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Abstract The similarity assessment of graphs is a fundamental prob-
lem that is particularly challenging if efficiency is of core importance.
In this paper, we focus on a similarity measure for semantically labeled
graphs whose labels are composed in an object-oriented manner. The
measure is based on A* search and is particularly suited for case-based
reasoning as it can be combined with knowledge-intensive local similarity
measures and outputs similarities and corresponding mappings usable for
explanation and adaptation. However, particularly for large graphs, the
search space must be pruned to improve efficiency of A* search at the
cost of sacrificing global optimality. We address this issue and present
complementary improvements of the measure, which we systematically
evaluate for the similarity assessment of semantic workflow graphs. The
experimental results demonstrate that the new measure considerably re-
duces the computation time and memory consumption while increasing
the accuracy.

Keywords: Semantic Graphs · Graph Matching · Graph Similarity

1 Introduction

Graph-based case representations with semantically labeled nodes and/or edges
are significantly gaining importance in case-based reasoning (CBR). They allow
to represent arbitrary relational structures and thus considerably increase ex-
pressiveness compared to attribute-value or pure object-oriented representations.
However, the gain in expressiveness comes with the cost of increased complexity
in the similarity assessment during the retrieval phase. In the literature, various
similarity measures for graph-based representations have been proposed [12].
However, assessing the similarity in an efficient way is a fundamental problem
due to the computational complexity of the approximate graph matching in-
volved. It is particularly challenging for semantically enriched graphs since their
similarity is affected by structure and semantics.

In this paper, we consider a specific form of semantically enriched graphs,
which we refer to as semantic graphs. A semantic graph is a generic directed
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graph whose nodes and edges have different types and are associated with se-
mantic descriptions, which can be composed in an object-oriented manner. Se-
mantic graphs are particularly used as case representation in process-oriented
case-based reasoning (POCBR) for representing semantic workflows [2] but also
for representing arguments [4] in case-based argumentation.

To assess the similarity of such graphs, Bergmann and Gil [2] proposed a
generic semantic similarity measure following the well-known local-global prin-
ciple [1,6] that is based on finding the best possible mapping of similar nodes and
edges between the graphs to be compared. In particular, this measure outputs
the similarity values along with the corresponding mappings, which can be the
basis for adaptation [5] and which can be also used for explanation purposes.
The involved optimization problem can be solved in principle by applying A*
search, which is theoretically able to find the optimal mapping. However, in
practical applications with large graphs, the search space can become so large
that it must be limited, thus trading optimality against efficiency. To overcome
this performance issue during retrieval, several two-step MAC/FAC retrieval
approaches [9,5,10] have been proposed, which reduce the number of expensive
similarity computations by using an efficient pre-selection of cases. A recent ap-
proach by Hoffmann et al. [8] shows promising results in approximating graph
similarities with siamese graph neural networks. In this paper, however, we fol-
low a different route of research as we aim at improving the efficiency of each
single similarity computation by speeding-up the A* search. We do so by re-
organizing the search space and by proposing a better-informed heuristic that
guides the search. In total, four complementary improvements are described and
evaluated systematically.

The following section 2 introduces the graph representation and briefly sur-
veys approaches to graph similarity before we describe the A*-based similarity
measure to be improved. Section 3 presents the improvements for the measure
while section 4 investigates the performance impact in an experimental evalua-
tion. Finally, we summarize the paper and discuss future work.

2 Background

2.1 Semantic Graphs

Based on the definition of semantic workflow graphs [2], we consider a semantic
graph as a quadruple G = (N, E, S, T ). The graph elements are defined by a
set of nodes N and a set of edges E ⊆ N × N . S : N ∪ E → Σ associates to
each graph element a semantic description from a semantic metadata language
Σ while T : N ∪ E → Ω associates to each graph element a type from Ω. While
types are assumed to be disjoint, semantic descriptions can be organized in a
hierarchy. Figure 1 gives an example of a semantic workflow graph representing a
sandwich recipe. The graph consists of three different types of nodes and edges,
which can be distinguished by the different shapes and lines in the figure. The
workflow node (diamond) represents general information about the recipe, task
nodes (rectangles) represent preparation steps, and data nodes (ovals) represent
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Fig. 1. Example of a semantic workflow graph

ingredients. Furthermore, control-flow edges (solid lines) define the execution
order of preparation steps, data-flow edges (dotted lines) specify the consumption
and production of ingredients, and part-of edges (dashed lines) link all nodes to
the workflow node. Semantic descriptions of the nodes are written in grey boxes.
In this implementation, we treat the semantic descriptions in an object-oriented
fashion and use the local-global principle [1,6] for assessing simΣ .

Following the CBR paradigm, the underlying retrieval problem that requires
computing graph similarities is the following: For a given query graph Gq, the
best-matching graph Gc ∈ CB is being searched in a repository of graphs CB,
which is referred to as case base. For this purpose, Gq is compared with each
case graph Gc and rated with a similarity sim(Gq, Gc) ∈ [0, 1].

2.2 Approaches to Similarity Assessment of Multi-Labeled Graphs

In general, numerous similarity measures for graph-based representations have
been proposed in the literature [12]. For semantically labeled graphs and par-
ticularly for graphs with multiple labels (also referred to as multi-attributed
graphs), considerably less approaches exist. For such graphs, approaches based
on greedy search [7] and Tabu search [14] have been proposed. However, due to
the incomplete search only local optima are found and the similarity error can be
hardly controlled. Particularly tailored for large graphs, Zhu et al. [15] presented
an index-based approach combined with a greedy algorithm and Shemshadi et
al. [13] presented an approach based on graph simulation. The focus is put
on graphs with textual labels instead of composed semantic descriptions. More
recently, Li et al. [11] proposed an embedding approach with graph neural net-
works, which was extended by Hoffmann et al. [8] to support composed semantic
descriptions. Like any other supervised learning approach, a sufficiently large
number of training data is required. To reduce the manual effort, further un-
supervised approaches to graph similarity are required that allow for assessing
graph similarity values in an appropriate and efficient manner.

Most approaches have in common that they restrict the semantic annotations
of graph elements to attribute-value representation. More importantly, they do
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not allow for knowledge-intensive similarity assessments of semantic descriptions.
Ontañón [12] recently identified, among others, scalability and interpretability
as open research questions. While graph embeddings using neural networks is
a promising research direction to address scalability, interpretability remains a
major challenge.

2.3 Semantic Graph Similarity following the Local-Global Principle

To assess the similarity between two graphs Gq = (Nq, Eq, Sq, Tq) and Gc =
(Nc, Ec, Sc, Tc), we follow the approach proposed by Bergmann and Gil [2] which
allows to consider the structure as well as the semantics of the graphs. The pro-
posed similarity measure applies the local-global principle [1,6] to allow for as-
sessing the similarity in a flexible manner. It enables the comparison of the graph
elements w.r.t. their semantic descriptions by knowledge-intensive local similar-
ity measures. For this purpose, a similarity function simΣ : Σ × Σ → [0, 1] is
modeled as part of the knowledge-engineering process such that semantic de-
scriptions of nodes and edges from query and case can be compared w.r.t. their
similarity. Depending on the choice of Σ, this similarity can itself be assessed
following the local-global principle. This is particularly useful for semantic de-
scriptions represented in an object-oriented fashion. Thus, available similarity
knowledge for the graph elements can be considered in a flexible manner and
the computed similarity values are transparent and interpretable.

Following the local-global principle, the global similarity during graph com-
parison is obtained by an aggregation function combining the local similarities
of related graph elements from Gq and Gc. Based on this principle, the node
similarity simN (nq, nc) for nq ∈ Nq and nc ∈ Nc is defined as follows:

simN (nq, nc) =
{

simΣ(Sq(nq), Sc(nc)) if Tq(nq) = Tc(nc)
0 otherwise

Edge similarity does not only consider the semantic description of the edges
being compared, but also the nodes linked by the edges. We define edge similarity
simE(eq, ec) for eq ∈ Eq and ec ∈ Ec as follows:

simE(eq, ec) =

 FE

simΣ(Sq(eq), Sc(ec)),
simN (eq.l, ec.l),
simN (eq.r, ec.r)

 if Tq(eq) = Tc(ec)

0 otherwise

e.l denotes the left node of an edge e and e.r denotes its right node. The function
FE is an aggregation function that combines the semantic similarity between the
edges and the similarities of the connected nodes to the overall similarity value.
In our implementations we define FE as follows: FE(se, sl, sr) = se · (sl + sr)/2.

The similarity simm(Gq, Gc) between Gq and Gc is defined with respect to a
legal mapping m : Nq ∪Eq → Nc ∪Ec that satisfies the following five constraints:

Tq(nq) = Tc(m(nq)) Tq(eq) = Tc(m(eq))
m(eq.l) = m(eq).l m(eq.r) = m(eq).r ∀x, y m(x) = m(y) → x = y
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Please note that such a legal mapping m is type-preserving, i.e., only nodes
and edges of the same type can be mapped. The mapping is injective, which
means that a case node or edge can only be the target of one query node or
edge, respectively. Moreover, the mapping can be partial, i.e., not all nodes and
edges of the query must be mapped to case elements and can be mapped to
null instead. For instance, null mappings are required if more query elements
exist than case elements of a certain type. An edge can only be mapped if the
nodes that the edge connects are also mapped to the respective nodes that the
mapped edge connects. For a given mapping m, a second aggregation function
FG is defined that combines the individual similarity values for mapped elements:

simm(Gg, Gc) = FG

(
(simN (n, m(n))|n ∈ Nq ∩ Dom(m)),
(simE(e, m(e))|e ∈ Eq ∩ Dom(m)), |Nq|, |Eq|

)
Dom(m) denotes the domain of m. The parameters |Nq| and |Eq| enable FG to
consider partial mappings, i.e., nodes and edges not mapped should not con-
tribute to the similarity. In our implementation we define FG as follows:

FW ((sn1, . . . , sni), (se1, . . . , sej), nN , nE) = sn1 + · · · + sni + se1 + · · · + sej

nN + nE

The overall similarity sim(Gq, Gc) is determined by the mapping with the
highest similarity:

sim(Gq, Gc) = max{simm(Gq, Gc)| m is legal mapping}

2.4 A*-based Similarity Search

To find the best mapping m, Bergmann and Gil [2] proposed to apply an A*
search. The A* algorithm maintains a priority queue Q of partial solutions for
this optimization problem. In such a solution Sol, Sol.m represents the current
mapping and Sol.N and Sol.E are the not yet mapped nodes and edges of the
query graph. In each step, the first (best) solution in the queue first(Q) is
removed. If it represents a completely expanded solution, A* terminates. Other-
wise, the solution is expanded, i.e., the next query graph element xq is selected
and all legal mappings to the case graph elements are determined. For each such
mapping, a new solution extended by this additional mapping is created and
inserted into the priority queue. If more query elements exist than case elements
of a certain type, an additional null mapping must be added as a new solution
to allow for partial mapping. The total amount of required null mappings cor-
responds to the difference between the query and case elements. The order in
which the solutions are inserted into the priority queue is essential for A*. There-
fore, each solution Sol is evaluated by a function f(Sol) = g(Sol) + h(Sol) and
the value is stored in the solution as Sol.f . In the traditional formulation, A*
aims at minimizing cost, hence g(Sol) are the cost already occurred and h(Sol)
is a heuristic estimation function for the remaining cost to the solution. As we
apply A* for maximizing the similarity value, g(Sol) is the similarity of the
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current mapping Sol.m, while h(Sol) is a heuristic estimation of the additional
similarity that can be achieved through the mapping of the remaining nodes
and edges. Solutions are inserted into the priority queue in decreasing order of
f(Sol). Consequently, the solution with the highest f -value is expanded first.
To achieve an admissible heuristic estimation function, which ensures that the
optimal solution is found, h(Sol) must be an upper bound of the similarity.

A∗Search(Gq = (Nq, Eq, Sq, Tq), Gc = (Nc, Ec, Sc, Tc))
Q = insert(initSolution(), Q);
while first(Q).N ̸= ∅ ∧ first(Q).E ̸= ∅ do

Q = expand(Q);
end

return first(Q).f ;

initSolution()
Sol0.N = Nq ; Sol0.E = Eq ; Sol0.m = ∅; Sol0.f = 1;

return Sol0;

expand(Q)
Sol = first(Q); Q = rest(Q); xq = select(Sol);
forall xc ∈ Nc ∪ Ec such that the mapping Sol.m ∪ (xq, xc) is legal do

Q = insert(newSolution(Sol, xq, xc), Q);
end
if Tq(xq) requires null mapping w.r.t. Sol.m then

Q = insert(newSolution(Sol, xq, ∅), Q);
end

return Q;

newSolution(Sol, xq, xc)
Sol′.N = Sol.N \ {xq}; Sol′.E = Sol.E \ {xq};
Sol′.m = Sol.m ∪ (xq, xc);
Sol′.f = simSol′.m(Gq, Gc) + h(Sol′);

return Sol′;

The overall A* search algorithm is sketched above. The function first(Q)
returns the first solution in the priority queue, rest(Q) removes the first solu-
tion and returns the rest and select determines the next graph element xq to be
mapped, which can be either a query node or edge. The function insert(Sol, Q)
inserts a solution Sol into Q according to the f -value. During insert, the maxi-
mum size of the queue can be restricted to prune the search space for improving
the performance on the risk of losing global optimality.

Bergmann and Gil [2] presented two A* variants named A*I and A*II with
different estimation and select functions. In this paper, we build up upon A*II :

hII(Sol) =
∑

x∈Sol.N∪Sol.E

(
max

y∈Nc∪Ec

{simN/E(x, y)}
)

· 1
|Nq|+|Eq|

selectII(Sol) =
{

eq ∈ Sol.E if eq.l /∈ Sol.N ∧ eq.r /∈ Sol.N
nq ∈ Sol.N otherwise

simN/E(x, y) refers to the corresponding similarity function simN or simE . It
was shown that A*II clearly outperforms A*I since it uses a more informed
admissible heuristic. While hI uses the maximum similarity of 1.0 as estimation
for each not mapped query graph element, hII determines the best possible sim-
ilarity a mapping can achieve independent of the mapping of the other elements.
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This can be computed in advance and cached. The select function chooses ele-
ments randomly according to an internal id and selects edges as soon as possible.
As mapping edges requires the linked nodes being mapped already, it requires
only a low number of new solutions to be added to the priority queue. Only one
solution is created, if between nodes there is at most one edge per type. Hence,
the size of the queue does not increase while the accuracy of f(Sol′) increases.

3 Improving the A*-based Similarity Search

We now present four complementary improvements for enhancing the perfor-
mance of the A*-based similarity search. For illustration purposes, we refer to
the simple example graphs Gq and Gc depicted in Fig. 2. The graphs consist of
two different types of nodes and edges (depicted by different shapes and lines).
The semantic descriptions consist of symbolic values with Σ = {a, b, c} and we
assume simΣ to be defined as a binary measure returning 1 if symbols are equal
and 0 otherwise. Moreover, edges and diamond shaped nodes do not have se-
mantic descriptions and thus match with a similarity of 1. Please note that the
similarity assessment is asymmetric. Hence, sim(Gq, Gc) = 6

9 although Gc is
sub-graph isomorphic with Gq, i.e., sim(Gc, Gq) = 1.

\label{fig:simple_graphs}
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Fig. 2. Example of a query and case graph

3.1 Search Space Reduction

According to the definition of semantic graphs, a query Gq = (Nq, Eq, Sq, Tq)
and a case graph Gc = (Nc, Ec, Sc, Tc) consist of different types Tq ⊆ Ω and
Tc ⊆ Ω of nodes and edges. A legal mapping of graph elements is type-preserving.
Consequently, we can add element pairs (xq, xc) to the initial solution for which
only one legal mapping exists. By this means, the search space can be reduced
prior to the A* search. Regarding the graph representation, it is advisable to
assign different types to graph elements whenever their semantic descriptions are
disjoint. To implement this improvement, we redefine initSolution as follows:

initSolution2()
Sol0 = initSolution();
forall (xq, xc) ∈ Nq × Nc such that the mapping is legal ∧ (∄x′

q : x′
q ̸= xq

∧ Tq(x′
q) = Tq(xq)) ∧ (∄x′

c : x′
c ̸= xc ∧ Tc(x′

c) = Tc(xc)) do
Sol0 = newSolution(Sol0, xq, xc);

end
return Sol0;
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In the given example, types Tq(n14) = Tc(n23) are equal and the mapping
of the nodes is the only possible legal mapping. Consequently, it can be added
to the initial solution. This improvement also comes into effect for the semantic
workflow graph representation depicted in Fig. 1 since such graphs have a single
workflow node linked to all other nodes via part-of edges. During the mapping
process, the already mapped workflow node enables that a part-of edge can be
always mapped subsequent to the mapping of another node.

3.2 Adaptive Mapping Orientation

If the query graph is larger than the case graph, we assume that the mapping
process can be made more efficient by orienting the mapping towards the case
elements. This is referred to as case-oriented mapping. Please note that the di-
rection of the mappings and the similarity assessment is unaffected, i.e., mapping
and similarity are still oriented from the query elements to the case elements.
The mapping mode is selected prior to the search according to the following rule:

mapping_mode =
{
case-oriented if |Nq ∪ Eq| > |Nc ∪ Ec|
query-oriented otherwise

To implement case-oriented mapping, the algorithm is modified as follows:
The collections of not mapped elements are initialized with the case graph el-
ements Sol0.N = Nc and Sol0.E = Ec instead of the query elements. In each
expansion step (invocation of expand), the select-function identifies the next
case element to which all query elements are mapped:

selectIIC
(Sol) =

{
ec ∈ Sol.E if ec.l /∈ Sol.N ∧ ec.r /∈ Sol.N
nc ∈ Sol.N otherwise

New solutions are created for each legal mapping and the f -value is updated
using the following modified heuristic estimation function:

hIIC
(Sol) =

∑
y∈Sol.N∪Sol.E

(
max

x∈Nq∪Eq

{simN/E(x, y)}
)

· 1
|Nq|+|Eq|

When creating new solutions in case-oriented mapping mode, in contrast to
the query-oriented mapping mode, null mappings (∅, xc) are not meaningful to
the final mapping and thus are not added to the solution. Instead, it is checked
whether all case elements have been considered by the search. In this event, a
function completeSolution is invoked that adds a null mapping (xq,∅) to the
solution for each not mapped query element xq. Following this approach, all
required null mappings are added in a single step to the same solution. Conse-
quently, fewer solutions are added to the priority queue and we expect that the
computation time as well as the memory consumption is reduced. The effect of
the adaptive mapping orientation can be demonstrated with the given example.
Here, the required null mappings (n11,∅), (e11,∅), and (e14,∅) are postponed
in case-oriented mapping mode. The modified functions are as follows:
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initSolutionC ()
Sol0.N = Nc; Sol0.E = Ec; Sol0.m = ∅; Sol0.f = 1;

return Sol0;

expandC(Q)
Sol = first(Q); Q = rest(Q); xc = selectC (Sol);
forall xq ∈ Nq ∪ Eq such that the mapping Sol.m ∪ (xq, xc) is legal do

Q = insert(newSolutionC (Sol, xq, xc), Q);
end
if Tc(xc) requires null mapping wrt. Sol.m then

Q = insert(newSolutionC (Sol, ∅, xc), Q);
end

return Q;

newSolutionC (Sol, xq, xc)
Sol′.N = Sol.N \ {xc}; Sol′.E = Sol.E \ {xc};
if xq ̸= ∅ then

Sol′.m = Sol.m ∪ (xq, xc);
end
if Sol′.N = ∅ ∧ Sol′.E = ∅ then

completeSolution(Sol′);
end
Sol′.f = simSol′.m(Gq, Gc) + h(Sol′);

return Sol′;

3.3 More Informed Heuristic

A well-informed admissible heuristic h(Sol) is crucial for the efficiency of the A*
search. Since h(Sol) must be an upper bound of the estimated similarity, a more
informed heuristic overestimates the similarity to a lower degree. Higher accuracy
is beneficial since it decreases the possibility that less expanded solutions are
ranked higher in the priority queue. Consequently, the search becomes more like
a depth-first search and expanding the same element is less often required.

We propose a novel heuristic hIII(Sol) that, in contrast to heuristic hII(Sol),
considers the current mapping Sol.m for determining the maximum possible sim-
ilarity a new mapping can achieve. It excludes mappings from the estimation that
do not lead to a legal mapping when added to Sol.m. Hence, this heuristic is
computationally more expensive since all independent mappings must be com-
puted in advance and the heuristic must be updated with respect to the current
mapping Sol.m. However, since the heuristic is more accurate, we expect that
partial solutions with non-optimal (but legal) mappings are ranked lower in the
priority queue and hence the overall performance of the search is improved. We
define the heuristic estimation function as follows:

hIII(Sol) = 1
|Nq|+|Eq| (

∑
x∈Sol.N

max
y∈Nc

{simN (x, y)| ∄n ∈ Sol.N : (n, y) ∈ Sol.m}

+
∑

x∈Sol.E

max
y∈Ec

{simE(x, y)| ∄e ∈ Sol.E : (e, y) ∈ Sol.m

∧∄(x.l, n) ∈ Sol.m : y.l ̸= n
∧∄(x.r, n) ∈ Sol.m : y.r ̸= n
∧∄(n, y.l) ∈ Sol.m : x.l ̸= n
∧∄(n, y.r) ∈ Sol.m : x.r ̸= n})

An isolated mapping (x, y) between nodes/edges is invalid and thus not con-
sidered for estimating the similarity of x, if another node n/edge e was already
mapped to y. With respect to isolated edge mappings, it is required that if the
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left/right node of the edge was already mapped to another node n, the mapping
must correspond with the node mapping that is prerequisite for the edge map-
ping. For the given example graphs, a mapping (n11, n21) ∈ Sol.m invalidates
e.g. the isolated mappings (n12, n21) and (e15, e23). Regarding case-oriented
mapping mode, hIII(Sol) is slightly modified analogous to hIIC

(Sol).

3.4 Heuristic-based Element Selection

Besides the heuristic, the selection of the next element to be mapped is es-
sential for the A* search and has a significant impact on the performance. If
the next element is mapped with a high similarity, the expanded solution is
ranked in front of the priority queue. For this reason, we propose to use the es-
timated similarities from the heuristic. The new select function first selects the
element whose best-possible mappings are rated with the highest similarity. If
several of such elements exist, the element is chosen with the smallest number
of best-possible mappings. If still several elements remain, the element is cho-
sen randomly according to an internal id analogous to selectII(Sol). In contrast
to selectII(Sol), edges are not preferred over nodes. However, if an edge x is
selected with respect to the new criteria but the linked nodes have not been
mapped yet (x.l ∈ Sol.N ∨ x.r ∈ Sol.N), such nodes are mapped first. The
select-function is formalized as follows:

selectIII (Sol)
x = selecthIII

(Sol.N ∪ Sol.E);
if x ∈ Sol.E ∧ x.l ∈ Sol.N then

return x.l;
else if x ∈ Sol.E ∧ x.r ∈ Sol.N then

return x.r;
end

return x;

Here, selecthIII
(Sol.N ∪ Sol.E) determines the best graph element (node or

edge) to be mapped with heuristic hIII regarding the criteria mentioned above.

4 Experimental Evaluation

The evaluation is structured in two experiments. In the first experiment, we
evaluate the performance of the A* variants without pruning the solution space.
Consequently, the measures ensure that the obtained graph similarity is the
global optimum. We compare the A* variants regarding the computation time
and the maximum number of solutions in the priority queue as an indicator of
memory consumption. In the second experiment, we enable pruning and com-
pare the best performing A* variant from the first experiment with the baseline
approach A*II. We compare the computation time and the similarity error for
different size limits of the priority queue.

The experiments are conducted with a set of 40 sandwich recipes represented
as semantic workflow graphs3 such as the graph depicted in Fig. 1 showing the
3 For implementation details, please refer to [3].
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smallest workflow graph from the case base. In both experiments, all pairwise
similarities are computed between the graphs (i.e., each graph is used once as
query) resulting in a total of 1600 computations. The similarity values of the
graph pairs range from 0.0758 to 1.0 with an average of 0.4331. Table 1 shows
the quantities of graph elements in the case base. Even though the workflow
graphs have a particular structure such as a single workflow node, we note that
the improvements are largely independent of specific graph characteristics.

Table 1. Workflow graph elements in the case base

size workflow nodes task nodes data nodes part-of edges control-flow edges data-flow edges
min 30 1 4 4 8 3 10
median 72 1 8 12 20 7 24
max 148 1 20 17 37 19 54
avg 77 1 10 10 20 9 27

We implemented all A* variants in Java for the ProCAKE framework [3].
Each similarity computation is run on a new Java Virtual Machine (JVM) in-
stance to minimize the effects of JVM runtime optimizations. The experiments
are run on a computer with a 2.1 GHz processor and each JVM may use a
maximum of 80 GB of memory, which does not constitute a restriction.

4.1 Similarity Computation with Ensured Optimality

In the first experiment, we investigate the impact of each single A* improvement
and their combination on the performance of the similarity computation. Per-
formance is assessed with respect to the computation time and the maximum
number of solutions in the priority queue as an indicator of memory consump-
tion. We test the following hypotheses:

H1a Search Space Reduction improves the avg. performance of A* variants.
H1b Adaptive Mapping Orient. improves the avg. performance of A* variants.
H1c The avg. performance of A*III variants (using the more informed heuristic)

is better than that of A*II variants.
H1d Heuristic-based Element Selection improves the avg. performance of A*III

variants.

In this experiment, the solution space is not pruned by limiting the priority
queue size, which ensures that a global optimum is found. However, a timeout
of 120 seconds is set for each computation. We tested all combinations of the
various improvements, resulting in a total number of 12 A* variants. A*II is
used as baseline and can be extended with Search Space Reduction (R) and
Adaptive Mapping Orientation (M). The new A* variant A*III that uses the
more informed heuristic can be combined with improvements R, M, and also
with Heuristic-based Element Selection (S).

Figure 3 shows the number of computations (line chart) completed before
the specified timeout of 120 seconds was reached. It also shows the maximum
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Fig. 3. Performance of A* variants

size of the priority queue (box plots) recorded in that time span for each of
the 1600 computations. With no A* variant all computations could be finished.
Comparing the baseline A*II with the fully supplemented variant A*III-RMS,
three times more computations completed and the maximum size of the priority
queue is about ten times smaller. The numbers indicate that A*III variants
expand considerably less solutions resulting in much smaller priority queues and
hence in a lower memory consumption than that of the A*II variants. The 436
computations completed with A*II took 13.07 seconds and required a maximum
queue size of 1,175,633 in average while the 1298 computations completed with
A*III-RMS took 8.78 seconds and a maximum queue size of 96,714 in average.
Consequently, the baseline measure is clearly outperformed.

The results also indicate that each improvement positively affects the per-
formance of A* variants. Search Space Reduction (R) considerably increased
the number of completed computations for A*II variants but does not affect
or slightly reduces that of A*III variants. However, it reduces the maximum
queue size for every A* variant. Adaptive Mapping Orientation (M) has a higher
positive impact on both A*II and A*III variants regarding the completed com-
putations at the cost of an increased queue size. However, in combination with
Heuristic-based Element Selection (S) it reduces the queue size. Heuristic-based
Element Selection (S) itself results in an increased number of completed compu-
tations and reduced maximum queue size for the A*III variants. All in all, we
see hypotheses H1a to H1d confirmed.

4.2 Similarity Computation without Ensured Optimality

The second experiment addresses the similarity computation with a pruned so-
lution space. Pruning becomes particularly necessary for large graphs due to the
high memory consumption of the A* search. As pruning may cause a similarity
error, we investigate the impact of different queue size limits on the accuracy in
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this experiment. We expect that the error decreases for higher limits of the pri-
ority queue. We compare the best A* variant from the previous experiment, i.e.,
A*III-RMS, with the baseline A*II regarding the computation time and simi-
larity error for different queue size limits. We formulate the following hypotheses
for the experiment:

H2a The accuracy of A*III-RMS is higher than that of A*II for a similar avg.
computation time.

H2b The memory consumption of A*III-RMS is lower than that of A*II for a
similar avg. computation time.

For each query graph, we store the highest similarity value obtained from all
computations as the global optimum for assessing the similarity error. We do
not set a timeout since computation time is restricted by the queue size limit.

A*II A*III-RMS
1 100 10k 20k 100k 1 10 1k 2k 10k

\label{fig:result2}
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Fig. 4. Similarity error and computation time for different queue size limits

Figure 4 depicts the results for selected queue size limits. The box plots show
the similarity errors (top left) and the computation times (top right) for different
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queue size limits. For A*III-RMS with queue size limit of 10.000 four extreme
outliers (with a maximum value of 642) are cut off. The graphs below plot the
similarity error over the computation time (bottom left) and the computation
time over the queue size limit (bottom right).

It can clearly be seen, that A*III-RMS outperforms A*II regarding the sim-
ilarity error in terms of accuracy for similar average computation times. Con-
sequently, H2a is confirmed. It is apparent that the similarity errors of A*II
deviate more strongly than that of A*III-RMS, independent of the tested queue
size limits. For a queue size limit of one, A*III-RMS has an average similar-
ity error of 0.01 and a maximum error of 0.9 which seems acceptable for some
use cases particularly in consideration of the computation times and errors with
larger queue size limits. We observed that the queue size limit of A*III-RMS
must be chosen about five to ten times smaller than that of A*II for achieving
a similar computation time in average. Consequently, A*III has a considerably
lower memory consumption than A*II, which confirms H2b. The computation
time increases proportionally to the queue size limit. For A*III-RMS, the com-
putation time increases more strongly for larger queue sizes in contrast to A*II.

5 Conclusion and Future Work

In this paper, we presented an improved similarity measure for assessing the
similarity of semantic graphs whose labels are composed in an object-oriented
manner. For such graphs, the efficient similarity computation is particularly
challenging since their similarity is affected by structure and semantics. The
measure discussed in this paper is based on A* search and is particularly suited
for case-based reasoning as it can be combined with knowledge-intensive local
similarity measures and outputs similarities and corresponding mappings usable
for explanation and adaptation. We presented four complementary improvements
that are suitable for enhancing the computation time and memory consumption
of the similarity computation. We also demonstrated that the improvements
considerably increase the accuracy of computations with pruned solution space.

In a next step, we plan to add an additional parameter to the measure for
completing the A* search within a certain period or with limited memory con-
sumption. Based on the given limits, the A* search is performed with minimal
pruning that can be intensified dynamically if required. In future work, we also
plan to integrate this measure with different retrieval approaches. For instance,
Bergmann and Gil [2] presented a parallelized A*-based retrieval approach that
enables to compute the top k graphs from the case base without fully computing
the similarity for all graphs. To this end, the search process is parallelized for all
graphs and the search terminates, when at least k searches have terminated and
when the similarity of the k-best graphs is higher than all f-values of the remain-
ing computations. The integration of the improved measure with MAC/FAC
retrieval approaches seems also promising for performing knowledge-intensive
similarity computations in an efficient manner.
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