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Abstract. The data provided by cyber-physical production systems
(CPPSs) to monitor their condition via data-driven predictive mainte-
nance is often high dimensional and only a few fault and failure (FaF)
examples are available. These FaFs can usually be detected in a (small)
localized subset of data streams, whereas the use of all data streams in-
duces noise that could negatively affect the training and prediction per-
formance. In addition, a CPPS often consists of multiple similar units
that generate comparable data streams and show similar failure modes.
However, existing approaches for learning a similarity measure generally
do not consider these two aspects. For this reason, we propose two ap-
proaches for integrating expert knowledge about class or failure mode
dependent attributes into siamese neural networks (SNN). Additionally,
we present an attribute-wise encoding of time series based on 2D con-
volutions. This enables that learned knowledge in the form of filters is
shared between similar data streams, which would not be possible with
conventional 1D convolutions due to their spatial focus. We evaluate our
approaches against state-of-the-art time series similarity measures such
as dynamic time warping, NeuralWarp, as well as a feature-based rep-
resentation approach. Our results show that the integration of expert
knowledge is advantageous and combined with the novel SNN architec-
ture it is possible to achieve the best performance compared to the other
investigated methods.

Keywords: Siamese Neural Network · Predictive Maintenance · Ex-
pert Knowledge · 2D Convolution · Time Series Similarity

1 Introduction

The current transition to Industry 4.0 transforms production environments into
complex cyber-physical production systems (CPPSs) consisting of several sepa-
rate cyber-physical systems (CPSs) [20]. Each CPS contains a large number of
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different sensors and actuators, whereby instances of the same type can occur
multiple times in the CPPS. The data recorded by these sensors is enriched with
the control commands of the actuators and provides the opportunity to monitor
the current condition in order to detect fault and failures (FaFs). For prognostic
and health management in a CPS, Lee et al. [19] proposed a similarity-based
approach which is generally favored if numerous run-to-failure (R2F) recordings
are available [14].

The architecture of siamese neural networks (SNNs) is able to learn a similar-
ity measure by distinguishing training examples of similar pairs from dissimilar
ones, even if only few examples are available [10]. However, recent surveys on
data-driven predictive maintenance (PredM) approaches [8,12,24] do not con-
sider the use of SNNs, although they are well suited for additional challenges,
such as the need of explainability. To the authors’ best knowledge, only Zhang
et al. [27] applied SNNs on vibration data of ball bearings for similarity-based
PredM. While effects resulting from long-term degradation processes can be well
monitored at the component level, sensor faults or incorrect control commands
due to unexpected situations which are typical for CPSs [21] can only be an-
alyzed by considering the CPPS as a whole. Thus, unlike monitoring a single
component, a large number of data streams from the CPPS are potentially rele-
vant. Still, for identifying a specific failure mode, only a relatively small, specific
subset is useful. Although SNNs or deep learning, in general, have their strength
in learning expressive representations from high-dimensional data, this requires
a large amount of examples for each failure mode, which are often not avail-
able for most FaFs. However, an engineer is usually able to identify (or at least
restrict) the relevant data streams w.r.t. a failure mode, based on general knowl-
edge about the design and mechanics of the CPS. We expect that integrating
this knowledge can support an SNN during training and inference. For this rea-
son, we investigate how to infuse prior expert knowledge about the detectability
of a failure mode in the form of a restriction on relevant data streams of sen-
sors and actuators into an SNN model, which is also the main contribution of
our work. Therefore, we present two approaches for infusing manually defined
expert knowledge and compare them with various state-of-the-art methods for
time series similarity-based classification on a data set generated by a physical
model factory that imitates relevant characteristics of a CPPS.

In the following section the foundations regarding distance-based time series
classification with different representations, similarity measures, and SNNs for
PredM are presented. Then, our approaches for infusing expert knowledge are
introduced in Sect. 3. Next, we evaluate them against various other approaches
on a self-created CPPS research data set. Finally, Sect. 5 concludes the results
and discusses future work.
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2 Foundations and Related Work
2.1 Distance-based Time Series Classification
In a distance-based time series classification scenario, let Dtrain{(Xi, yi)} be our
labeled training data set with pairs consisting of an input Xi ∈ Ra×t in the form
of a multivariate time series with a attributes (streams) and length t as well as its
respective label yi ∈ {1, ..., c}. The classification of a k-nearest neighbour (NN)
classifier with k = 1 for an input Q ∈ Dtest is the label yj of Xj which has the
minimal distance from all examples in Dtrain. More formally,

yj with j = argmin
i

{d(Q,Xi)} , (1)

where d(·, ·) is a distance function. Since simple measures – such as any form
of Minkowski distance functions – cannot handle the alignment of contraction
and expansion along the time axis, typically elastic measures such as dynamic
time warping (DTW) [4] are used on raw time series data [15]. Therefore, a
distance matrix between each time step of Q and Xi is computed in order to
find a path with the minimal cumulative distance under some constraints. It
has been shown that a k-NN classifier combined with DTW results in the best
accuracy on various benchmark data sets [1]. This method can also be used
for establishing a similarity-based PredM approach by using the k most similar
NNs between a time window Q and a stored time series Xi from previous R2F
recordings to estimate the condition of a system. For example, Mai and Chevalier
[22] developed a complex similarity function that includes DTW for time series
comparison to support diagnosis, corrective actions, and remaining useful life
estimations in case of an abnormal event.

2.2 Feature-based Time Series Representation
A well-known problem of DTW, however, is its relatively bad run time behaviour,
making it unsuitable for analyzing sensor data of a CPPS in real time. For this
reason, it is often preferable to transform the input from the problem space
into a more suitable representation in terms of its utility for solving the given
problem [3]. A common transformation of time series consists of the automatic
computation of a large number of predefined features and the selection of sig-
nificant ones, e.g. through usage of the TSFresh algorithm [6]. We denote this
representation as fTSF (X) ∈ Rn where n is the number of computed features
for a time series X. This type of representation intends to take advantage of the
fact that similar time series are represented by similar features, resulting in a
small distance between similar instances. For example, kurtosis and root mean
square are typical features for monitoring the vibration of bearings and higher
values are generally associated with a worse condition.

Other work has shifted to the usage of deep neural networks to learn f in
order to extract relevant features that result in an expressive representation
of a time series. Typically, autoencoders (AEs) are used to generate a latent
representation H = fAE (X) that fuses and compresses multi-sensory data and
is learnt by reconstruction of its input [24].
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2.3 Siamese Neural Networks for Time Series Similarity

In general, an SNN architecture [5] consists of two deep neural networks that
both share the same parameters θ as shown in Fig. 1. These networks are referred
to as an encoder that extracts (deep) features H = fSNN (X) from an input X
by a neural network fSNN (·). In contrast to AEs, an encoder fSNN (·) learns
its parameters θ by distinguishing training examples of similar (Xq, Xp) from
dissimilar (Xq, Xn) pairs of time series as shown by Pei et al. [23].

A pair is considered to be semantically similar y = 1, if both instances are
of the same class and otherwise y = 0 for dissimilar pairs. The encoder of the
SNN fSNN (·) is trained to produce discriminative representations for Xq, Xp, Xn

by minimizing the distance between positive pairs d(fSNN (Xq), fSNN (Xp)) and
maximizing the distance between negative pairs d

(
fSNN (Xq), fSNN (Xn)

)
. Usu-

ally, the distance measure d(·, ·) can be any simple distance measure such as a
Minkowski or cosine distance. The loss is usually computed for a mini batch of
size b which consists of half positive and half negative pairs. Thereby, binary
cross entropy (BCE) is used as follows to compute the loss value:

L(Xa, Xb, y) = −1

b

∑(
y ∗ log(sim(Xa, Xb)) + (1− y) ∗ log(1− sim(Xa, Xb))

)
,

(2)
where Xa, Xb are two time series and sim(·) is a function transforming the
distance produced by the SNN into a similarity and y ∈ {0, 1} is the labeled
similarity of this pair.

2.4 Related Work

The closest to our work regarding SNNs is the approach by Zhang et al. [27] for
bearing fault diagnosis using limited training data. Related to the integration of
expert knowledge into deep neural networks is the work of Huang et al. [13] that
replicates the hierarchical structure of a production system by the way layers
are connected in a neural network. Somewhat related to our idea of manually
restricting attributes is the work of Guan et al. [11], in which they included an
additional branch to a deep neural network that only focuses on an excerpt of
medical images since the most relevant information is located in a small part of
the overall image. However, they do not use a manual restriction approach, which
means that there is no guarantee that irrelevant noise from the whole image is
excluded and that the focus of the analysis is performed on the most relevant
excerpt. In contrast to approaches that transform time series into images as
input for applying 2D convolutions [8], we use the approach proposed by Assaf
and Schumann [2] so that each filter is applied only to one data stream at the
same time.

3 Infusing Expert Knowledge About Attribute Relevance

If the amount of data per class is large, a neural network is expected to find
meaningful relationships between input and output by itself. However, if the
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Fig. 1. Typical SNN Architecture

amount of examples per class is relatively small, we expect that – as previously
shown on images by Lapuschkin et al. [18] – spurious or artifactual correlations
learned from training data can negatively influence the usefulness in real-world
applications where these are not present. With a manually defined attribute re-
striction – referred to as MAR throughout this paper – we want to minimize the
influence of noise through irrelevant attributes and support the SNN to focus
on the relevant aspects. Our two proposed approaches are driven by the idea
that each failure mode has only a small subset of relevant attributes, i.e. sensor
data streams, that are necessary for determining its existence. We assume that
manually defining this subset and excluding irrelevant attributes should improve
performance, robustness and trust of a deep learning model. Moreover, this pre-
defined subset can be further specified into: i) attributes that contain directly
measurable patterns which indicate a FaF and ii) attributes that are necessary
to establishing the relevant context in the sense of broader situational awareness,
e.g. actuator commands and additional sensors. With regard to Turney’s classi-
fication of attributes [25], we can think of i) as primary ones, ii) as contextual
ones and the excluded ones as irrelevant ones.

In the following, we present two approaches that are developed with the pur-
pose to infuse expert knowledge about the attribute relevance by forcing neural
networks to use only relevant attributes. Our first approach is more generally
applicable regarding the used types of neural network layers and it applies the
MAR at the input level, whereas the second one is based on a specialized archi-
tecture to apply MAR at a later stage in the architecture.

3.1 Infusing Expert Knowledge at the Input Level

This approach – hereafter referred to as MS-SNN – is based on the assumption
that, firstly, many failure modes have common characteristics and, secondly, that
prior expert knowledge allows them to be grouped regarding their relevant at-
tributes. More precisely, each label yi ∈ {1, ..., c} with similar relevant attributes
is merged into a group gj ∈ {1, ..., l} so that l ≪ c. Then for each group gj , a
separate SNN encoder fSNN ,gj (·) is trained only receiving attributes as input



6 Klein et al.

that are manually defined as relevant for each label yi of group gj . Each encoder
can be of a different type (e.g. LSTM, CNN) and uses different hyperparameters
based on the characteristics of group gj . To estimate the current state during
inference, the class yi of the example with the highest similarity of all SNNs is
selected. In our experiments, the labels are categorized into 8 groups based on
the union of relevant features and for each group a CNN as encoder with FC
layers is used.

3.2 Infusing Expert Knowledge With 2D CNNs

In this section, we present a modification of the SNN architecture as our second
approach – hereafter referred to as CNN2D + MAR – to infuse expert knowledge
about the attribute relevance at a deep level. This SNN architecture is designed
to ensure two objectives: firstly, preserve the attribute dimension as long as
possible to enable attribute-wise access at deep layers. Secondly, to ensure that
only manually defined attributes are considered for generating the encoding and
assessing the similarity. The modifications conducted on input, encoder, and
distance measure w.r.t. a standard SNN are presented below.

Input The normal input of a time series X1 ∈ Ra×t is extended by x2 ∈ {0, 1}2a
such that x = {X1, [x21 , x22 ]}. This additional input is based on the training
example’s label yi and consists of two vectors x21 , x22 ∈ {0, 1}a indicating the
manually defined attribute’s relevance for a failure mode. The vector x21 defines
which attributes should be compared in a univariate way, whereas x22 defines
which attributes are taken into account for defining the context which ensures
that also multivariate aspects are considered.

Encoder The encoder consists of two distinct branches. The first branch en-
codes time series and the second one learns a weighting value z between both
outputs of the first branch.

The first branch applies 2D convolutions (convs) to X1 ∈ Ra×t. Therefore, l
layers of 2D convs with a filter size of (1 × k) followed by batch normalization
and a ReLU activation function are applied. The filter size causes that each filter
is applied on k time steps of 1 attribute at the same time. The lth layer uses a
(1× 1) convolution to reduce the number of generated feature maps to 1 which
means that we finally get a feature map M l ∈ Ra×ty at layer l where ty is the
length of the time dimension. If strides s > 1 are used in the convs, then ty < t
holds, which corresponds to a compressed time dimension. Traditionally, the
conv layers are followed by one or more fully connected (FC) layers to connect
the different features (from the feature maps). Since we want to obtain a separate
feature representation for each attribute, so-called time-distributed FC layers are
applied attribute-wise which means that each row mi

l ∈ M l is processed by the
same FC layers. Finally, this results in our first output H1 ∈ Ra×n where n is
the number of units of the last FC layer. The purpose of this transformation
is to obtain a representation for each attribute i which corresponds to the row
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vector of H1, denoted as hi
1 ∈ Rn, and enables the use of an attribute-weighted

distance measure.
A remaining deficiency of H1 is that this representation does not consider

patterns that occur across different attributes which is typically computed by
1D convs. Especially in CPPSs where a lot of failures can only be determined
in its context, i.e. in relation of several data streams, this perspective on the
data is important. For this purpose, H1 is multiplied element-wise (⊙) with the
relevance vector x22 ∈ {0, 1}a, which serves as a gate so that only features of
relevant attributes are considered for generating a “contextual” representation.
This “contextual” representation h2 = g(H1⊙x22) is obtained by processing the
gated input with several FC layers that are referred to as g(·). This results in the
second output h2 ∈ Rj where j is the size of the last FC layer. In summary, the
first branch generates two outputs of which the first H1 allows an association
to the input attributes and the second h2 only considers the attributes that are
manually defined as relevant.

The second branch is responsible for a further output z, which is used to
weight the distances resulting from both previous outputs based on the failure
mode of the training example used for comparison. Therefore, z is obtained by
z = k(x22) where k represents several FC layers. The last layer consists of one
neuron with a sigmoid activation function so that z ∈ [0, 1]. Since both encoders
receive the same input x22 based on the known training example, both encoders
generate the same value for z.

Distance The distance between a pair (a, b) using the output of the encoder
fSNN (X1, [x21 , x22 ]) = {H1, h2, z} where H1 ∈ Ra×n, h2 ∈ Rj , z ∈ [0, 1] is
calculated as follows:

d(a, b) = z ∗ d1
(
H1,a,H1,b

)
+ (1− z) ∗ d2

(
h2,a, h2,b

)
. (3)

The distance function d1(·, ·) is an attribute weighted distance and would be
calculated for the Manhattan distance as follows:

d1 (H1,a,H1,b) =
1

r

r∑
i=1

|wi ∗ (Hi
1,a −Hi

1,b)| , (4)

with
∑r

i=1 wi = 1 and r = a ∗ n is the number of entries of output matrix H1.
The weighting is based on x21 of the training example and restricts the distance
calculation to only relevant attributes. Since the amount of attributes to be
considered can vary greatly, we normalize each weight wi =

1
m×n where m is the

sum of relevant attributes multiplied by the length n of each attribute vector hi
1.

In the case of an irrelevant attribute, we use wi = 0 so that this distance does
not influence our assessment.

For the Manhattan distance, d2(·, ·) would be calculated as follows:

d2 (h2,a, h2,b) =
1

j

j∑
i=1

|(hi
2,a − hi

2,b)| . (5)
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Since the input h2,a and h2,b are vectors that represent the current context,
d2(·, ·) has the purpose of a contextual distance measure that considers the mul-
tivariate aspects. This corresponds to the typically used distance measure for
SNNs, but with the difference that its input h2,a and h2,b is exclusively gener-
ated of features from attributes that have been manually classified as relevant.

4 Evaluation

4.1 Fischertechnik Model Factory Data Set

We use the Fischertechnik (FT) factory model presented in [16] for the simu-
lation of a CPPS. It consists of five workstations (WSs) such as a sorting line
with colour recognition, a high-bay warehouse, two processing stations and a
vacuum gripper robot, which are connected to each other in order to simulate
the processing of workpieces. Each of these WSs is made up of FT parts, which
means that actuators and sensors of the same type occur multiple times within
the factory. A detailed description of the relation and structure is available in
form of an ontological knowledge base [17]. The raw data is generated by mul-
tiple runs of this factory model, in which one (or no) failure mode is simulated
at a time. During each run, 61 attributes are recorded, representing sensor data
streams and actuator control commands. The data set contains 29 classes that
correspond to different failure modes, components and conditions, which can be
summarized into four groups:

– False signals from control sensors are simulated over a period of approx. 10
s continuously or intermittently for light barriers and position switches at
five different positions.

– Wear is simulated by artificially induced vibrations on two conveyor belt
motors with intermittent or exponential progression over random durations.
For the simulation of an exponential degradation progression, a state devi-
ating from normal is classified as degraded first and then critical before the
failure occurs, while the intermittent failure mode simulation only has the
critical phase. The motors are monitored by three-axis acceleration sensors.

– Leakages are simulated in pneumatic systems, which are monitored by dif-
ferential pressure sensors.

– Other FaFs such as a broken tooth of a gear or slippage on the conveyor belt
were fabricated. Additionally, incorrect transport processes of the vacuum
gripper due to a missing workpiece were simulated.

For processing the raw data into examples, a sliding window approach with a
time window of 4 s, an overlap of 1 s, and a sampling rate of 4 ms is used, resulting
in a shape of X ∈ R61×1000. Our training data set consists of 25,550 examples,
of which 24,908 are labeled as a normal state and 642 labeled as FaFs. The test
data set is composed of 18 classes and consists of 3,389 examples, of which 2907
are labeled as normal state and 482 labeled as FaFs. The splitting into both
sets was done in a way that all examples labeled as FaF are separated based
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on a complete R2F recording, so that all examples of single R2F are either only
included in the test or training data set. A detailed overview of the classes and
their distribution in the data sets can be found in appendix A.

The selection of relevant attributes for each failure mode is based on expert
knowledge with an average of about 4 attributes per FaF label for x22 and
around 1.4 for x21 . In our case, this knowledge was obtained by examining the
(visualized) data streams. Alternatively, this could be acquired by means of a
failure mode effect analysis (FMEA) [7]. For example, to monitor a leakage in our
pneumatic systems, we have identified its differential pressure and the control
parameters of their valves and compressors as relevant attributes. For the healthy
state (no failure simulated), the union of features selected for all failures modes
is used, resulting in a count of 41 used for x21 as well as x22 .

4.2 Approaches for Measuring Time Series Similarity

Baseline Methods We report three baseline methods that are not based on
neural networks. The first one combines a feature-based representation fTSF (X1)
with 27,969 significant features with the Euclidean distance. The other variants
are based on DTW using a FastDTW implementation, whereby i) DTW is di-
rectly applied to X1 or ii) X1 is reduced to the relevant attributes according to
x22 of the labeled training example before DTW is applied.

Siamese Neural Networks As part of the evaluation, we use three encoder
types, namely a standard CNN with 1D convs, 2D convs with a filter size of
(1× k) and one with LSTM layers. Each conv operation used valid padding and
is followed by batch normalization and processed by a ReLU activation function.
A dropout regularization function is added as final layer. For all CNN2D variants
(except CNN2D + MAR) an additional 1D conv operation with 61 filters, a filter
size and stride of 1 on the input X1 is used to obtain a feature map m ∈ Ra×t.
This feature map contains (contextual) information across a time step which
is then concatenated with X1 so that the input into the 2D conv encoder is
∈ Ra×t×2. Additionally to these core encoders, we considered two extensions
which are applied subsequently. First, FC layers which are typically used in
CNNs to merge different features into a feature vector that is then passed to
the distance measure. Second, the approach of NeuralWarp (NW) [9] that uses
an additional feed forward neural network for similarity determination between
each time step of two time series based on their deep representations instead
of a standard distance measure. In both extensions, the input to each FC layer
is batch normalized and ReLU is used as activation function, except the last
neuron of NW, which uses a sigmoid activation function.

The configurations which (to the best of our knowledge) yield the highest
performance are shown in Tab. 1.
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Table 1. Models Selected for Evaluation

CNN1D CNN1D FC CNN1D NW CNN2D CNN2D  FC CNN2D + MAR LSTM NW

Batch Size 64 64 64 64 64 64 16

Learning Rate 0.001 0.00001 0.001 0.001 0.001 0.001 0.001

Dropout 0.05 0.05 0.05 0.05 0.05 0.1 0.05

Layer Type Conv1D Conv1D Conv1D Conv2D Conv2D Conv2D LSTM

Units per Layer 256, 64, 32 256, 64, 32 256, 64, 32 128, 64, 16, 1 128, 64, 16, 1 128, 64, 16, 1 128, 64, 32

Filter Size 7, 5, 3 7, 5, 3 7, 5, 3 5,5,3,1 5,5,3,1 5,5,3,1 -

Stride 2, 2, 1 2, 2, 1 2, 2, 1 2,2,2,1 2,2,2,1 2,2,2,1 -

FC-Layer - 1024, 768, 512 - - 1024, 768, 512
(128, 64, 32)           

(256, 128, 64)
-

N
W Units per Layer - - 32, 16, 1 - - - 32, 16, 1

D
is

.

Distance MH MH NW MH MH
Weighted MH & 

MH
NW

T
ra

in
in

g
E

n
co

d
er

4.3 Experimental Setup and Training Procedure

Across all variants, a batch size of 64 is used, meaning that 128 (64 positive and
64 negative) pairs are processed in each batch. Due to high VRAM requirements,
the batch size for the LSTM encoder has to be reduced to 16 though. The
composition of batches follows the approach that each one should contain one
example of all 29 classes and reflect the data distribution. For this reason, 32 pairs
are sampled according to the data set distribution, which therefore mostly leads
to pairs of healthy condition while the remaining 32 pairs are selected equally
distributed over all classes. Furthermore, if not stated otherwise, the Manhattan
(MH) Distance is applied.

The selection of hyper parameters, such as layer size, learning and dropout
rate, is performed manually by expert knowledge by means of achieving a steep
loss during the first 300 epochs of training. We use early stopping to determine
the termination of the training process if there is no improvement to the loss in
an interval of i) 500 or ii) 1000 epochs. Among all models saved every 10 epochs
in a single training, the one with the best loss is selected. To avoid overfitting of
the CNN2D + MAR variant due to the attribute restrictions, the dropout rate
is increased from 0.05 to 0.1 in contrast to CNN2D and CNN2D FC. In addition
to the early stopping described above, a fixed limit of 0.03 is set for the loss and
the number of epochs is limited to a maximum of 2500.

The evaluation is conducted on a partial section (case base) of the train-
ing data set, which is identical for all experiments. It contains a maximum of
150 examples per class that are randomly selected and only reached by the class
representing the healthy state. In total, the case base therefore consists of 792 ex-
amples. All approaches are evaluated using the k-NN method with k = 1, which
is consistent with the procedure of related work [1,9,15].

4.4 Predictive Maintenance Related Quality Measures

In order to examine the suitability of our approaches for the application in
PredM, we propose several quality measures that are shown in Tab. 2. First of all,
we consider the standard measures Precision (Prec.), Recall (Rec.) as well as the
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F1-Score (F1) as weighted average based on the number of examples per class. In
the context of PredM, it makes sense to take a closer look at the normal condition
class because too many false positives would lead to unnecessary inspections
and too many false negatives would result in undetected FaFs. Therefore, we
report the F1-Score of this class – referred to as Health F1 – as major criterion
for distinguishing between normal and faulty states and indicating the overall
utility of an approach.

A disadvantage of these standard measures, however, is that they do not con-
sider the value of a wrong prediction. In the case of the real world application
of PredM, a wrong classification could still be useful for a human maintenance
engineer in order to locate the source of an issue, even if the specific failure mode
is classified wrongly. For this reason, we report self-defined quality measures that
evaluate the usefulness of a prediction based on the factors location, condition
and failure mode. Location (Loc.) assesses the position in the factory at which
a deviation from the normal state is detected. Condition (Cond.) distinguishes
between different stages of the fault progression and is divided into normal, de-
graded, critical and failure, whereby a subset of these is used for different failure
modes. The diagnosis (Diag.) score represents the similarity between different
ways in which a component may fail. In case of a label that diverges from nor-
mal condition, the quality of each factor is calculated as

∑n
i ui

n where n is the
number of test examples labeled as FaFs and ui is the predefined usefulness for
humans corresponding to the label of the test example i. If the classified class is
equal to the label of example i then ui = 1, otherwise ui ∈ [0, 1). Moreover, the
measure H+F is an extension of the previously described measures by also con-
sidering examples with normal condition in the calculation described above. The
resulting three factors are averaged to provide a more comprehensive measure.

4.5 Results
For each SNN, we perform multiple training runs with variation of the loss func-
tion and early stopping limit (as per section 4.3). Using an additional validation
set for parameter optimization and model selection was not possible due to the
restricted amount of available examples of failures. Hence, we selected the pa-
rameter combination with the highest overall Health F1 score (as per Sect. 4.4.
If these scores are equal, the decision is made according to the overall F1 score,
since it weights precision and recall equally. In most cases the variants with BCE
as loss and an early stopping limit of 1000 epochs are selected (except Neural-
Wrap (CNN1D) with a limit of 500 epochs and Neural Warp (LSTM) with a
mean squared error as loss function), although there are only slight deviations
in the scores of the other combinations. In contrast, the CNN2D + MAR SNN
showed larger deviations for the performance measures, which we could not re-
solve by hyperparameter tuning, so the average of six consecutive training runs
is reported. The aim was to ensure that an appropriate reference point for com-
parison is used, which does not overstate the results but also does not disadvan-
tageously reflect them. Our evaluation results are shown in Tab. 2.

In the evaluation we especially focus on the consideration of two hypotheses:
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H1 The integration of expert knowledge about the relevance of individual at-
tributes (MAR) can improve similarity-based classification if for each failure
mode only a small subset of attributes is relevant.

H2 Learning methods (e.g. SNNs) are superior compared to static methods (e.g.
DTW) because of their ability to adapt to the problem domain.

We can confirm H1 with the exception of the MS-SNNs approach. Both DTW
+ MAR and CNN2D + MAR provide better results compared to their respec-
tive variants without attribute relevance knowledge. The results also confirm H2
since approaches without learning capabilities (1st block of Tab. 2) generally
achieve worse results than those with learning capabilities (2nd and 3rd block of
Tab. 2), again with the exception of MS-SNNs. Another disadvantage of these
static approaches is their poor run time behaviour, which reduces their applica-
bility in real-time applications. For instance, in our computing environment the
classification of an example with DTW takes about 18.63 s (using multithreaded
computation) and is therefore slower than our 2D-CNN + MAR approach (1.36
s/example, using a single NVIDIA Tesla V100 GPU) by a factor of about 13.7.

Furthermore, the results show that joint learning of all classes performs sig-
nificantly better than using several specialized SNNs (MS-SNNs approach). It
can be assumed that the larger number of classes to be delimited requires the
learning of more distinct representations. Overall, our proposed CNN2D + MAR
architecture is able to achieve the best performance by leveraging expert knowl-
edge about the attribute relevance. For validating the significance of our results
we used a non-parametric stratified shuffling test [26] with p < 0.01 for Prec.,
Rec. and F1 against CNN1D FC and CNN2D FC, since these also achieve high
Health F1 values of 0.97. Considering the results of the six trained CNN2 + MAR
models, a significance is shown especially in comparison to the CNN1D FC. The
best two trained models show significantly better results compared to the other
two models for all metrics. Only the recall is not sufficiently significant compared
to CNN2D FC.

Furthermore, CNN2D and CNN2D + MAR provide the best results for lo-
cating fault locations (see Loc. score, Table 2). A possible explanation might be
that the deep representations used for similarity comparisons always retains the
attribute dimension. The CNN2D + FC variant loses this link in the FC layer,
which could explain the weaker performance for this measure.

5 Conclusion and Future Work

This research has shown that the integration of expert knowledge about relevant
attributes (data streams) can enhance the performance of similarity-based deep
learning approaches for high-dimensional time series classification. Additionally,
restricting the similarity-based classification to manually defined attributes could
help to improve confidence into the predictions. Furthermore, a general suitabil-
ity for applying 2D convolutions on multivariate time series consisting of data
streams with similar characteristics has been shown. Our proposed model, which
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Table 2. Evaluation Results of Different Time Series Similarity Measures and Standard
Deviation of Multiple Runs for CNN2D + MAR

Approach Health Failure H+F Overall
F1 Diag. Loc. Cond. Prec. Rec. F1

Feature-based + Eucl. 0.76 0.48 0.44 0.59 0.62 0.81 0.57 0.67
DTW 0.85 0.70 0.66 0.74 0.76 0.87 0.70 0.77
DTW + MAR 0.94 0.44 0.39 0.57 0.87 0.85 0.84 0.84
CNN1D 0.96 0.73 0.64 0.76 0.91 0.89 0.85 0.87
CNN1D FC 0.97 0.66 0.55 0.73 0.92 0.88 0.87 0.87
NeuralWarp (CNN1D) 0.96 0.70 0.64 0.79 0.91 0.87 0.84 0.85
NeuralWarp (LSTM) 0.95 0.71 0.59 0.77 0.90 0.88 0.83 0.85
CNN2D 0.95 0.75 0.76 0.79 0.90 0.89 0.85 0.87
CNN2D FC 0.97 0.72 0.59 0.75 0.92 0.89 0.87 0.88

CNN2D + MAR 0.97
±0.00

0.78
±0.04

0.76
±0.05

0.84
±0.03

0.93
±0.01

0.91
±0.01

0.88
±0.01

0.89
±0.01

MS-SNN + MAR 0.68 0.60 0.51 0.76 0.54 0.86 0.47 0.60

combines these two approaches, is able to achieve the best results compared to
all other methods.

Future work could examine the usefulness of our attribute-wise time series
representations for transfer learning purposes, e.g. for comparing the same fail-
ure modes between different instances of similar components. Furthermore, it
could be investigated whether the integration of more knowledge through the
use of different 2D CNNs based on sensor data properties, such as sampling rate
or attribute value range, could further enhance performance. Finally, to promote
further research of time series analysis for PredM, we provide our implementa-
tion, data set as well as supplementary resources at
https://github.com/PredM/SiameseNeuralNetwork.
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A Dataset

Table 3. Overview of the classes and their distribution contained in the data set. Note
that the case base used for evaluation, as described in Sect. 4.3, contains up to 150
examples from the training data set for each class, i.e. 150 for no_failure and every
example of all other classes. The ”txt” part of the label indicates the location of the
component, i.e. the CPS, where the failure was simulated.

Failure mode Train Test Total
no_failure 24908 2907 27815
txt15_conveyor_failure_mode_driveshaft_slippage... 11 0 11
txt15_i1_lightbarrier_failure_mode_1 7 0 7
txt15_i1_lightbarrier_failure_mode_2 6 18 24
txt15_i3_lightbarrier_failure_mode_2 8 5 13
txt15_m1_t1_high_wear 82 88 170
txt15_m1_t1_low_wear 112 79 191
txt15_m1_t2_wear 42 58 100
txt15_pneumatic_leakage_failure_mode_1 11 0 11
txt15_pneumatic_leakage_failure_mode_2 12 0 12
txt15_pneumatic_leakage_failure_mode_3 10 0 10
txt16_conveyor_failure_mode_driveshaft_slippage... 11 12 23
txt16_conveyor_big_gear_tooth_broken_failure 13 11 24
txt16_conveyor_small_gear_tooth_broken_failure 3 0 3
txt16_i3_switch_failure_mode_2 9 0 9
txt16_i4_lightbarrier_failure_mode_1 31 42 73
txt16_m3_t1_high_wear 42 26 68
txt16_m3_t1_low_wear 12 20 32
txt16_m3_t2_wear 63 43 106
txt17_i1_switch_failure_mode_1 17 15 32
txt17_i1_switch_failure_mode_2 24 11 35
txt17_pneumatic_leakage_failure_mode_1 24 9 33
txt17_workingstation_transport_failure_mode_wou... 20 18 38
txt18_pneumatic_leakage_failure_mode_1 11 9 20
txt18_pneumatic_leakage_failure_mode_2 27 10 37
txt18_pneumatic_leakage_failure_mode_2_faulty 11 8 19
txt18_transport_failure_mode_wout_workpiece 6 0 6
txt19_i4_lightbarrier_failure_mode_1 9 0 9
txt19_i4_lightbarrier_failure_mode_2 8 0 8
Total 25550 3389 28939
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