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ABSTRACT

This paper presents a novel approach to shared control for an

assistive robot by adaptively mapping the degrees of freedom (DoFs)

for the user to control with a low-dimensional input device. For

this, a convolutional neural network interprets camera data of the

current situation and outputs a probabilistic description of possible

robot motion the user might command.

Applying a novel representation of control modes, the network’s

output is used to generate individual degrees of freedom of robot

motion to be controlled by single DoF of the user’s input device.

These DoFs are not necessarily equal to the cardinal DoFs of the ro-

bot but are instead superimpositions of those, thus allowingmotions

like diagonal directions or orbiting around a point. This enables

the user to perform robot motions previously impossible with such

a low-dimensional input device.

The shared control is implemented for a proof-of-concept 2D

simulation and evaluated with an initial user study by comparing

it to a standard control approach. The results show a functional

control which is both subjectively and objectively signi�cantly

faster, but subjectively more complex.
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1 INTRODUCTION

The general understanding of autonomy and technical systems is

something akin to using a computer program to independently

control the actuators of a machine or robot to solve a given task.

While this might be appropriate for the default industrial scenario,

it stands in vast contrast to applications of assistive robots, such

as the Kinova Jaco [17, 20], which aim to (re-)enable a person to

perform activities of daily living themselves, instead of having them

performed by another person or program. However, the manual

control of such devices can be very exhausting and taxing for the

user due to the complexity of the system and the user’s impairments,

thus generating a necessity for easier and more accessible methods

of control [5].

Some previous work has been done with the aim to automate or

ease speci�c activities of daily living [6, 8, 24]. However, a study in-

vestigating the performance and satisfaction of spinal cord injured

users of a wheelchair-mounted robotic arm with regards to manual

and autonomous control modes showed a higher satisfaction for

manual mode users, even though the autonomous mode required

less e�ort [16]. The resulting call for more �exible interfaces co-

incides with �ndings by [21], who show the users’ requirement

to personalise their interaction such that personal standards and

social norms are met. A situation with robotic assistance should

be as similar as possible to a respective situation without impair-

ments. Therefore, one should be very careful when applying fully

automated solutions to such assistive scenarios.

The alternative to a system being controlled by a computer is

usually to have it directly or indirectly controlled by a human

using a form of Human Computer Interface (HCI) with a keyboard,

joystick or similar input device. However, very few devices have

su�cient Degrees of Freedom (DoFs) to directly control a robot like

the Jaco and those that ful�l this speci�cation require a signi�cant

dexterity from the user. For most users of assistive robots, this poses

an impossible challenge due to their sicknesses or disabilities. In

order to use the remaining mobilities of a user, speci�c HCIs have

been developed [13, 19, 23, 23] which, due to the speci�cations and

limitations, mostly cannot compare to the default control interfaces

when it comes to their output DoFs. For example, the Jaco requires

at least seven DoFs (three for positioning, three for rotation, and

one for grasping), whereas input devices such as Eye-Trackers [23],

Chin- or Tongue-Mouses [10] only provide two. Even the robot’s

joystick only provides a maximum of three DoF to be controlled

at once, with buttons allowing to switch between di�erent control

modes (cf. [1, 13, 18]). An extensive literature review regarding

functionality and performance of assistive robots concluded in a

call to “develop a two-way user interface between higher dexterity
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[robots] that could be operated by fewer [DoFs] from end-users”,

whilst keeping the users in control, as desired [3].

Various forms of shared user control exist, where the systems

utilise a combination of input from the user and the output of a

computer program. For example, [25] initially lets the user control

only the translational DoFs of a robot arm, whilst automatically

handling rotation. Close to a de�ned target, the system starts blend-

ing the user input with an automated grasp approach based on

the user-de�ned position, until �nally applying a fully automated

grasp action. Based on a literature study on multiple systems using

shared control, [2] identi�es the detection of user intent as one of

the largest problems within this area and calls out for moreMachine

Learning (ML) in shared control approaches. Following this call,

[7] presents a shared control approach for an electric wheelchair

passing small doorways, where the user can activate a blend of

their commands with a pre-trained ML-generated control.
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Figure 1: Control pipeline for a user-controlled assistive ro-

bot

This paper presents a proof of concept for a novel variation of

shared control, where a Deep Learning (DL) based setup evalu-

ates the current situation and adaptively proposes a set of high-

dimensional DoFs of robot motion to be controlled by the user’s

low-DoF input device. Figure 1 shows the corresponding control

pipeline: Usually, the user-generated input D is directly mapped to

the robot-controlling input E (i.e. � is static), which enables the

user to control a single cardinal DoF of the robot (i.e. x-axis, y-axis,

z-axis, roll, pitch, yaw) with each DoF of their input device. In cases

where the input device has fewer DoFs than the robot control, the

user generally has the option to switch between pre-de�ned modes,

thus changing the mapping from input device DoF to robot control

DoF (i.e. exchange �). We break this static connection by using a

Convolutional Neural Network (CNN) to describe the probabilistic

distribution ~ of intended robot motion E given the camera data G

(i.e. the current situation). A Principal Component Analysis (PCA)

is applied to calculate a matrix � that adaptively maps the user-

generated input to the robot motion, thus portraying modes of

control.

The user stays in control; in particular a zero user command D

always results in no motion. This eliminates much of the safety

concerns of machine learning.

The presented approach enables the DL system not only to sug-

gest the set of cardinal DoFs but also superimpositions of those,

thus allowing motions previously impossible with a limited set of

input DoFs, such as diagonal paths, orbiting around a point in space

or approaching a goal at an angle (cf. Fig. 2). For this paper, the

proof-of-concept scenario is limited to a simulated 2D environment

with a robot de�ned by four cardinal DoFs (two positional, one

rotational, and grasping). Figure 2 shows the robot with cardinal

and adaptive DoFs, both represented by arrows.1

Figure 2: The simulated robot with two out of the four car-

dinal DoFs (left) and two adaptive DoFs (right)

The paper is organised as follows: After a review of previous

research to handling the discrepancy of input to output DoFs in

Section 2, Section 3 describes our approach in detail, with the sim-

ulation environment being described in Section 4. An initial user

study is presented in Section 5, with Section 6 discussing the result-

ing implications and directions for future work.

This paper provides a proof of concept for adaptive DoF mapping

in a 2D simulation environment.2 Its contributions are

• the idea of a novel DL approach to shared control for an

assistive robot arm,

• a general representation for DoF-based user control, option-

ally with modes,

• a 2D simulation environment for proof-of-concept of such

methods, and

• an initial user study regarding the usability of such an ap-

proach to shared control.

2 RELATED WORK

The default method to controlling a high-DoF device using a low-

DoF input device (e.g. controlling an assistive robot arm using

a joystick) is mode switching. A single DoF of the input device

controls a single cardinal DoF of the robot. Switching the selected

mode changes this mapping, such that the same user input now

controls a di�erent cardinal DoF of the robot. To the best knowledge

of the authors, no shared user control exists that allows the user

to control a device along arbitrary online-de�ned DoFs. However,

there are di�erent approaches to mapping user input from a low-

DoF input device to a high-DoF system, as well as ML setups that

learn autonomous behaviours in a high dimensional environment.

For this paper we use cardinal DoFs to describe the set of DoFs

de�ned by, and axis-aligned to, the Cartesian coordinate system of

the robot, plus an additional DoF to handle closing the gripper. For

a robot with at least six DoFs in 3D space, like the Kinova Jaco, this

would be [X-Axis, Y-Axis, Z-Axis, Roll, Pitch, Yaw, Gripper].

Based on their method of user inclusion, it is possible to di�er-

entiate control approaches into two categories [11]: In one the user

indicates targets and the autonomous system executes the action

mostly without user interaction (cf. [26]). The other integrates the

user as a direct source of movement control. If a user functions

as a direct source of control input, they often have an HCI with

low-DoF input device and di�erent control modes. In experiments

1Video available at: http://www.informatik.uni-bremen.de/agebv2/downloads/videos/
GoldauPetra21.m4v
2Resources available at: https://github.com/f371xx/adaptive_dof_mapping_2d
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by [11] using an HCI with a standard button-based mode switching

setup, more than one-sixth of the total execution time was spent

changing the currently selected mode. Within a deterministic sim-

ulation environment and a prede�ned goal, they showed that an

automatic mode switching approach already leads to an increase in

user satisfaction.

Many manipulation actions require precise positioning. There-

fore, when controlling a device towards a goal (e.g. grasping a cup),

slight corrections in direction or orientation need to be made. De-

pending on the environment and perception of the user, this can

be a di�cult task. For the task of grasping a cup, this would be the

precise positioning to not accidentally approach the cup o�-center

or tip it over with the �ngers. Also, if applying a mode switching

approach, these small adjustments generally require multiple mode

switches, all with very small actual movements of the device within

a single mode. To avoid this, research has shown remarkable suc-

cess with control blending [5], which arbitrates the user’s control

input with computer generated control, thus allowing the com-

puter to assist the user by avoiding obstacles or supporting with

the �nal approach [4]. However a study has shown that the level of

assistance should be customisable by the user to allow for perfect

adjustment to the user’s needs and abilities, as well as increase user

satisfaction [14].

With more complex scenarios and non-deterministic users, mul-

tiple goal states can be possible in a given situation (e.g. multiple

cups available from which the user can choose which to grasp).

For these scenarios, [9] presents a di�erent approach to assistive

mode switching: The system isolates possible user intentions and

chooses the control mode whose actions will maximise the arbi-

tration of possible user goals in order to assist the ML System in

identifying the underlying intention. Once a threshold certainty

about the user’s intent is surpassed, control blending is applied to

assist the user. While this does show promising results, the user’s

control options are still limited to the cardinal DoFs.

Controlling more complex movements with a low-DoF inter-

face has been realised by prede�ning sequences within a complex

task and using autonomous planners to execute the task. Instead

of directly controlling each cardinal DoF of the manipulator, the

user utilises their low-DoF interface to de�ne the velocity of the

automation and switch between the automated trajectories [15].

A more general option of controlling a robotic device with an

HCI is introduced by [22], who propose a neural network to map the

sensory readings of an input device to the control signals for a robot.

However, within their work they aim to learn an intuitive constant

mapping per user and task, therefore restricting the mapping to be

static and not adaptive to the situation.

3 MAPPING DEGREES OF FREEDOM

We want to not only do intelligent mode switching but instead

loose the system’s prede�ned de�nitions of DoFs and allow the

user to control the robot along DoFs that are regularly rede�ned

based on the current environment and situation.

3.1 De�nitions

A DoF 3 is therefore not limited to the prede�ned set of cardi-

nal DoFs but instead a vector 3 ∈ RĤ, ∥3 ∥2 = 1 in the cardinal

coordinate space. This allows for DoFs that are not necessarily axis-

aligned to the cardinal coordinate frame, such as moving diagonally

or orbiting around a point. A 1-dimensional user input device (e.g.

a 1D joystick) could therefore control a high-DoF robot along such

an arbitrary =-dimensional DoF.

In the general case, given D ∈ Rģ as the output of an<-dimen-

sional user input device and E ∈ RĤ as the =-dimensional robot

motion, a matrix � ∈ RĤĮģ, � = (30, 31, . . . , 3ģ) can be de�ned

such that

E = � · D, (1)

where � linearly maps an individual robot motion DoF 3ğ to each

DoF of the user input device (cf. Fig. 1).

As most input devices supply fewer DoFs than the system which

they control (< < =), a form of mode switching is generally applied.

In our notation, this would be equal to exchanging the DoF-mapping

matrix � . As an example, Figure 3 shows the static DoF-mapping

matrices of the three default control modes of the Kinova Jaco

joystick, omitting Drinking mode and the two-�nger grasp option.

X-Axis

Y-Axis

Z-Axis

Roll

Pitch

Yaw

Gripper

Translational mode︷       ︸︸       ︷
©­­­­­­­­­«

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

ª®®®®®®®®®¬

Wrist mode︷       ︸︸       ︷
©­­­­­­­­­«

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

ª®®®®®®®®®¬

Finger mode︷       ︸︸       ︷
©­­­­­­­­­«

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

ª®®®®®®®®®¬
Figure 3: The DoF mapping of the default control modes on

the Kinova Jaco joystick

Assuming the use of an input device with su�cient DoFs (< = =)

and corresponding DoF-map �̂ ∈ RĤ×Ĥ, �̂ = (30, 31, . . . , 3Ĥ) with

linearly independent DoFs 3ğ and therefore rank(�̂) = =, a user

would have complete control of the system without the necessity of

switching modes. We name such a mapping a complete DoF-set. If

each DoF of an input device directly controls a single cardinal robot

DoF using a complete DoF-set, �̂ would be equal to the identity

matrix. For an input device with< < =, the mapping for di�erent

modes can be generated based on a complete DoF-set by stacking<

columns of �̂ , optionally using zero-padding if< ∤ =. This method

ensures that the set of modes collectively gives the user the same

complete control as an input device with < = = if each column

(i.e. DoF) of �̂ is represented in at least one mode. For the Kinova

Jaco joystick, the underlying identity matrix-shaped �̂ can easily

be seen in Figure 3.

3.2 Approach

Our approach is to adaptively calculate the mapping � for a low-

DoF input device, such that the most likely direction of control

is represented by the �rst DoF in � . We require that the DoFs

are perpendicular to one another, such that each of the remaining

columns represents the next most likely direction for arbitration.

Assuming an optimal mapping, the �rst DoF should therefore enable

the user to manoeuvre the manipulator to their desired position,

Authors´ accepted version. https://doi.org/10.1145/3453892.3453895



PETRA 2021, June 29-July 2, 2021, Corfu, Greece Felix Ferdinand Goldau and Udo Frese

with the second DoF allowing them to adjust according to personal

preferences. Further options of arbitration exist with the remaining

DoFs.

For clari�cation, please see the following example: A user wants

to pour water from an open bottle into a cup. Whilst approach-

ing the bottle, the �rst DoF initially o�ers a 3D path command

towards the cup, with the second DoF o�ering an adjustment in the

z-direction, thus allowing to grasp the bottle higher or lower. Once

in grasping range, these DoFs automatically switch to grasping and

rotation around the bottle.

We generate the mapping � from a complete DoF-set �̂ . If the

user wants to perform an action not represented by the current

mapping, simple mode switching is applied as a fallback option to

give the user the remaining modes for complete control. This can,

for example, be automated by switching after a de�ned idle time,

thus allowing to control a complex high-DoF system with a very

low-DoF input device. Regarding the update rate of the mapping,

internal tests showed the best results when keeping � static while

the user is performing any action and, therefore, only updating �

when the user gives no input (i.e. zero-input).

3.3 Learning Degrees of Freedom

In order to learn a mapping of DoFs given a certain situation, train-

ing data of robot motion is required. As we aim to extend the

possibilities of control that are possible with a speci�c low-DoF

input device, it is necessary to take advantage of more complex

methods of control (i.e. high-DoF input devices) for the demon-

stration sequences. Therefore the control pipeline of the deployed

implementation in Figure 1 di�ers from the training setup.

During data generation, using an<-dimensional input device

to command an =-dimensional robot with< g = allows maximum

�exibility and avoids control-based restrictions of robot motions.

Applying such a setup, the user interface software requires no mode

switching and a simple identity matrix-shaped DoF-mapping � .

For data generation and training, the control pipeline is therefore

a direct link between input commands D and robot motions E . For

our scenario, a joystick-equipped gamepad with continuous user

input is used.

This setup allows to intentionally use able-bodied subjects with a

very di�erent method of control to generate training data, making it

much easier to collect the dataset. Based on this, the CNN can learn

a distribution ~ of arbitrarily complex robot motions E for a speci�c

situation as described by the camera image G . This means for a

situation as perceived by the camera image G , the CNN predicts

which robot motions E are likely and unlikely to follow, expressed

as a distribution of robot motions ~.

3.4 Probabilistic view

We view the training data as samples from everyday activities

performed by a robot arm. For the probabilistic view discussed here,

an outcome of the considered probability space models a snapshot

of a random moment of a random everyday activity.

Let - , . and + be random variables, where - represents the

image provided by the camera and + the robot motion. We are

interested in the training distribution of + given - (+ |- = G),

i.e. what DoF the user will most likely command in the speci�c

situation evident in the camera data - = G . This distribution shall

be the basis for selecting an optimal DoF-mapping � and hence the

output of the CNN.

Accordingly, we assume % (+ |- = G) to exist and follow a multi-

variate normal distribution NĤ (`, Σ) with the mean vector ` ∈ RĤ

and the symmetric, positive de�nite covariance matrix Σ ∈ RĤ×Ĥ . .

contains parameters describing `, Σ and is therefore also a random

variable, depending on - .

Treating the control commands in training sequences as samples

of + , a feed-forward CNN is used to estimate . given the camera

input - . The link between . describing the conditional distribution

of+ and the particular+ in the training sample is made by a speci�c

loss (see below), similar to a maximum likelihood loss. Wemoreover

de�ne ` = (0, . . . , 0)Đ to represent a zero-motion when having the

respective zero-input from the user. The CNN therefore only needs

to calculate the covariance matrix Σ.

Knowing the distribution of user commands in a given situation

allows us to extract a representation of principal components and

use these as DoFs for our mapping. We can therefore calculate a

complete DoF-set �̂ by generating a matrix where each column

represents an eigenvector of Σ, sorted in descending order by their

respected eigenvalues. Thus, the mode generated by taking the

�rst< columns of �̂ as � represents the smallest expected error

between the expected (intended) robot motion+ and what the user

can command with the input device using D. This will be derived

in the following.

3.5 Mathematical Derivation of Optimal D

Our DoF-mapping� in (1) has fewer rows = than columns<, hence

not every E can be obtained by an appropriate D. However,

D = �+E, (2)

with �+ as the Moore-Penrose-inverse of � gives the input D that

produces a robot motion �D as close to E as possible.

With this in mind, we want to obtain the best DoF-mapping

� ∈ RĤ×ģ given that the intended user command+ in this situation

is distributed as + ∼ NĤ (0, Σ). We de�ne best by the following

requirements:

∥�D∥2 f ∥D∥2 ∀D ∈ Rģ (3)

minimize E
(
∥+ − ��++ ∥22

)
(4)

among (4)-optimal � minimize E
(
∥�++ ∥22

)
(5)

Requirement (3) forbids too large ampli�cation of the user input,

which would make the system hard to control. It also avoids an

in�nite optimum for � in (5). Requirement (4) expresses our pri-

mary goal, namely to minimize the expected di�erence between

the robot motion desired by the user+ and the one ��++ that can

be commanded via the input device. In general, there are several op-

timal solutions and among these, we prefer the one that minimizes

the command (5).

Note that (4) depends only on the subspace spanned by the

columns of � (span�), while (5) depends on � itself.

� can be singular-value decomposed as� = � diag(f1, ..., fģ)�Đ ,

� ∈ RĤ×ģ , � ∈ Rģ×ģ , with orthonormal � and �. Due to (3),
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fğ f 1∀ 8 , (5) can be rewritten in terms of the fğ as

E
(
∥�++ ∥22

)
= E

(
∥� diag(f−11 , ..., f−1ģ )�Đ+ ∥22

)
(6)

= E
(
∥ diag(f−11 , ..., f−1ģ )�Đ+ ∥22

)
(7)

= E
©­«
ģ∑
Ġ=1

(
f−1Ġ �Đ•Ġ+

)2ª®¬
(8)

=

ģ∑
Ġ=1

f−2Ġ E

((
�Đ•Ġ+

)2)
(9)

Now � can be replaced by � ′
= ��Đ (equivalently f ′

Ġ = 1) which

is orthonormal, still meets (3), has the same span as � and hence

the same (4). It has at least as large singular values as � and hence

an equal or smaller (9). Thus it improves (5).

In conclusion, we can restrict our search for the optimal (4) to

orthonormal � , because among the solutions equally good in (4),

there is always an orthonormal one at least as good in (5).

We know, that��++ is the closest approximation of+ in span� .

Hence, + − ��++ is orthogonal to span� and ��++ . It follows

by the Pythagorean theorem, that

∥+ − ��++ ∥22 = ∥+ ∥22 − ∥��++ ∥22 (10)

= ∥+ ∥22 − ∥�++ ∥22 = ∥+ ∥22 − ∥�Đ+ ∥22, (11)

where the last two equations are because � is orthonormal. So (4)

is equivalent to

maximizeĀ orthonormal E
(
∥�Đ+ ∥22

)
= tr Cov(�Đ+ ) (12)

= tr�Σ�Đ . (13)

This is a well studied problem in linear algebra and as [12, Corol-

lary 4.3.39] states, the maximum is obtained when � is chosen as

orthonormal eigenvectors to the< largest eigenvalues.

This is the mathematical justi�cation of our approach. It can

be readily generated by de�ning the eigenvectors of Σ sorted by

descending eigenvalues as a full DoF-set �̂ . First, � consists of the

�rst< columns of �̂ . Should the desired robot motion not be (well)

covered by these DoFs, the user can switch to the next< columns.

3.6 Implementation

C
o
n
v
+
R
eL
U
+
B
N

3
×
(3
×
3
)

M
ax

P
o
o
li
n
g
(6
×
6
)

C
o
n
v
+
R
eL
U
+
B
N

4
×
(3
×
3
)

M
ax

P
o
o
li
n
g
(6
×
6
)

C
o
n
v
+
R
eL
U
+
B
N

5
×
(3
×
3
)

M
ax

P
o
o
li
n
g
(4
×
4
)

F
u
ll
y
C
o
n
n
ec
te
d

{1
0,
10
,2
0,
48
}

R
es
h
ap
e
to

(1
2
×
4
)

C
o
v
ar
ia
n
ce

L
ay
er

Figure 4: Neural Network

The structure of our CNN is shown in Figure 4. The image-

shaped features are processed by Convolutional (Conv) layers with

Rectifying Linear Units (ReLU), Batch Normalisation (BN) and max

pooling such that fully connected layers can be applied on a �at

feature vector. As the �nal layer, a sample-based method estimates

the covariance matrix Σ, with

Σ̂ =

1

:

ġ∑
ğ=1

(
Cğ

∥Cğ ∥2

) (
Cğ

∥Cğ ∥2

)Đ
, (14)

Σ = Y �Ĥ + Σ̂, (15)

where Y > 0, �Ĥ is the n-dimensional identity matrix and Cğ ∈ R
Ĥ

are : samples generated by the previous layer. Each sample is

normalised, such that

tr(Σ̂) =

Ĥ∑
ğ=1

_ğ = 1, (16)

with _ğ , 8 = 1 . . . , = being the eigenvalues of Σ̂. This method func-

tions as a novel output layer for neural networks, allowing to learn

conditioned covariance matrices, guaranteed to be positive de�nite

with de�ned trace.

We trained our neural network using the loss function ; (E, Σ)

; (E, Σ) = EĐ Σ−1E (17)

based on maximum log-likelihood loss, to learn a distribution such

that the probability of the robot motion E ∈ RĤ is maximised. In

comparison to the standard maximum log likelihood loss, we have

omitted constant scaling factors and o�sets, as well as the term

ln |Σ|. Conceptually, this term penalises the covariance matrix for

growing too large. As we limit this already by de�ning the trace of

the matrix and internal tests showed better training results without

this term, we chose to omit it.

4 SIMULATION ENVIRONMENT

ab

c1

c2

d

Figure 5: Element overview of the simulation environment

A simple 2D simulation environment was created to develop,

test and evaluate the basic principles of adaptive DoF learning as a

proof of concept. Figure 5 shows a section of the environment that

includes all relevant features. To function as a minimal working

example, the user-controlled device is a robotic manipulator (a)

able to move forward and backward, sideways, rotate around its

center, and close the gripper (b). This sums to a 4-dimensional

setting, or 4 DoFs for the user to control. Two blue boxes (2ğ ) need

to be grasped and moved towards the goal marker (d). The physics

between the robot, gripper and boxes are handled by a Box2D

JavaScript port3, while the goal marker is solely visual and has no

colliding component. At the start of an iteration, all components

are positioned randomly. Optionally, the simulation can be toggled,

3https://github.com/hecht-software/box2dweb
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such that the boxes have spikes on one side (cf. 22), e�ectively

adding an additional complexity to the scenario, as the gripper can

now only grasp the boxes from the side opposite the spike.

Within this environment �ve options exist to control the robot:

(1) standard control using 8 binary buttons on the keyboard (2

per DoF, one positive and one negative) to control the robot

along the cardinal DoFs, therefore allowing only a limited

set of directions,

(2) standard control using 4 binary buttons and automated mode

switching to cycle through all four cardinal DoFs,

(3) standard control using a joystick with multiple continuous

inputs, thus ful�lling the requirement of a high-DoF input

device in section 3,

(4) adaptive control using up to 4 binary buttons on the keyboard

to steer the robot along up to twoDoFs of the neural network-

generated DoF-set, and

(5) adaptive control using a joystick with continuous input val-

ues based on the same DoF-set as 4.

Option 3 was used for data generation and options 2 and 4 for

evaluation. Options 1 and 5 are used for testing and future work

respectively.

A mode switching setup is used after �ve seconds without user

input. The currently active DoFs are represented by colored arrows,

showing the future state of the robot when following the respective

DoF. Figure 2 shows an example situation, with the standard control

shown on the left and the adaptive control on the right. When

using adaptive control, a server evaluates the current state of the

environment and generates the DoF-mapping matrix � for the

simulation.

The simulation is implemented in JavaScript, therefore allowing

quick and easy website deployment for user studies and evalua-

tions. A variety of settings are customisable within a user inter-

face and allow di�erent deployment strategies for the changing

DoFs, thus enabling us to evaluate how much DoF-variety, and

therein complexity, users can handle. Internal tests showed the best

results when not altering the DoF-set while the user enters any

non-zero input and normalising the individual DoFs such that the

largest component is always positive. While this prevents the neu-

ral network from constantly adjusting the DoFs to create smoother

movements, it makes the motion more predictable for the user. The

simulation can generate DoF-mappings either using rendered im-

ages for CNN-approaches or as an optional alternative using a slim

eight-dimensional status vector.

5 USER STUDY

To evaluate the concept of adaptive DoF control, we ran an initial

user study based on the 2D simulation system described above.

The aim was to compare the standard control (i.e. a static identity

matrix-shaped DoF-set) to our adaptive control.

Following the low-DoF HCIs of assistive systems, control option

2 was used for standard control and option 4 for adaptive control.

The user input is therefore limited to four binary keyboard buttons

to control two DoFs of the robot and having an automated mode

switch after every �ve seconds without user input. The adaptive

DoFs are rede�ned by the network whenever there is no user input,

whereas the standard control is based on the cardinal DoFs.

The users were tasked with completing the scenario twelve times:

Use the robot to grasp one box after the other and deliver each

of them individually to the goal. After every three attempts, the

control method switched between standard and adaptive control.

After six attempts, spikes were activated for the boxes. To avoid

preferences due to training e�ects, the initial control method was

chosen randomly. Before the experiments, each user was shown an

introductory video explaining the interface and control methods.

During the experiment, the users were kept informed about the

currently selected control method. Finally, each user was asked to

anonymously evaluate their experience using a questionnaire.

To evaluate the impact of training, a small subset of users were

given additional training of roughly ten minutes after their partic-

ipation in the above-mentioned experiments. After this training,

they repeated the adaptive sections of the experiment and gave

their evaluation in a similar questionnaire.

5.1 Training

For the adaptive control we trained CNNs for both the scenario

with and without spikes based on individual training sets, where

the former dataset had spikes activated during data generation. In

order to allow complete freedom of motion, the training data for

both sets were generated with control option 3. For each training

sequence, the simulation started with a random con�guration and

the users were tasked with grasping the boxes (on the non-spiked

side if applicable) and delivering them to the target.

The dataset used for the scenario without spikes was generated

by two people and consists of 392 sequences with a total of 29927

datapoints. The network converged in seven epochs.

The dataset used for the scenario with spikes was generated by

three people and consists of 488 sequences with a total of 28075

datapoints. The network converged in eight epochs.

5.2 Results

The group of participants consisted of 23 people with a 8/13/1/1

gender split (female/male/diverse/no answer) with ages from 20

to 34 (25.96 ± 3.30). Of those, 2 male and 2 female, ages from 22

to 26, participated in the extended study after training. Regarding

their previous experience with keyboard-based controls, the users

responded between 1 and 10 (7.04 ± 3.10) on a scale from 1 (never

used before) to 10 (usage on a daily basis).

0 1 2 3 4

Control is fast

Control is easy

agreement from 0 (not at all) to 4 (completely)

Figure 6: User evaluation of standard (white) and adaptive

(grey) control

The users evaluated the speed and ease of both control methods

in each scenario (square boxes and boxes with spikes) on a 5 point

Likert scale. Figure 6 shows the results in a bar chart with the bar
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width representing the mean value and error bars showing the

standard deviation.

We evaluated two hypotheses, �1: adaptive control is subjectively

faster than standard control, and �2: standard control is perceived

easier than adaptive control using dependant two-sampled one-sided

t-tests. We were able to reject the null-hypotheses for both �1 and

�2 and show the di�erences to be signi�cant (cf. table 1).

On a scale from one to �ve, the users gave the standard control a

rating of 3.17± 0.65 and the adaptive control 3.09± 1.00. Evaluating

the suitability of the presented controls in more complex scenarios

on a scale from one to ten, the users gave (4.87 ± 1.79) points for

the standard control and 5.83 ± 1.99 for the adaptive control.

0 50 100 150 200

Standard Control

Adaptive Control

time in s

Figure 7: Sequence execution times

Figure 7 shows the distribution of sequence execution times

using either standard or adaptive control. While the times vary

strongly, it can be observed that the fastest sequences were always

performed with the adaptive control, whereas the slowest used

standard control. We evaluated hypothesis �3: adaptive control is

faster than standard control with a dependant two-sampled one-

sided t-test and were able to reject the null-hypothesis and conclude

the results to be signi�cant (cf. table 1). This supports the subjective

user responses regarding speed and shows that they were able

to successfully utilise the subjectively more complex control to

achieve lower execution times.

Table 1: T-test results

"Ā (�Ā t df p

�1 -1.07 1.46 -3.51 44 < 0.001

�2 1.70 0.86 9.43 44 < 0.001

�3 21.32 49.96 5.01 274 < 0.001

After additional training, the subset of users performing adaptive

control a second time rated the adaptive control faster and easier

than before training, while still not rating quite as easy as the

standard control. The measured average execution times of the

adaptive control sequences after training are lower than before,

thus supporting their claim.

5.3 Limitations

The data obtained by this study has been generated entirely online

andwithout any supervision.While this assures real anonymity and

avoids personal bias, it cannot be assured that all users completely

understood the control methods and the task itself. The partici-

pants of the study included a good gender diversity and variety of

experience, but only a small age range.

In an optional comment �eld, some users expressed their desire

for a more extensive training and the corresponding expectation

that this would greatly bene�t the adaptive approach. For the stan-

dard control, they also listed the mode switching delay as too long,

with some requesting an additional button for switching. Users also

complained about not using di�erent subsets of cardinal DoFs (i.e.

di�erent de�nitions of modes). For the adaptive control, there were

some complaints about too quick DoF changes, as well as occasional

situations where the �rst and second DoF swapped among each

other, therefore missing an opportunity to learn a button-to-action

mapping for the user.

In addition to the data presented, �ve participants generated

data, that was deemed �awed and omitted: One person left the

simulation idle for several minutes, thus rendering the timings

useless; three people seemingly did not follow the instructions by

never actually grasping the boxes, and the data of one person was

not transmitted completely.

6 CONCLUSION

In this work, we provided proof-of-concept of a novel method for

shared control of an assistive robot and evaluated the idea within a

2D simulation environment. For this, we de�ned a new standardised

representation of control modes and introduced a CNN structure

to adaptively generate DoF-mappings based on camera data of the

current situation and trained it using a speci�c output layer for

conditioned covariance matrices.

The presented application is a simpli�ed proof of concept with a

larger scenario as perspective. Even though we expect the largest

impact of adaptive DoF-learning in the more complex scenario, the

results of our user study show a signi�cant decrease in execution

times even in the simple environment. We therefore conclude that

adaptive DoF-mapping has the potential to provide a novel interface

to assistive robot control and signi�cantly lower task execution

times. However, a big challenge for the robot arm application will

be communicating the DoFs to the user.

6.1 Future Work

As this work is only a proof of concept in a low-DoF environment,

the next steps will be integrating the CNN and concept of control

in a more complex 3D environment. It will also be necessary to

evaluate the control on more speci�c tasks of daily living, instead

of simple 2D box manipulation.

By addressing more complex environments, an even more �ex-

ible interface is necessary. We will therefore evaluate the use of

a joystick as an input device for our adaptive control. This will

allow users to apply continuous commands, rather than binary

button-outputs, to control the robot in the de�ned modes. This

would enable the user to not only control directions of movement,

but also control robot velocities.
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