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Abstract The production and manufacturing industries are currently
transitioning towards more autonomous and intelligent production lines
within the Fourth Industrial Revolution (Industry 4.0). Learning Facto-
ries as small scale physical models of real shop floors are realistic plat-
forms to conduct research in the smart manufacturing area without de-
pending on expensive real world production lines or completely simulated
data. In this work, we propose to use learning factories for conducting
research in the context of Business Process Management (BPM) and In-
ternet of Things (IoT) as this combination promises to be mutually ben-
eficial for both research areas. We introduce our physical Fischertechnik
factory models simulating a complex production line and three exem-
plary use cases of combining BPM and IoT, namely the implementation
of a BPM abstraction stack on top of a learning factory, the experience-
based adaptation and optimization of manufacturing processes, and the
stream processing-based conformance checking of IoT-enabled processes.

Keywords: Cyber-Physical Production Systems · Factory Simulation
Models · Business Process Management · Industry 4.0 · Digital Twins

1 Introduction

The production and manufacturing industries are undergoing major changes
with machines, products, materials, and humans becoming increasingly inter-
connected via information technology to form the industrial Internet of Things
(IoT)–a process known as Industry 4.0 [11]. Among others, these developments
promise more efficient and flexible production processes, optimized supply chains,
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reduced downtimes and maintenance efforts for machines as well as cost reduc-
tions [23]. To enable the development of new concepts and prototypes in the
context of Industry 4.0, openly available repositories and interfaces for access-
ing machine data and control functionality in real world settings are required.
However, the majority of current machines and production lines are closed sys-
tems not allowing to conduct research due to high costs of downtimes and setup
processes as well as safety and security concerns [18]. To remedy this situation,
related work usually resorts to simulated artificial data from production environ-
ments (Digital Twins [5]) or to expensive high-end laboratory setups with real
production machines (e. g., the SmartFactoryKL4). While the latter is infeasible
for most research institutions in academic contexts, working with artificial data
often does not completely reflect the actual physical properties of a production
environment, especially w. r. t. runtime behavior and ad-hoc interactions with
the physical world [6]. Learning Factories are emerging as suitable platforms for
future oriented research and education [1] combining the advantages of both ap-
proaches in a Cyber-Physical Production System (CPPS) [18]. Being small scale
physical models with a sufficient number of sensors and actuators for simulat-
ing real world industrial IoT environments, learning factories allow for flexibly
conducting research on Industry 4.0 concepts and running experiments at much
lower costs while maintaining the transferability of results to real smart factories.

In this paper, we present three use cases using a learning factory as physical
simulation model of a CPPS to conduct research in the context of BPM. The
application of concepts and technologies from the BPM domain in industrial
IoT promises various advantages, among others, an easy and flexible integration
and programming of hardware, events, services and humans on a process-oriented
level as well as the usage of a wide range of process analysis techniques developed
by the process mining community. However, apart from mutual benefits also new
challenges arise with the combination of BPM and IoT [8]. With this work, we
will address a subset of these challenges linked to the combination of process and
event-based systems, the adaptation of processes to deal with new situations, and
the application of IoT for process analysis–all in the context of smart factories.

2 The Fischertechnik Factory Simulation Model

We use a physical simulation model consisting of components developed by Fis-
chertechnik (FT)5 as testbed for research in BPM and Industry 4.0. Such physical
models are referred to as Learning Factories [1] and used for education, train-
ing, and Industry 4.0 research (e. g., in [26,20,9]) enabling the development and
evaluation of research artifacts in a protected environment before moving to real
world production scenarios. The custom factory model we use6 simulates a com-
plete production line at low costs (<15,000 EUR) consisting of two shop floors
that are linked for the exchange of workpieces as shown in Fig. 1. Each shop
4 https://smartfactory.de/
5 https://www.fischertechnik.de/en/simulating/industry-4-0
6 https://iot.uni-trier.de
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floor consists of 5 identical machines: a sorting machine with color detection,
a multi-processing station with an oven and a milling machine connected by a
workstation transport, a high-bay warehouse, and a vacuum gripper robot. Ad-
ditionally, the first floor has a punching machine and a human workstation and
the second floor a drilling machine including stations for pickup and delivery.
Each shop floor is equipped with 13 light barriers, 16 switches, and 3 capacitative
sensors for control of the actuators comprising 16 motors, 4 compressors, and
8 valves. The machines are enhanced with sensors mounted on moving parts,
motors, and compressors for condition and pressure monitoring for predictive
maintenance [9]. Moreover, RFID and NFC readers/writers are integrated into
the stations resulting in 28 communication points. This allows each workpiece
to be tracked and required manufacturing operations and parameters to be re-
trieved and adjusted during production. Furthermore, a camera is placed above
the two shop floors to track the workpieces. An additional environmental sen-
sor provides climate data (e. g., room temperature, humidity, illuminance, air
pressure). The workpieces used for simulating the production are small cylindric
blocks (height = ∼1.4 cm, diameter = ∼2.6 cm) of varying colors each equipped
with an NFC tag, which contains information regarding the individual work-
piece such as an identifier, the type (i. e., color), the current production state,
and timestamped production history. The sensors and actuators of the processing
stations are connected to Fischertechnik TXT controllers; 6 Raspberry PIs and
2 Arduinos are used for managing the additional sensors and the camera, which
are all linked via Ethernet to a central network switch. The embedded controllers
run C/C++ or Python code to control the sensors and actuators. An integrated
MQTT server publishes high-level factory data (e. g., machine states, order and
production states, environment and NFC readings). An external Apache Kafka
server provides more fine grained access to sensor data.

3 Related Work

Physical factory models are increasingly used to carry out Industry 4.0 research
and for education purposes. Primarily, two types of research environments can
be distinguished: small scale physical simulation models and full scale physical
production lines. The SmartFactoryKL and the LPS learning factory [20] at the
University of Bochum are examples of full scale physical manufacturing environ-
ments that are used for research and education. The learning factory AutFab of
the University of Applied Sciences Darmstadt [26] is another example for using
real production machines in this context. Disadvantages of these kinds of produc-
tion line setups are that basic experimental research is much more difficult and
expensive to carry out, since it requires profound knowledge about the machines;
the costs for acquisition, networking, maintenance, equipment, and operation are
high; and the simulation of errors is difficult and could lead to high costs if the
machines are damaged in this process. Therefore, small scale physical factory
simulation models are increasingly gaining attention in research and education
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Fig. 1. The Physical Factory Simulation Model.

as alternatives, e. g., the DBISFactory at the University of Ulm7, the Lego fac-
tory at the University of Vienna8, or the DFKI-Smart-Lego-Factory [21], all of
which are also partially used for conducting BPM research. In contrast to relying
on completely simulated data, these types of simulation models provide much
more realistic data and behavior, especially in a highly dynamic CPPS.

Related research addresses the application of BPM in smart environments
such as smart logistics [2,16], smart health [7] and emergency management [14],
smart homes [25] as well as smart factories [24,28,13,15]. The work by Mangler
et al. presents a general discussion of applying BPM technologies in the context
of Industry 4.0 [13]. An approach for IoT-aware process execution of industrial
maintenance processes is presented by Schönig et al. in [24]. They propose an
architecture to integrate IoT data into business processes to determine how and
when certain work steps should be carried out by production workers. Baumgraß
et al. present an architecture for event-driven process execution and monitoring
in smart logistics [2]. This is complemented by work of Meroni et al. showing
an artifact-driven approach to monitor business processes through real-world
objects [16]. Marrella et al. present the SmartPM system in [14], which is able
to detect deviations between physical and virtual environments during process
execution and resolve them using automated planning techniques. The system
is motivated by emergency management scenarios with structured processes and
corresponding ad-hoc exceptions. The PROtEUS system follows similar goals
7 https://www.uni-ulm.de/in/iui-dbis/forschung/laufende-projekte/dbisfactory/
8 https://wst.cs.univie.ac.at/research/projects/project/292/
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and approaches for enabling self-healing of processes in the smart home do-
main [25]. Wieland et al. discuss an approach for using situation-aware adaptive
workflows in the manufacturing domain with a corresponding Workflow Man-
agement System (WfMS) called SitOPT [28]. In addition to the normal workflow
model, situational workflow fragments are constructed that define which actions
should be performed in certain real world contexts to adapt the process.

Only a few related approaches discuss the integration of BPM and IoT in
the context of Industry 4.0. These works propose new concepts without provid-
ing comprehensive evaluations, especially not based on real world experiments
(e. g., [28,15,13,14]). If evaluations are conducted, mostly simulated data from
IoT is used, presumably due to high costs and effort w. r. t. hardware, setup, and
maintenance for running real world experiments in production environments.
At this point, learning factories may help to mitigate some of these issues and
facilitate research in the Industry 4.0 domain. Our research is based on real
world data obtained from interactions with the physical world via the physical
simulation models introduced in Sect. 2. These make it possible to identify and
discuss more realistic problems associated with the challenges presented in the
BPM-IoT Manifesto [8]. Furthermore, our work puts more focus on industrial
processes and their intelligent automation from a BPM point of view.

4 Use Cases for BPM-IoT Research

In this section, we describe three use cases for research in BPM based on physi-
cal factory simulation models that we are currently investigating. The presented
custom FT factory model thereby serves as testbed for research while the re-
search questions and new concepts are targeted to be more generic and also
applicable to other factory configurations and IoT settings.

4.1 Implementation of a Business Process Abstraction Stack

Problem Statement: Many complex IoT environments–including the FT fac-
tory described in Sect. 2–consist of a multitude of sensors, actuators, and com-
puting units. These components are usually programmed in low-level languages
and controlled by software close to the hardware with code (e. g., G code or
C code) running on embedded controllers (e. g., Programming Logic Controllers
(PLC) in industry), which limits flexibility and interoperability of components
to create more complex processes [18]. As with the FT factory only a few static
processes are “hardwired” in C code to demonstrate the functionality. Remote
access and a flexible composition of functionality into new (business) processes
or to adapt existing ones is not possible. An additional software stack is required
on top of the existing IoT components to raise the programming and research to
the abstraction level of business processes supported by a WfMS and with that
to exploit the potential of integrating BPM with IoT [8].
Research Challenges: Enabling the programming of a smart factory on the
level of business processes involves the selection of suitable hardware components
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(sensors/actuators) to detect events relevant for the process execution, e. g., to
monitor the production steps, workpieces, stock, and resources (C1 : Placing
Sensors in a Process-aware Way [8]). It also requires the investigation of the
micro-processes at the individual machines and stations as well as their inter-
connections to achieve an efficient and flexible production line (C6 : Managing
the Link between Micro-Processes [8]). This also means that static and coarse
grained “hardwired” processes have to be relaxed and detailed to achieve a more
flexible composition of smaller processes (C7 : Breaking Down End-to-End Pro-
cesses [8]). The FT factory is a perfect example of a complex IoT system, which is
both event-driven due to large amount of sensors and process-based (C13 : Bridg-
ing the Gap between Event-based and Process-based Systems [8]).
Approach: With the configuration of the FT factory described in Sect. 2, we
invested a significant amount of work to create a comprehensive and realis-
tic simulated production line with partial redundancy regarding machines as
well as a large number of sensors to monitor production stages, workpieces,
machines, and the environment. Fig. 2 shows our approach of introducing addi-
tional software layers to conduct BPM research using the factory. The individual
hardware components are controlled by software written in a low-level program-
ming language running on embedded controllers. We analyzed the data and
functionality of these devices, refined, grouped, and abstracted them from an
Object-Oriented Programming (OOP) point of view to create software compo-
nents in an OOP library that can be used for developing more complex programs
in higher level OOP languages. An excerpt of a machine class and the general
controller interface including relevant attributes and methods can be found in
Fig. 2. Furthermore, we added a web service layer on top of this OOP layer to
make the functionality (i. e., the machines’ methods) and data remotely accessi-
ble in a service-oriented (RESTful) architecture and via messaging systems such
as Apache Kafka. The developed web services were semantically enriched and
integrated into the domain ontology FTOnto [12], which contains formal manu-
facturing knowledge tailored to the FT factory [10]. These web services are the
basis for implementing business processes on top of the factory to model, enact,
and monitor processes with the help of a WfMS such as Camunda9 and thereby
enabling us to conduct BPM research in the context of Industry 4.0.
Example: An example for the business process-oriented abstraction is the im-
plementation of the mill functionality of a milling machine in the FT factory.
This machine consists of multiple actuators and sensors that have to be activated
in low-level function calls to the individual actuators (e. g., for the transport to
and from the machine). We abstracted these calls into a sub-routine, which is
now available as the mill method on the OOP layer and exposed via a service
on the Web Service layer. A Service Task modeled in BPMN 2.0 and executed
by the WfMS can be used to invoke this mill method via a web service.
Discussion: One of the most fundamental research activities associated with
creating such an abstraction stack is analyzing the functionality of available
sensors and actuators and grouping and abstracting them at a BPM-oriented

9 https://camunda.com/

https://camunda.com/
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Fig. 2. Hardware and Software Layers for BPM Research on Learning Factories.

level (C1, C13). As there is no generalizable approach for IoT environments here,
this process of abstraction should be done based on the actual requirements of the
users and domain considering trade-offs between high flexibility of processes with
a very fine grained abstraction level and loosing flexibility and expressiveness by
being more coarse grained (C6, C7). In the first case, modeling and configuration
of the individual processes requires higher efforts, in the latter case, process
modeling and implementation is simpler. The degree to which the proposed
software stack can be applied in real production environments has to be further
investigated as the hardware components of the factory (e. g., the embedded FT
controllers as simplified PLCs) are only partially suitable for industrial use and
may not fulfill safety and security related requirements.

4.2 Experience-based Adaptation and Optimization of Processes

Problem Statement: Production processes are often implemented in a rigid
manner lacking the flexibility to adapt to dynamic situations such as changed
customer demands and individualization or machine breakdowns [11]. When
processes cannot be executed as previously planned, constant re-planning and
optimization is required [22]. The integration of sensors and other IoT resources
in production environments opens new opportunities for process adaptations but
it needs to be investigated to what extent this data can be used for production
planning and adaptation as well as optimization of processes in real time.
Research Challenges: IoT-aware processes are highly context-sensitive and
IoT environments unstructured and dynamic (C5 : Dealing with Unstructured
Environments [8]). New situations can emerge in an ad-hoc manner that lead
to unanticipated exceptions during process execution requiring the currently ex-
ecuted process instance to be adapted to the new context (C12 : Dealing with
New Situations [8]). Furthermore, adaptations can also affect other process in-
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stances that may then have to be changed, too. Regarding IoT resources, several
autonomy levels exist from full supervision by a central unit to complete indepen-
dence of central control (cf. Edge Computing [7]). Thus, it must be decided what
autonomy level the individual resources in the FT factory should have, e. g., if
micro-processes of a machine can be performed independently of supervised con-
trol by a central unit (C9 : Specifying the Autonomy Level of Things [8]).
Approach: For adaptation and optimization of manufacturing processes, we in-
vestigate the use of Artificial Intelligence (AI) by combining widely used planning
techniques [22,15] with other experience-based learning methods. By combining
these methods, we expect a reduction of the computational and knowledge ac-
quisition efforts that are often very high for planning-based approaches due to
their use of comprehensive real world domain models (full observability assump-
tion). Process-oriented Case-based Reasoning (POCBR) [4,17] is examined as
an experience-based learning method that deals with the reuse of procedural
experiential knowledge. We use the Camunda WfMS in combination with the
Process-oriented Case-based Knowledge Engine (ProCAKE) [3], a system that is
tailored for developing POCBR applications (cf. Fig. 3). Production processes
can be modeled in BPMN 2.0 (see Sect. 4.1) using Camunda Modeler. During
execution of a process instance, the service tasks invoke the corresponding web
services that are semantically enriched to allow for verification of preconditions
before the activity is performed. ProCAKE detects state changes of the process
and adapts it according to the currently available resources and other executed
instances if necessary. Here, users can choose in an interactive way from several
adaptation options. The adapted process instances are sent back to Camunda
and continued. If several process instances require the same adaptations repeat-
edly, a migration to an evolved process schema may be necessary. To determine
the successful execution or failure of activities, the Complex Event Processing
(CEP) platform Siddhi10 is used, which processes IoT data from Apache Kafka
and deduces higher level events for the executed activities (cf. Sect. 4.3).

10 https://siddhi.io/

https://siddhi.io/
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Example: An example scenario could be a malfunction of the drilling machine,
which can be determined via sensors and inferred from the FTOnto domain
ontology [10]. As only one drilling machine is available in the two shop floors, a
process adaptation must be found. ProCAKE determines via the ontology that
one of the two milling machines could also be used to drill a hole due to the
semantic equivalence of the provided operations, which would also be chosen
as an alternative by a production worker. Another option may be that other
activities are executed first and the affected process step is relocated to a later
stage. In these cases, further process steps must be changed to transport the
workpiece to the respective machine. Other examples for this use case include
the resource-optimized allocation of orders to the individual machines to achieve
a specified goal such as energy, time, or cost optimization.
Discussion: How to capture and formalize the knowledge of production work-
ers and their unstructured environment is one of the fundamental challenges to
be addressed (C5). Using past successful process executions to learn possible
adaptations of process instances automatically to deal with new or similar al-
ready experienced situations (C12) seems to be promising [19]. In general, the
integration of humans both in the production process itself and in the appli-
cation of AI-based methods is challenging, e. g., explanations of automatically
executed adaptations should be meaningful and transparent for users. Another
research question is about the adaptation of simultaneously executed processes
within the factory. Production processes may concurrently access the same phys-
ical resources and are interrelated among each other. Thus, it is necessary that
adaptations of one process instance do not have negative effects on other pro-
cesses or that users are aware of these impacts. A fundamental technical question
in the FT factory is finding the right level of autonomy of IoT devices, which
are often resource constrained and therefore not capable of exhaustive computa-
tions. The calculation of possible adaptations is rather complex and in addition
to the execution of control commands not always feasible on such devices (C9).

4.3 Stream Processing-based Conformance Checking

Problem Statement: A WfMS may not always exist for monitoring and con-
trolling processes and individual activities. In addition, the implementation of a
BPM stack as described in Sect. 4.1 may not be feasible or possible due to high
costs and closed hardware/software interfaces of the individual devices. Thus,
third party engineers and machine setup workers have no influence on data
produced and interfaces provided to program the machines at a BPM-oriented
level. However, production processes, machines, and various quality-related as-
pects still have to be monitored and checked to guarantee the correct execution
of processes, also at a BPM level (cf. Conformance Checking [27]).
Research Challenges: Here, we investigate ways of integrating IoT sensor
data, CEP, and BPM technologies for analysis of process execution (C3 : Con-
nection of Analytical Processes with IoT; C13 [8]) even in settings without a
WfMS monitoring the execution of processes and activities. The data from IoT
sensors is used to check the conformance of process executions (C4 : Integrating
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IoT into the Correctness Check of Processes [8]) both in offline settings and also
at runtime (C14 : Improving Online Conformance Checking [8]).
Approach: Specific patterns and combinations of IoT data can be used to iden-
tify the start, stop, progress, and various other aspects and key performance
indicators related to the execution of business processes and activities. Despite
the absence of a WfMS for the standard configuration of the FT factory, we are
still able to identify the production processes at a BPM level–either based on
knowledge or on observations about the individual processes–and to model the
processes including activities, gateways, events, messages, resources, etc. The
activities can then be enriched by domain experts with IoT related event pat-
terns/queries that are used to detect execution related aspects (e. g., the start
and the successful completion of an activity). We use the Camunda WfMS to
model the production processes in BPMN 2.0 and associate Siddhi apps with the
individual activities. The CEP platform Siddhi is connected to the specified IoT
data sources and used for deriving higher level activity-related events based on
the event queries within the Siddhi apps. That way, the execution of individual
process and activity instances can be monitored and checked for conformance in
an online setting but also used for complementing process event logs.
Example: Fig. 4 shows the envisioned architecture of the conformance checking
system and its correlation with an example process from the FT factory. Each
activity is associated with a dedicated event processing app running on the
stream processing platform (here: Siddhi), which is connected to the FT factory’s
sensors via Kafka and/or MQTT. The apps contain one or multiple queries that
link sensor data from the factory using logical operators, mathematical functions,
aggregations, filters, time-based operations, etc. to identify the start and end of
an activity. Based on the raw IoT data (e. g., from light barriers, NFC/RFID
readers, production machines, cameras) and the queries defined in the apps,
complex events related to the execution of the process are derived, which are
then added to the process event log for the executed case or used to provide
direct feedback about conformance of the process instance.
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Discussion: Among the more fundamental questions of correlating IoT data
with process executions is finding the appropriate sensors, algorithms, and do-
main knowledge to create the correlation patterns, especially regarding activity
detection (C3, C4, C13). Available sensors may not provide sufficient informa-
tion to clearly identify activity executions resulting in uncertainties that need to
be dealt with during log creation and to enable conformance checking (C14) by
looking at the larger process context (e. g., previously executed steps). Also the
correlation of a detected activity to a specific process instance is challenging in
such a complex IoT environment with multiple instances running in parallel. We
expect this correlation of IoT data with process executions to be complementary
to existing techniques for (online) conformance checking and used for enriching
process event logs with aspects that can be measured through IoT.

5 Conclusion and Future Work

We presented our physical Fischertechnik factory simulation model as testbed for
conducting research in the context of Industry 4.0 based on the combination of
BPM and IoT. We introduced three exemplary generic research topics that we are
currently investigating: 1) the implementation of a business process abstraction
stack on top of the factory simulation model; 2) the experience-based adaptation
and optimization of manufacturing processes; and 3) the stream processing-based
conformance checking of IoT-based processes. By using physical factory models
as testbeds for evaluations, research is more realistic–but also more challenging–
than using artificial data in this kind of highly dynamic CPPS. The physical
factory models enable the validation and demonstration of developed research
artifacts in a protected environment. At the same time, this close-to-reality sim-
ulation of a real production line facilitates the transfer of developed concepts
into practice. In future work, we will further investigate the more fundamen-
tal research questions associated with the use cases and implement them. We
will also examine how the developed research artifacts can be applied to and
evaluated in large scale simulation models and real world shop floors.
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17. Minor, M., Montani, S., Recio-Garćıa, J.A.: Process-oriented Case-based Reason-
ing. Inf. Syst. 40, 103–105 (2014)

18. Monostori, L.: Cyber-physical Production Systems: Roots, Expectations and R&D
Challenges. Procedia CIRP 17, 9–13 (2014)

19. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer
(2018)

20. Prinz, C., et al.: Learning Factory Modules for Smart Factories in Industrie 4.0.
Procedia CIRP 54, 113–118 (2016)

21. Rehse, J.R., Dadashnia, S., Fettke, P.: Business process management for Industry
4.0 – Three application cases in the DFKI-Smart-Lego-Factory. it - Information
Technology 60(3), 133–141 (2018). https://doi.org/10.1515/itit-2018-0006

https://doi.org/10.1007/978-3-319-32156-1_5
https://doi.org/10.1007/978-3-642-34059-8_1
https://doi.org/10.1145/3012000
https://doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.5220/0007830700400050
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.5220/0010135900320043
https://doi.org/10.1145/2948071
https://doi.org/10.3233/AIC-170748
https://doi.org/10.1007/978-3-319-69035-3_21
https://doi.org/10.1515/itit-2018-0006


Physical Factory Simulation Models for BPM Research 13
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