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Abstract Similarity-based retrieval of semantic graphs is widely used
in real-world scenarios, e. g., in the domain of business workflows. To
tackle the problem of complex and time-consuming graph similarity com-
putations during retrieval, the MAC/FAC approach is used in Process-
Oriented Case-Based Reasoning (POCBR), where similar graphs are ex-
tracted from a preselected set of candidate graphs. These graphs result
from a similarity computation with a computationally inexpensive simi-
larity measure. The contribution of this paper is a novel similarity mea-
sure where vector space embeddings generated by two siamese Graph
Neural Networks (GNNs) are used to approximate the similarities of a
precise but therefore computationally complex graph similarity measure.
Our approach includes a specific encoding scheme for semantic graphs
that enables their usage in neural networks. The evaluation examines the
quality and performance of these models in preselecting retrieval candi-
dates and in approximating the ground-truth similarities of the graph
similarity measure for two workflow domains. The results show great po-
tential of the approach for being used in a MAC/FAC scenario, either
as a preselection model or as an approximation of the graph similarity
measure.

Keywords: Process-Oriented Case-Based Reasoning · MAC/FAC Re-
trieval · Graph Embeddings · Siamese Graph Neural Networks

1 Introduction

Nowadays, cases represented as semantic graphs are increasingly used in sev-
eral domains, e. g., as cooking recipes in the form of simple business workflows
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[19], as scientific workflows to represent data mining tasks [28], or as argu-
ment graphs for case-based argumentation [14]. The problem-solving paradigm
of Process-Oriented Case-Based Reasoning (POCBR) [3,16] focused on these se-
mantic graphs to represent workflows in scenarios of similarity-based retrieval
and reuse of procedural experiential knowledge. Especially in retrieval situations,
the main influencing factor on user experience is its runtime to retrieve useful
cases. However, due to the need for computing multiple pairwise semantic graph
similarities throughout a single retrieval, an increasing size and complexity of
the used graphs has a strong influence on the overall retrieval time, which in
turn results in slow and unresponsive applications for relatively large graphs.
The MAC/FAC (“Many are called, but few are chosen”) approach introduced
by Forbus et al. [9] can be used to counteract the previously mentioned problem
of slow retrieval times. To solve this, a two-phased retrieval is applied: The first
phase (MAC) utilizes a simplified and often knowledge-poor similarity measure
for a fast preselection of similar cases w. r. t. the query. The second phase (FAC)
then applies the computationally intensive graph-based similarity measure to
the results of the MAC phase. The strategy reveals the importance of a well-
chosen MAC similarity measure because the preselection of candidates must not
disregard highly similar workflows to maintain an appropriate retrieval quality.

Our previous work to design MAC similarity measures shifted the focus
from manually-modeled approaches [5] to approaches based on machine learning
techniques [13,18]. Recently, Klein et al. [13] embedded semantic graphs into a
low-dimensional vector space using the general-purpose unsupervised embedding
framework StarSpace [26]. In this approach, the graph similarity is determined
by applying a standard vector similarity measure on the generated graph embed-
dings. However, semantic annotations and the graph structure are not considered
at all, although this is indispensable in certain domains [14,28]. In this paper,
we continue to pursue the idea of automatically learned low-dimensional graph
representation vectors to speed-up retrieval. We investigate two novel siamese
Graph Neural Networks (GNNs) specifically tailored for graph structures intro-
duced by Li et al. [15], for generating more expressive graph embeddings. We
propose a generic approach to modify those GNNs to fully include semantic
annotations and the workflow structure into the embedding process.

In the following section, previous work on POCBR including representation of
semantic workflows, similarity assessment between these workflows, and different
MAC/FAC approaches is presented. Our concept for assessing the similarity
of semantic graphs with the help of GNNs is introduced in Sect. 3. Next, we
apply our developed concept to cooking recipes and evaluate it. Finally, Sect. 5
concludes the results and discusses future work.

2 Foundations and Previous Work

Research on Process-Oriented Case-Based Reasoning (POCBR) [3,16] deals with
the integration of CBR and Process-Aware Information Systems (PAISs) such
as workflow management systems [8]. For instance, the effectiveness of POCBR



has been demonstrated by Müller [19] for assisting workflow designers during
the task of workflow modeling with best-practice workflows from a case base.
Thus, POCBR supports the development of workflows as an experience-based
activity [3,16]. Therefore, an appropriate case representation for workflows as
well as a similarity measure that assesses the suitability of a workflow w. r. t. a
new problem situation is important in POCBR.

2.1 Semantic Workflow Representation

For the representation of workflows, we use semantically annotated directed
graphs referred to as NEST graphs introduced by Bergmann and Gil [3]. More
specifically, a NEST graph is a quadruple W = (N,E, S, T ) that is composed
of a set of nodes N and a set of edges E ⊆ N × N . Each node and each edge
has a specific type from Ω that is indicated by the function T : N ∪ E →
Ω. Additionally, the function S : N ∪ E → Σ assigns a semantic description
from Σ (semantic metadata language, e. g., an ontology) to nodes and edges.
Whereas nodes and edges are used to build the structure of each workflow, types
and semantic descriptions are additionally used to model semantic information.
Hence, each node and each edge can have a semantic description.

To demonstrate the introduced representation and as part of the experimen-
tal evaluation, we use cooking recipes represented as workflows. Each workflow
consists of tasks that represent cooking steps and data nodes that represent
the ingredients that belong to the corresponding cooking steps. In the cooking
domain, the semantic metadata language is defined by taxonomic ontologies,
one for ingredients and one for cooking steps. Figure 1 shows a simple exam-
ple of a NEST graph that represents a cooking recipe for making a sandwich.
The cooking workflow contains two task nodes (coat and layer) as well as four
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Fig. 1. Exemplary Cooking Recipe represented as NEST Graph



data nodes (mayo, baguette, sandwich dish, and gouda). Task nodes are con-
nected by control-flow edges that define the order in which tasks are executed.
Furthermore, dataflow edges are used to connect task nodes with data nodes
in order to model that a task consumes inputs and produces outputs. For in-
stance, the dataflow edge between coat and layer indicates that baguette has
an interaction with the task coat and is consumed by the task layer. Semantic
descriptions of task nodes and data nodes are used to further specify semantic
information belonging to the workflow components in an attribute-value way.
Figure 1 shows an example of the semantic description of the task node coat.
The provided information is used to describe the task more precisely. In this
case, a spoon and a baguette knife is needed to execute the task (Auxiliaries)
and the estimated time that the task takes is two minutes (Duration).

2.2 Similarity Assessment

Determining the similarity between two NEST graphs, i. e., a query workflow
QW and a case workflow CW, requires a similarity measure that assesses the
link structure of nodes and edges as well as the semantic descriptions and types
of these components. Bergmann and Gil [3] propose a semantic similarity mea-
sure that determines a similarity based on the local-global principle [21]. A global
similarity, i. e., the similarity between two graphs, is composed of local similar-
ities, i. e., the pairwise similarities of nodes and edges. The similarity between
two nodes with identical types is defined as the similarity of the semantic de-
scriptions of these nodes. The similarity between two edges with identical types
does not only consider the similarity of the semantic descriptions of the edges,
but in addition the similarity of the connected nodes as well. In order to put
together a global similarity by aggregating local similarities, the domain’s simi-
larity model has to define similarity measures for all components of the semantic
description, i. e., simΣ : Σ × Σ → [0, 1]. The global similarity of the two work-
flows sim(QW,CW) is finally calculated by finding an injective partial mapping
m that maximizes simm(QW,CW).

sim(QW,CW) = max {simm(QW,CW) | admissible mapping m} (1)

The process of finding the mapping that maximizes the global similarity between
a query QW and a single case CW is very complex due to the high number of
possible mappings and thus requires solving an optimization problem. Bergmann
and Gil [3] developed a parallelized version of the A∗ search algorithm that can
be used for finding a mapping solution by utilizing search heuristics and an
adjustable A∗ maximum queue size. The queue size defines the maximum number
of not expanded solutions to store and influences the trade-off between quality
of the mappings and time required for finding them, i. e., reducing the queue
size results in solutions with worse quality at a lower computation time and vice
versa. Only a queue of infinite length could deterministically find the optimal
solution. Even when using the A∗ search with a suitable heuristic, solving the
problem to find the best-possible mapping is still very complex w. r. t. time and



memory consumption (see [20] for more details). That mainly motivates this
paper.

2.3 MAC/FAC Retrieval for POCBR

In contrast to Zeyen and Bergmann [27] who tackled the aforementioned prob-
lems by optimizing the A∗ search and its underlying heuristic, we used the
approach of a two-phase retrieval procedure, referred to as MAC/FAC [9], to
face long retrieval times [5,11,18]. It aims to decrease computation time by pre-
filtering the case base in order to reduce the number of cases that have to be
evaluated by an often computationally complex similarity measure. The major
difficulty with MAC/FAC retrieval in general is the definition of the filter con-
dition of the MAC stage, as it has a great impact on the overall retrieval quality
and performance.

Prior work of Bergmann and Stromer [5] addressed this issue by utilizing a
feature-based domain specific case representation of workflows and an appropri-
ately modeled similarity measure in the MAC stage. In order to avoid additional
modeling effort, Müller and Bergmann [18] developed a MAC/FAC approach
that uses a hierarchically partitioned cluster tree that can be traversed for finding
clusters with cases similar to the query. This algorithm shows acceptable perfor-
mance if the case base has a strong cluster structure. However, it has not reached
quality and retrieval speed of the feature-based MAC/FAC approach. Our recent
work [13] applied the general-purpose embedding framework StarSpace [26] to
POCBR. Therefore, the authors learned vector representations in an unsuper-
vised manner based on structural properties of workflow graphs, e. g., relation
between task, data, and workflow nodes. The resulting embeddings allow to ef-
ficiently compute the similarity between a given query and a workflow from the
case base by vector similarity measures, without any consideration of knowledge-
intensive manually-modeled similarity measures. The approach achieves a nearly
comparable performance to the feature-based MAC/FAC retrieval w. r. t. re-
trieval time and quality. Since the embedding-based approach does not ade-
quately consider semantic descriptions or the graph structure that are relevant
for the semantic similarity assessment, we consider this weakness as a starting
point for improvements.

3 Similarity Learning for Workflow Graphs with Siamese
Graph Neural Networks

This section presents our approach for generating pairwise similarities of seman-
tic graphs by using neural networks. Since semantic labels of nodes and edges
contain valuable information for similarity assessment, it is necessary to provide
these semantics in combination with the workflow structure as input data for the
neural networks. To the best of our knowledge, the encoding of such semantic
information for learning graph similarities is a rather unexplored research area
(see [20] for an overview) also in POCBR. Consequently, we present our method



for encoding semantic graphs to be used as input data of neural networks (see
Sect. 3.1). Additionally, we show how this data can be used to determine graph
similarities with neural networks. Therefore, two graph neural networks devel-
oped by Li et al. [15] are adjusted in order to generate these similarities (see
Sect. 3.2) and to enable usage in retrieval scenarios (see Sect. 3.3).

3.1 Encoding Semantic Graphs for Similarity Learning

Our encoding scheme for NEST graphs creates numeric vector space encodings
that can be fed into neural networks for similarity assessment. To the best of
our knowledge, encoding the semantic annotations of nodes and edges is often
not considered as a main aspect in papers that present novel neural network
structures (e. g., [2,15]) for processing graphs. However, for semantic graphs like
NEST graphs, the semantic annotations at nodes and edges reflect domain-
specific knowledge that has a great impact on the global similarity. Thus, it
is crucial that the encoding methods can transform this knowledge to vector
encodings. This leads to individually created encoding schemes for node and
edge types and their semantic annotations.

Encoding Node and Edge Types Properly encoding node and edge types
is important because, during similarity assessment, only nodes and edges with
identical types are mapped (see Sect. 2.2). The types are encoded separately
for nodes and edges by one-hot encodings. One-hot encoding vectors encode
information in binary form by setting a single element as a 1 while all other vector
elements are set to 0. This way, a single one-hot encoding vector can only have
as many different value allocations as it has vector elements. For NEST graphs,
there are four different one-hot encodings of node types and edge types each (see
Fig. 2). The main advantage is that all encodings are clearly distinguishable by
a neural network that allows suitable processing of these vectors.

control-flow dataflow

part-of constraint

1 1

1 1

0 0 0 000

0 0 0 0 0 0

task data

control-flow workflow

1

1 1

10 0 0 0 0 0

0 0 0 0 0 0

Fig. 2. One-Hot Encodings of Edge Types (left) and Node Types (right)

Encoding Semantic Descriptions Encoding the semantic descriptions of
nodes and edges requires the transformation of several data types and complex
data relations. The data types that can be used inside of a semantic descrip-
tion are not specified in detail according to the NEST graph publication [3].



Referring to the ProCAKE framework3 [4] that fully supports NEST graphs, a
semantic description is composed of atomic data types and composite data types:
Atomic types comprise integer, double, boolean, string, void, and time and com-
posite data types consist of list, set, and attribute-value pairs. Each of these data
types requires an individual encoding approach in order to map the semantics
of the data to the encoding vectors as fully as possible. We implemented these
individual encoding algorithms but due to space restrictions in this paper, only
the general encoding approach of atomic and composite types is presented.

Each atomic type is encoded to a single encoding vector with length α that
is part of the vector space Rα. Thereby, these encoding vectors are made up of
two subvectors, where the first one encodes the atomic data type (e. g., string,
boolean, double) and the second one encodes the actual value to encode (e. g.,
“Hello World”, true, 1.0). The additional encoding of the used atomic data type
serves as further semantic information for the neural networks that process the
encoding vectors. By that, encodings of semantic description entries of different
types can be distinguished more easily although they are mapped to a com-
mon vector space. Encoding composite types is not as straightforward as en-
coding atomic types due to the complexity of semantic descriptions. The task
node coat from Fig. 1, for instance, is made up of composite attribute-value
pairs with three entries. The entry Duration is an atomic type and the entry
Auxiliaries is a list of atomic strings (composite type) that is nested inside
of the attribute-value pair. This arrangement of composite types nesting other
atomic or composite types can be visualized as a tree structure (see Fig. 3a).
Regarding the transformation of these semantic descriptions to numeric vectors,
this means that the encoding of a composite type aggregates the encodings of the
nested types. However, using tree-structured data in a neural network requires
the definition of complex layers and very special additional encoding schemes
(e. g., [22,24]). In order to simplify the tree structures to encode, each composite
type is redefined as a sequence of atomic types (see Fig. 3b). In case a composite
type contains another composite type (e. g., the tree structure in Fig. 3a), the
encoding sequences of parent type and child type are computed recursively and
put together to a single sequence. Converting tree structures to sequences is in
particular motivated by techniques that are used in natural language process-
ing (e. g., [7,23]), where a word or a sentence is often represented as a sequence
of encoding vectors. Similar to the previously mentioned approaches, we also
use Recurrent Neural Networks (RNNs) to process these sequences, which is
described in the next section.

3.2 Similarity Learning for Workflow Graphs

The neural networks that are used for graph retrieval are based on the Graph
Embedding Model (GEM) and the Graph Matching Network (GMN) introduced
by Li et al. [15]. In their work, they present two neural networks that are capable

3 https://procake.uni-trier.de

https://procake.uni-trier.de


coat

Duration Auxiliaries

Spoon Baguette
Knife

(a) Tree Arrangement

Duration Spoon Baguette
Knife

Auxiliaries

coat

(b) Sequence Arrangement
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of learning to assess the similarity of graphs. Both neural networks compute com-
pact vector representations of graphs that can be eventually compared using a
vector similarity measure. Thereby, the GEM is designed to enable a lightweight,
fast similarity assessment, whereas the GMN is optimized to learn more expres-
sive similarity patterns on the pairwise graph features. Both neural networks
feature three main components (see Fig. 4): the encoder, the propagation layer,
and the aggregator. We completely reuse the propagation layer of both networks
from the original implementation of Li et al.4 and adjusted the encoder and the
final graph similarity for our application scenario.

graph vectors

propagations

Encoder

Propagation
Layer

Aggregator

Graph Similarity Graph Similarity

Fig. 4. GEM (left) and GMN (right) (based on [15])

The encoder transforms the raw graph input data into a first embedding of
all nodes and edges. The components that are embedded in this process cover
the semantic descriptions and types allocated to each node and edge (see Sect.

4 https://github.com/deepmind/deepmind-research/tree/master/graph_matching_
networks
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2). These components are embedded independent of each other and concate-
nated afterwards to a single embedding vector for each node and edge of the
graph. This way, separate neural network structures can be adequately trained
to generate suitable embeddings. Whereas the embeddings of the types are gen-
erated by using separate feed-forward networks for node and edge types, the
embedding procedure of the semantic descriptions utilizes an RNN [7]. An RNN
is specifically designed to handle sequences of inputs as they are present in the
encodings of semantic descriptions. Please note that the influence of both parts
of the embedding vector can be controlled by manipulating the respective vector
lengths.

The propagation layer iteratively combines the node embeddings according
to the edge structure of the graph in order to capture information on the local
neighborhood in each node’s embedding. Therefore, an iterative process is used
that updates the node embeddings in multiple steps. In each step, the embed-
ding of a single node is updated by merging the node’s embedding with the
embeddings of nodes that are connected via an edge. This enables information
to be distributed by the node embeddings across the propagation steps. The
definition of a node’s neighborhood is the main difference of the propagation
approach present in GEM and GMN. As depicted in Fig. 4, the GEM only prop-
agates information within a single graph. This means that a node’s embedding
vector is updated according to all nodes that are connected via an edge that
only allows information flow within a single graph. In contrast, the GMN also
accumulates information across both graphs during the similarity assessment
by using an attention-based matching component. This enables information to
distribute between both graphs in an early state of similarity computation that
contributes to the increased expressiveness of GMN compared to GEM.

After iteratively propagating information within the graphs, the aggregator
merges the final node embeddings of all graph nodes to form an embedding for
the whole graph. The embeddings of each of the two graphs are then used to
determine a graph similarity value in [0,1]. Therefore, we use cosine similarity
for the GEM and a feed-forward neural network layer for the GMN. Given two
graph embedding vectors, the cosine similarity is defined to be the dot product of
these two vectors, divided by the product of the Euclidian vector length of both
vectors. This leads to a computationally inexpensive way of generating the final
graph similarity value. The feed-forward neural network that is used to compute
the final similarity for the GMN can be trained in order to learn the characteris-
tics of the whole-graph embedding vectors resulting from the aggregator. Thus,
this process is more expressive than using a vector similarity measure, at the
expense of a higher computation effort.

The training procedure for both networks utilizes the gradient-descent-based
optimizer Adam [12] in a mini-batch setup. Each training graph pair from the
batch of training examples is labeled with the ground truth similarity value that
is determined using the semantic similarity measure sim introduced in Sect.
2.2. This data is used to compute the Mean Squared Error (MSE) that serves
as a differentiable loss function. The MSE sums up all squared differences of



the similarity predicted by the neural network and the labeled similarity, and
then divides by the amount of all batched training examples to get the average
deviation.

3.3 Siamese GNN-Based Workflow Retrieval
In a workflow retrieval, the k-most similar cases CW are retrieved from the case
base CB, according to the similarity to a query workflow QW, i. e., sim(QW,CW).
The neural networks can be integrated into this process as the similarity mea-
sure for generating the pairwise graph similarities, i. e., fsim(QW,CW). There-
fore, the query workflow and all cases from the case base have to be encoded
to a numerical vector format first (see Sect. 3.1). After that, an offline train-
ing session can be started that trains the neural networks GEM and GMN for
predicting the similarities of all cases from the case base. The machine learn-
ing framework Tensorflow5 [1] is utilized for this purpose. Given the encoded
graphs and the trained neural networks, either GEM or GMN can be used to
determine the pairwise similarities for the query and all cases from the case base,
i. e., sim(QW,CW) is approximated by fsim(QW,CW). Eventually, the retrieval
result is finalized by putting together the k-most similar workflows according to
the similarity computed by the neural network.

4 Experimental Evaluation

To evaluate our approach, we measure performance and quality of GEM and
GMN in different retrieval scenarios. Thereby, both neural networks are com-
pared to the feature-based retriever by Bergmann and Stromer [5] (FBR), to
the latest embedding-based retriever by Klein et al. [13] (EBR), and to the
A∗-retriever by Bergmann and Gil [3] (A*R). We investigate the following hy-
potheses in two experiments:

H1 Using GEM and GMN as a MAC retriever of a MAC/FAC retrieval leads
to better retrieval results than using EBR as MAC retriever.

H2 The GMN retriever is able to approximate the ground-truth graph simi-
larities better than A*R, using parameter settings such that the retrieval
time of both retrievers is comparable.

The first experiment examines the retrievers in a MAC/FAC setup, where the
focus is put on the suitability of GEM and GMN as a MAC similarity measure
(see H1). The second experiment examines to which degree the retrievers are
capable of approximating the ground-truth A∗-similarities (see H2).

4.1 Experimental Setup
In the evaluation, workflows representing cooking recipes [4] and workflows rep-
resenting Data Mining processes from RapidMiner6 [28] are examined, with a
5 https://tensorflow.org/
6 https://rapidminer.com/
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training and a testing case base for each domain. The cooking workflows (CB-
I) are derived from 40 manually-modeled cooking recipes that are extended to
800 workflows by previously developed adaptation methods [19], resulting in 680
training cases and 120 testing cases. The workflows of the Data Mining domain
(CB-II) are built from sample processes that are delivered with RapidMiner,
resulting in 529 training cases and 80 testing cases. We build these different
case bases in order to investigate if our approach performs differently regarding
the complexity of the workflow domains. Therefore, we evaluate on the cook-
ing workflows with rather simple semantic descriptions and on the RapidMiner
workflows with more complex semantic descriptions.

The metrics that are used to evaluate our approach cover performance and
quality. The performance is measured by taking the retrieval time in seconds.
The quality of the results to evaluate RLeval is measured by comparing them
to the ground-truth retrieval results RLtrue in terms of Mean Absolute Error
(MAE), correctness (see [6] for more details), and k-NN quality (see [13] and
[18] for more details). The MAE (ranged between 0 and 1) expresses the aver-
age similarity error between all pairs of query workflow and case workflow in
RLtrue and the same pairs in RLeval. The correctness (ranged between -1 and 1)
describes the conformity of the ranking positions of the workflow pairs in RLeval
according to RLtrue. Given two arbitrary workflow pairs WP1 = (QW,CW1) and
WP2 = (QW,CW2), the correctness is decreased if WP1 is ranked before WP2

in RLeval although WP2 is ranked before WP1 in RLtrue or vice versa. The k-NN
quality (ranged between 0 and 1) quantifies to which degree highly similar cases
according to RLtrue are present in RLeval. Therefore, the |RLeval | most-similar
cases from RLtrue are compared with RLeval. Each case from the most-similar
cases that is missing in RLeval decreases the quality, with highly relevant cases
affecting the quality stronger than less relevant cases.

All experiments are computed on a PC with an Intel i7 6700 CPU (4 cores, 8
threads) and an NVIDIA GTX 1080 GPU with 16 GB RAM, running Windows
10 64-bit. The retrievers (EBR, GEM, and GMN) that require an offline training
phase are trained with the two training case bases, resulting in two models per
retriever, i. e., one for each domain. The training time for GEM on both case
bases is approx. 12 hours, for GMN approx. 18 hours, and for EBR approx. 6
minutes. Each retriever uses all processing cores of CPU or GPU for calculating
the similarities. A retrieval is always conducted with a query from the testing
case base and with the cases from the training case base. To produce meaningful
performance and quality values, the results of the retrieval runs of all query cases
from a single domain are averaged.

4.2 Experimental Results

The first experiment evaluates our neural networks as retrievers in a scenario
of MAC/FAC retrieval. Table 1 shows the results (k-NN quality and retrieval
time) as compared with FBR and EBR, since these two retrievers are specifi-
cally designed for MAC/FAC applications. For CB-I, FBR outperforms all other
retrievers w. r. t. quality for all combinations of FS and k. EBR and GMN have



Table 1. Evaluation Results of MAC/FAC Experiment

FS k Quality Time Quality Time Quality Time Quality Time
5 5 0.534 07.91 0.521 00.27 0.598 00.86 0.552 00.29

50 5 0.564 10.31 0.535 02.52 0.704 03.22 0.639 02.55
10 10 0.581 08.19 0.550 00.53 0.647 01.11 0.599 00.56
80 10 0.641 11.81 0.572 03.99 0.749 04.76 0.697 03.98
25 25 0.649 09.02 0.600 01.31 0.721 01.92 0.658 01.34

100 25 0.727 12.83 0.628 04.95 0.814 05.82 0.748 04.91
5 5 0.584 08.48 0.356 00.19 0.659 00.43 0.348 00.13

50 5 0.861 10.78 0.508 02.54 0.909 02.10 0.483 01.80
10 10 0.625 08.60 0.408 00.42 0.658 00.57 0.384 00.25
80 10 0.875 12.69 0.550 03.99 0.916 03.85 0.550 03.60
25 25 0.718 08.00 0.474 01.13 0.696 01.10 0.450 00.97

100 25 0.895 14.14 0.602 04.62 0.887 05.13 0.585 04.60

EBR
C

B
-I

I
GEMGMN FBR

C
B

-I

quality values in a similar range, with both consistently outperforming the qual-
ity values of GEM. When only considering the time, EBR and GEM clearly
outperform all other retrievers. For CB-II, the quality values of GMN outper-
form those of EBR and are in a similar range as those of FBR. The quality
values of GEM surpass those of EBR with comparable retrieval times. The re-
sults show that the suitability of GEM and GMN increases for retrieval situations
with more complex semantic descriptions of task and data nodes, as present in
CB-II. The performance of GEM and GMN for retrieving graphs from a rather
simple domain, such as those of CB-I, is respectable but does not lead to a
replacement of current approaches (EBR and FBR). Anyhow, the FBR with
its manually-modeled similarity measure still performs best for both case bases,
taking into account the combination of quality and time. When only looking at
the automatically-learned retrievers in the results for CB-II, i. e., GEM, GMN,
and EBR, GEM is the most suitable for a MAC/FAC scenario since it shows a
good combination of very low retrieval times and high quality values. Thus, H1
is partly confirmed due to different results for the two case bases. The results for
CB-I do not confirm H1 since EBR outperforms GEM in terms of quality and
even though GMN shows better quality results than EBR, it has infeasible re-
trieval times for a MAC/FAC setup. For CB-II, H1 can be clearly accepted due to
higher quality values with approximately equal retrieval times, when comparing
GEM and EBR.

The second experiment examines to which degree GEM, GMN, EBR, and
FBR are able to approximate the ground-truth graph similarities. Since GMN
and GEM are evaluated as MAC retrievers in the first experiment, the second
experiment focuses more on the suitability as FAC retrievers by measuring the
prediction errors (see Tab. 2). Therefore, we compare all previously mentioned
retrievers to a variant of the A*R with an adjusted queue size (see Sect. 2.2) so
that the retrieval time of A*R is approx. equal to that of GMN. Aligning the



retrieval times of A*R and GMN enables a fair comparison of the resulting MAE
and correctness. For CB-I, GMN has the lowest MAE and A*R has the highest

Table 2. Evaluation Results of A-Star Approximation Experiment
Retriever MAE Correctness Time

A*R 0.054 0.753 8.203
GMN 0.049 0.479 7.612
GEM 0.123 0.231 0.008
FBR 0.187 0.646 0.539
EBR 0.354 0.190 0.006
A*R 0.040 0.778 9.520
GMN 0.021 0.797 8.444
GEM 0.170 0.064 0.006
FBR 0.199 0.580 0.350
EBR 0.404 0.064 0.004

C
B

-I
I

C
B

-I

correctness. FBR achieves a high level of correctness but lags behind in terms of
MAE. When comparing the results of CB-I and CB-II, it becomes apparent that
GMN still has the lowest MAE and now also has the highest value of correctness.
This leads to the assumption that the suitability of GMN increases with more
complex cases. The reason for that might be the different levels of computational
complexity of both retrievers, i. e., exponential complexity for A*R and quadratic
complexity for GMN. GMN outperforming A*R in terms of MAE is even more
remarkable when considering that GMN learns to assess the similarity of graphs
without knowing the original algorithmic context, e. g., similarities of semantic
descriptions or node and edge mappings. Additionally, this experiment shows
that FBR and EBR are not suitable for generating similarities that are close
to the ground-truth similarities. The reason for this could be the inadequate
processing of semantic annotations and the workflow structure. Thus, we clearly
accept H2 for CB-II and partly accept this hypothesis for CB-I.

5 Conclusion and Future Work

This paper examines the potential of using two siamese GNNs in a retrieval
scenario in POCBR. Therefore, an encoding scheme is presented that covers the
workflow structure, the types of nodes and edges, and their semantic descrip-
tions. The encoded workflows are furthermore processed by two neural networks
GEM and GMN that are adjusted and optimized for being used in retrieval
scenarios. The evaluation of both neural networks investigates how both ap-
proaches perform in being used in a MAC/FAC setup and in approximating the
ground-truth similarities of the graph similarity measure. Compared to previ-
ous retriever approaches, the results show great potential: GEM is suitable for



a MAC/FAC setup, due to its fast similarity computation and reasonable re-
trieval quality. Furthermore, GMN shows great potential in approximating the
ground-truth graph similarities.

A focus of future research should be on optimizing the presented approach
of a GNN-based retrieval. This optimization ranges from aspects of parameter-
ization to adjustments of the data encoding scheme and the usage of different
neural network structures. The neural network structures could be optimized to
better process other graph domains, e. g., argument graphs [14], or even other
types of complex similarity measures [17]. Two more optimizations could be, for
instance, using a differentiable ranking loss function that optimizes according to
the ground-truth ordering of the retrieval results (e. g., [25]) or considering the
relationships between different graphs from a case base during training (e. g.,
Neural Structured Learning7). Furthermore, the neural networks that are used
in this work are not capable of explaining the results they produce, i. e., black
boxes. In current research (also in the CBR community, e. g., [10]), this lack
of explainability is tackled in the context of Explainable Artificial Intelligence
(XAI). Future research should address this issue by investigating which methods
are suitable for increasing the explainability of the presented neural networks.
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