
driven reduced ”basis” that also provides optimality after
the time evolution (Murata, Fukami, and Fukagata 2020; Liu
et al. 2019; Wang et al. 2016).

We present an alternative methodology to evolve the dy-
namics of the system in the reduced space using a data-
driven approach. We use the POD to compute the modes and
the temporal coefficients of a fluid flow simulation and then
we apply a non-supervised autoencoder approach to learn
the dynamics of a latent space. The addition of a neural ODE
(Chen et al. 2019; Rubanova, Chen, and Duvenaud 2019)
block in the middle of the autoencoder model provides a
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Figure 1: POD-NeuralODE ROM methodology.

continuous learning block that is encoded using a feed for-
ward neural network and that can be solved numerically to
determine the future states of the input variables. Several
works have proposed machine learning models to replace
the Galerkin projection step or to improve their capabilities,
and different architectures such as feedforward or recurrent
networks has been applied with demonstrated good perfor-
mance in academic and practical fluid flow problems (Pawar
et al. 2019; Imtiaz and Akhtar 2020; Eivazi et al. 2020; Lui
and Wolf 2019; Portwood et al. 2019; Maulik et al. 2020a,b).
The main advantage of the neural ODE generative model is
that the learning is posed as a non-supervised task using a
continuous representation of the physical behavior. In our
view, the neural ODE block can be interpreted as an im-
plicit differential operator that is not restricted to a specific
differential equation. This setting provides more flexibility
than the projection over the governing equations because it
addresses the learning problem with an operator that is in-
formed and corrected by the training data.

Methodology
In this work we use a Large-eddy Simulation (LES) model
to approximate the behavior of the fluid flow dynamical sys-
tem. As it is the case in many fluid flow problems, the dis-
crete solution has a spatial dimension larger than the size of
the temporal domain. For this reason, we apply the snapshot
POD to construct the reduced order model in order to have
a tractable computation. The POD finds a new basis repre-
sentation that maximizes the variance in the data, and has
the minimum error of the reconstructions in a least squares
sense. In addition, the dimensionality reduction is easily per-
formed because the components of the new basis are ordered
by their contribution to the recovery of the data.

The main block in the Neural ODE-ROM methodology
is concerned with the forecast of the temporal coefficients
provided by the snapshot POD. Here we apply a genera-
tive neural ODE model that takes the temporal coefficients,
learns their dynamical evolution and provides an adequate
model to extrapolate at the desired time steps. Finally, we
can forecast the evolution of the temporal coefficients and
reconstruct the behavior of the flow with the spatio-temporal
expansion used in the POD.

The general methodology is represented in the Fig. 1 and
more details about each of the building blocks is presented
in the following sections.

LES Model For The Flow Past a Cylinder
The dynamics of the Von Karman vortex street of the flow
past a cylinder were solved by the LES filtered governing
equations for the balance of mass (1), and momentum (2),
which can be written as follows:

∂ρ̄

∂t
+
∂(ρ̄ũi)

∂xi
= 0 (1)

∂(ρ̄ũi)

∂t
+
∂(ρ̄ũiũj)

∂xj
=

∂

∂xj

[
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(
∂ũj
∂xi
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)
−2

3
ρ̄ν̄
∂ũk
∂xk

δij − ρ̄τijsgs
]
− ∂p̄

∂xi
+ ρ̄gi

(2)

In the previous equations, u represents the velocity, ρ is
the fluid density, and ν is the dynamic viscosity. These equa-
tions are solved numerically using the PIMPLE algorithm
(Weller et al. 1998), which is a combination of PISO (Pres-
sure Implicit with Splitting of Operator) by Issa (1986) and
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) by Patankar (1980). This approach obtains the tran-
sient solution of the coupled velocity and pressure fields by
applying the SIMPLE (steady-state) procedure for every sin-
gle time step. Once converged, a numerical time integration
scheme (e.g. backward) and the PISO procedure are used to
advance in time until the simulation is complete. Further-
more, the unresolved subgrid stresses, τijsgs, are modeled
in terms of the subgrid-scale eddy viscosity νT using the dy-
namic k-equation approach by Kim and Menon (1995).

The setup of the problem is described as follows. The
computational domain comprehends a 2D channel with
760 mm in the stream-wise direction and 260 mm in the di-
rection perpendicular to the flow. The cylinder is located be-
tween the upper and bottom walls of the channel at 115 mm
away from the inlet (left wall). A constant radial velocity
of 0.6 m/s with random radial/vertical fluctuations in com-
bination with a zero-gradient outflow condition and non-
slip walls on the top/bottom/cylinder walls are imposed as
boundary conditions. Furthermore, a laminar dynamic vis-
cosity of 1 × 10−4m2/s and a cylinder diameter of 40 mm
further characterizes the flow with a Reynolds number of
240 (Re = 0.6×0.04/1×10−4 = 240). The Central differ-
encing scheme (CDS) was used for the discretization of both
convective and diffusive terms of the momentum equation,



as well as an implicit backward scheme for time integration.
A snapshot of the velocity components in both radial and
axial directions at time = 100 is shown in the Fig. 2.

Figure 2: Snapshot of the flow field at t = 100.

Proper Orthogonal Decomposition
The proper orthogonal decomposition (POD) is known un-
der a variety of names such as Karhunen-Loeve expan-
sion, Hotelling transform and principal component analysis
(Liang et al. 2002). This tool was developed in the field of
probability theory to discover interdependencies within vec-
tor data and introduced in the fluid mechanics community
by Berkooz, Holmes, and Lumley (1993). Once the interde-
pendencies in the data are discovered, it is possible to reduce
its dimensionality.

The formulation of the dimensionality reduction starts
with some samples of observations provided by experimen-
tal results or obtained through the numerical solution of a
full order model that characterizes the physical problem.
These samples are rearranged in an ensemble matrix of snap-
shots Y where each row has the state of the dynamical sys-
tem at a given time step. Then, the correlation matrix of the
elements in Y is computed and their eigenvectors are used
as an orthogonal optimal new basis for the reduced space.

In the following list we summarize the main steps used
for the construction of the snapshot POD:
• Take snapshots : simulate the dynamical system and sam-

ple its state as it evolves.
• Compute the fluctuating components of the velocity using

the Reynolds decomposition of the flow:

u = u+ u′, (3)
where u is the temporal mean of the solutions given by
the FOM model.

• Assemble the matrix Y with the snapshots in the follow-
ing form:

Y =


u′x(x1, y1, t1) ... u′y(xNx

, yNy
, t1)

u′x(x1, y1, t2) ... u′y(xNx
, yNy

, t2)
. . .
. . .
. . .

u′x(x1, y1, tNt
) ... u′y(xNx

, yNy
, tNt

)



where each row contains a flattened array with the fluctu-
ating components of the velocity in the x and y directions
for a given time step. If the discretization used for the
FOM simulation has dimensions Nx, Ny and Nt, then the
flattened representation is a vector with length 2 ·Nx ·Ny

and the matrix Y has dimensions Nt × (2 ·Nx ·Ny).

• Build the correlation matrix K and compute its eigenvec-
tors aj :

K = Y Y >, (4)

Kaj = λjaj . (5)

Alternatively, one can directly compute the eigenvalues
and eigenvectors using the singular value decomposition
(SVD) of the snapshot matrix.

• Choose the reduced dimension of the model: As described
in the literature, larger eigenvalues are directly related
with the dominant characteristics of the dynamical sys-
tem while small eigenvalues are associated with perturba-
tions of the dynamic behavior. The criterion to select the
components for the new basis is to maximize the relative
information content I(N) using the minimal amount of
components N necessary to achieve a desired percentage
of recovery (Schilders et al. 2008).

I(N) =

∑N
i=1 λi∑Nt

i=1 λi
(6)

• Finally, we compute the spatial modes using the tempo-
ral coefficients in the reduced dimensional space and the
Ansatz decomposition of the POD:

u′ =

N∑
i=1

αi(t)ψi(x), (7)

ψi(x) =
1

λi

N∑
j=1

αi(tj)u
′(tj). (8)

Neural Ordinary Differential Equations
The neural ordinary differential methodology (Chen et al.
2019) can be interpreted as a continuous counterpart of tradi-
tional models such as recurrent or residual neural networks.
In order to formulate this model, the authors drew a parallel
between the classical composition of a sequence in terms of
previous states and the discretization methods used to solve
differential equations:

ht+1 = ht + f(ht, θ). (9)

In the limit case of sufficient small steps (equivalent to
an increase of the layers) is possible to write a continuous
parametrization of the hidden state derivative:

dh(t)

dt
= f(ht, θ), (10)



ht = ODESolver(h0, f(ht, θ)). (11)

The function f defining the parametrization of the deriva-
tive can be approximated using a neural network and the val-
ues of hidden states ht at different time steps are computed
using numerical ODE solvers (Chen et al. 2019).

We apply the neural ODE time-series generative approach
presented in the Fig. 3 to model the evolution of the tem-
poral modes provided by the proper orthogonal decomposi-
tion. This approach can be interpreted as a variational au-
toencoder architecture with an additional neural ODE block
after the sampling of the codings. This block maps the vector
of the initial latent state zt0 to a sequence of latent trajecto-
ries using the ODE numerical solver while a neural network
f(ht, θ) learns the latent dynamics necessary to have a good
reconstruction of the input data.

After the training process, the latent trajectories are easily
extrapolated with the redefinition of the temporal bounds in
the ODE solver. Some of the advantages of this strategy are
that it does not need an explicit formulation of the physical
laws to forecast the temporal modes, and in consequence, the
method does not resort onto projection methodologies. Fur-
thermore, the parametrization using a neural network gives
an accurate nonlinear approximation of the derivative with-
out a predefined mathematical structure.

Results

In this section, we evaluate the performance of the genera-
tive neural ODE model in the forecasting of the temporal co-
efficients. For this assessment, we apply the proper orthogo-
nal decomposition over 300 snapshots of simulated data ob-
tained with the LES code and take the first 8 POD modes
achieving a 99 % of recovery according to the relative in-
formation content. For the deployment of the neural ODE
model (NODE) we take the first 75 time steps for the train-
ing set, the following 25 time steps for the validation of the
model and the last 200 time steps for the test set. Further-
more, we employ as a baseline model an LSTM sequence to
vector architecture as proposed in Maulik et al. with a win-
dow size of 10 time steps and a batch size of 15 sequences.

We tuned the hyperparameters necessary for both models
adopting a random search and chose the best configuration
given the performance on the validation set. The evolution
of the loss for the best model is shown in Fig. 4 and the set
of hyperparameters employed are presented in Table 1.

Figure 4: Loss Generative NODE model.

Model Hyperparameter Range Best

Neural ODE

latent dimension 3-6 6
layers encoder 1-5 4
units encoder 10-50 10

units node 10-50 12
layers decoder 1-5 4
units decoder 10-50 41
learning rate 0.001 - 0.1 0.0015

LSTM
layers 10-60 49
units 1-5 1

learning rate 0.001 - 0.1 0.0081

Table 1: Hyperparameters used in the models.

Figure 5: Reconstruction of POD temporal coefficients using
NODE vs LSTM , t ∈ [100, 200].

The time-series prediction for the first four temporal co-
efficients in the test set is shown in Fig. 5. This plot presents
the ground truth values of the POD time coefficients, the
baseline produced using an LSTM architecture and the pre-
dictions by the proposed generative NODE model for the
first 100 time steps in the test window. We notice that the
baseline and the NODE model learned adequately the evo-
lution of the two most dominant coefficients, but the per-
formance of the NODE model is significantly better for the
third and four time coefficients. Additionally, the quality of
the prediction using the LSTM model for the last 100 time



Figure 3: Generative VAE with Neural ODE.

steps in the test set deteriorates with the evolution of the time
steps even for α1 and α2 as seen in Fig. 6 . One of the pos-
sible reasons for this is that the autoregressive nature of the
predictions in the LSTM model is prone to the accumulation
of errors as Maulik et al. pointed out in their study (Maulik
et al. 2020b).

Figure 6: Reconstruction of POD temporal coefficients using
NODE vs LSTM, t ∈ [200, 300].

After the training and validation process, we reconstruct
the velocity fluctuating component u′x using the Ansatz of
the proper orthogonal decomposition with the temporal co-
efficients forecasted for the test set. Observing the Fig. 7
is possible to notice that the contour generated with the re-
duced order model provides an adequate recovery of the flow
features with only slight differences in some vortexes. In
addition, we also present the fluctuation time history for a
probe located downstream from the cylinder in Fig. 8. This

figure shows with more details how the physical response of
the reduced order model gives a satisfactory approximation
of the flow behavior.

Figure 7: Contours of fluctuating component u′x, t = 300.

Figure 8: Probe positioned behind the cylinder.

The data and code that support this study is provided at
https://github.com/CarlosJose126/NeuralODE-ROM.

Conclusions
We presented a methodology to produce reduced order mod-
els using a neural ODE generative architecture for the evo-

https://github.com/CarlosJose126/NeuralODE-ROM


lution of the temporal coefficients. The neural ODE model
was able to learn appropriately the hidden dynamics of the
temporal coefficients without having the propagation of er-
rors common in the autoregressive architectures. Another
advantage of this methodology is that the learning is posed
as an unsupervised task without the requirement to divide
the whole sequence in smaller training windows with labels.
We also remark that the continuous nature of the neural ODE
block is crucial for the good extrapolation capabilities of the
methodology. Finally, we expect to test the capabilities of
this methodology with other physical problems and also to
extend the method for parametric dynamical systems.
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