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Abstract

We present a novel disambiguation method for
unification-based grammars (UBGs). In contrast to other
methods, our approach obviates the need for probability
models on the UBG side in that it shifts the responsibil-
ity to simpler context-free models, indirectly obtained
from the UBG. Our approach has three advantages:
(i) training can be effectively done in practice, (ii)
parsing and disambiguation of context-free readings
requires only cubic time, and (iii) involved probability
distributions are mathematically clean. In an experiment
for a mid-size UBG, we show that our novel approach is
feasible. Using unsupervised training, we achieve 88%
accuracy on an exact-match task.

1 Introduction

This paper deals with the problem of how to dis-
ambiguate the readings of sentences, analyzed by a
given unification-based grammar (UBG).

Apparently, there are many different approaches
for almost as many different unification-based
grammar formalisms on the market that tackle this
difficult problem. All approaches have in common
that they try to model a probability distribution over
the readings of the UBG, which can be used to
rank the competing analyses of a given sentence;
see, e.g., Briscoe and Carroll (1993), Eisele (1994),
Brew (1995), Abney (1997), Goodman (1997), Bod
and Kaplan (1998), Johnson et al. (1999), Riezler et
al. (2000), Osborne (2000), Bouma et al. (2001), or
Schmid (2002).

Unfortunately, most of the proposed probability
models are not mathematically clean in that the
probabilities of all possible UBG readings do not
sum to the value 1, a problem which is discussed
intensively by Eisele (1994), Abney (1997), and
Schmid (2002).

In addition, many of the newer approaches use
log-linear (or exponential) models. Schmid (2002)

outlines a serious problem for these models: log-
linear models prevent the application of dynamic
programming methods for the computation of the
most probable parse, if complex features are incor-
porated. Therefore the run-time complexity of the
disambiguation algorithm is linear in the number of
parses of a sentence. If the number of parses grows
exponentially with the length of the sentence, these
approaches are simply impractical.

Our approach obviates the need for such models
on the UBG side in that it shifts the responsibility
to simpler CF models, indirectly obtained from the
UBG. In more detail, the kernel of our novel disam-
biguation method for UBGs consists of the appli-
cation of a context-free approximation for a given
UBG (Kiefer and Krieger, 2000) and the exploita-
tion of the standard probability model for CFGs.

In contrast to earlier approaches to disambigua-
tion for UBGs, our approach has several advantages.
Firstly, probabilistic modeling/training of context-
free grammars is theoretically well-understood and
can be effectively done in practice, using the inside-
outside algorithm (Lari and Young, 1990). Sec-
ondly, the Viterbi algorithm enables CFG pars-
ing and disambiguation in cubic time, exploiting
dynamic programming techniques to specify the
maximum-probability parse of a given sentence.
Thirdly, probability distributions over the CFG trees
are mathematically clean, if some weak conditions
for this desired behaviour are fulfilled (Booth and
Thompson, 1973).

In the rest of the paper, we present the context-
free approximation, our novel disambiguation ap-
proach, and an experiment, showing that the ap-
proach is feasible.

2 Context-Free Approximation
In this section, we briefly review a simple and intu-
itive approximation method for turning unification-
based grammars, such as HPSG (Pollard and Sag,
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Figure 1: The readings of a sentence, analyzed by a UBG (top) and its CFG approximation (bottom). The picture
illustrates that (i) each UBG reading of the sentence is associated with a non-empty set of syntax trees according to
the CFG approximation, and (ii) that the sentence may have CFG trees, which can not be replayed by the UBG, since
the CFG overgenerates (or at best is a correct approximation of the UBG).

1994) or PATR-II (Shieber, 1985) into context-free
grammars (CFG). The method was introduced by
Kiefer and Krieger (2000).

The approximation method can be seen as the
construction of the least fixpoint of a certain mono-
tonic function and shares similarities with the in-
stantiation of rules in a bottom-up passive chart
parser or with partial evaluation in logic program-
ming. The basic idea of the approach is as follows.
In a first step, one generalizes the set of all lexicon
entries. The resulting structures form equivalence
classes, since they abstract from word-specific in-
formation, such as FORM or STEM. The abstraction
is specified by means of a restrictor (Shieber, 1985),
the so-called lexicon restrictor. After that, the gram-
mar rules are instantiated by unification, using the
abstracted lexicon entries and resulting in deriva-
tion trees of depth 1. The rule restrictor is applied
to each resulting feature structure (FS), removing
all information contained only in the daughters of a
rule. Additionally, the restriction gets rid of infor-
mation that will either lead to infinite growth of the
FSs or that does not constrain the search space. The
restricted FSs (together with older ones) then serve
as the basis for the next instantiation step. Again,
this gives FSs encoding a derivation, and again the
rule restrictor is applied. This process is iterated un-
til a fixpoint is reached, meaning that further itera-
tion steps will not add (or remove) new (or old) FSs
to the set of computed FSs.

Given the FSs from the fixpoint, it is then easy
to generate context-free productions, using the com-
plete FSs as symbols of the CFG; see Kiefer and
Krieger (2002). We note here that adding (and per-
haps removing) FSs during the iteration can be
achieved in different ways: either by employing
feature structure equivalence � (structural equiva-
lence) or by using FS subsumption � . It is clear that

the resulting CFGs will behave differently (see fig-
ure 4). An in-depth description of the method, con-
taining lots of details, plus a mathematical under-
pinning is presented in (Kiefer and Krieger, 2000)
and (Kiefer and Krieger, 2002). The application of
the method to a mid-size UBG of English, and large-
size HPSGs of English and Japanese is described in
(Kiefer and Krieger, 2002) and (Kiefer et al., 2000).

3 A Novel Disambiguation for UBGs

(Kiefer and Krieger, 2000) suggest that, given a
UBG, the approximated CFG can be used as a cheap
filter during a two-stage parsing approach. The idea
is to let the CFG explore the search space, whereas
the UBG deterministically replays the derivations,
proposed by the CFG. To be able to carry out the
replay, during the creation of the CF grammar, each
CF production is correlated with the UBG rules it
was produced from.

The above mentioned two-stage parsing approach
not only speeds up parsing (see figure 4), but can
also be a starting point for an efficient stochastic
parsing model, even though the UBG might encode
an infinite number of categories. Given a training
corpus, the idea is to move from the approximated
CFG to a PCFG which predicts probabilities for the
CFG trees. Clearly, the probabilities can be used for
disambiguation, and more important, for ranking of
CFG trees. The idea is, that the ranked parsing trees
can be replayed one after another by the UBG (pro-
cessing the most probable CFG trees first), estab-
lishing an order of best UBG parsing trees. Since the
approximation always yields a CFG that is a super-
set of the UBG, it might be possible that derivation
trees proposed by the PCFG can not be replayed by
the UBG. Nevertheless, this behavior does not al-
ter the ranking of reconstructed UBG parsing trees.
Figure 1 gives an overview, displaying the readings
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Figure 2: One of the two readings for the sentence measure temperature at all three decks, analyzed by the Gemini
grammar. Note that the vertical dots at the top indicate an incomplete FS derivation tree. Furthermore, the FSs at the
tree nodes are massively simplified.

of a sentence, analyzed by a UBG and its CFG ap-
proximation. Using this figure, it should be clear
that a ranking of CFG trees induces a ranking of
UBG readings, even if not all CFG trees have an
associated UBG reading. We exemplify our idea in
section 4, where we disambiguate a sentence with a
PP-attachment ambiguity.

As a nice side effect, our proposed stochastic

parsing model should usually not explore the full
search space, nor should it statically estimate the
parsing results afterwards, assuming we are in-
terested in the most probable parse (or say, the
two most probable results)—the disambiguation of
UBG results is simply established by the dynamic
ordering of most probable CFG trees during the first
parsing stage.
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Figure 3: Alternative readings licensed by the context-free approximation of the Gemini grammar.

4 Experiments
Approximation. (Dowding et al., 2001) com-
pared (Moore, 1999)’s approach to grammar ap-
proximation to (Kiefer and Krieger, 2000). As a ba-
sis for the comparison, they chose an English gram-
mar written in the Gemini/CLE formalism. The mo-
tivation for this enterprise comes from the use of
the resulting CFG as a context-free language model
for the Nuance speech recognizer. John Dowding
kindly provided the Gemini grammar and a corpus
of 500 sentences, allowing us to measure the quality
of our approximation method for a realistic mid-size
grammar, both under � and � (see section 2).1

The Gemini grammar consisted of 57 unification
rules and a small lexicon of 216 entries which ex-
panded into 425 full forms. Since the grammar al-
lows for atomic disjunctions (and makes heavy use
of them), we ended in overall 1,886 type definitions
in our system. Given the 500 sentences, the Gem-
ini grammar licensed 720 readings. We only deleted
the ARGS feature (the daughters) during the iter-
ation and found that the original UBG encodes a
context-free language, due to the fact that the iter-
ation terminates under � . This means that we have
even obtained a correct approximation of the Gem-
ini grammar. Table 4 presents the relevant numbers,
both under � and � , and shows that the ambiguity
rate for � goes up only mildly.

We note, however, that these numbers differ from
those presented in (Dowding et al., 2001). We could
not find out why their implementation produces
worse results than ours. They suggested that the use
of � is the reason for the bad behaviour of the re-
sulting grammar, but, as our figures show, this is not

1A big thank you is due to Mark-Jan Nederhof who has writ-
ten the Gemini-to- �! #" converter and to John Dowding and Ja-
son Baldridge for fruitful discussions.

Gemini $ %
# readings 720 720 747
ambiguity rate 1.44 1.44 1.494
#terminals — 152 109
#nonterminals — 3,158 998
#rules 57 24,101 5,269
#useful rules 57 19,618 4,842
running time (secs) 32.9 14.6 9.5
run time speed-up (%) 0 55.6 71.1

Figure 4: A comparison of the approximated CFGs de-
rived under $ and % . The fixpoint for $ ( % ) was reached
after 9 (8) iteration steps and took 5 minutes (34 seconds)
to be computed, incl. post-processing time to compute
the CF productions. The run time speed-up for two-stage
parsing is given in the last row. The measurements were
conducted on a 833 MHz Linux workstation.

true, at least not for this grammar. Of course, us-
ing � instead of � can lead to substantially less re-
strictive grammars, but when dealing with complex
grammars, there is—at the moment—no alternative
to using � due to massive space and time require-
ments of the approximation process.

Figure 2 displays one of the two readings for the
sentence measure temperature at all three decks, an-
alyzed by the Gemini grammar. The sentence is one
of the 500 sentences provided by John Dowding.
The vertical dots simply indicate that some less rele-
vant nodes of the FS derivation tree have been omit-
ted. The figure shows the reading, where the PP at
all three decks is attached to the NP temperature.
Due to space constraints, we do not show the second
reading, where the PP is attached to the VP measure
temperature.

Figure 3 shows the two syntax trees for the sen-
tence, analyzed by the context-free approximation
of the Gemini grammar, obtained by using � . It



S & 1017 (0.995)
1017 & 304 (0.472)
304 & 687 (0.980)
687 & 873 (1.000)
873 & 960 (0.542)
873 & 183 (0.330)
960 & 1058 929 (0.138)
960 & 1058 1028 (0.335)
183 & 960 951 (0.042)

1058 & 89 (1.000)
89 & measure (0.941)

929 & 1028 951 (0.938)
1028 & 72 (0.278)

72 & temperature (0.635)
951 & 7 1033 (0.286)
7 & at (0.963)

1033 & 1018 10 (0.706)
1018 & 60 55 (0.581)

60 & all (0.818)
55 & three (0.111)
10 & decks (1.000)

Figure 5: Fragment of the PCFG. The values in paren-
thesis are probabilities for grammar rules, gathered after
two training iterations with the inside-outside algorithm.

is worth noting that both readings of the CFG ap-
proximation differ in PP attachment, in the same
manner as the readings analyzed by the UBG it-
self. In the figure, all non-terminals are simply dis-
played as numbers, but each number represents a
fairly complex feature structure, which is, in gen-
eral, slightly less informative than an associated tree
node of a possible FS derivation tree of the given
Gemini grammar for two reasons. Firstly, the use
of the � operation as a test generalizes informa-
tion during the approximation process. In a more
complex UBG grammar, the restrictors would have
deleted even more information. Secondly, the flow
of information in a local tree from the mother to the
daughter node will not be reflected because the ap-
proximation process works strictly bottom up from
the lexicon entries.

Training of the CFG approximation. A sample
of sentences serves as input to the inside-outside
algorithm, the standard algorithm for unsupervised
training of PCFGs (Lari and Young, 1990). The
given corpus of 500 sentences was divided into a
training corpus (90%, i.e., 450 sentences) and a test-
ing corpus (10%, i.e., 50 sentences). This standard
procedure enables us (i) to apply the inside-outside
algorithm to the training corpus, and (ii) to eval-
uate the resulting probabilistic context-free gram-

mars on the testing corpus. We linguistically eval-
uated the maximum-probability parses of all sen-
tences in the testing corpus (see section 5). For un-
supervised training and parsing, we used the imple-
mentation of Schmid (1999).

Figure 5 shows a fragment of the probabilistic
context-free approximation. The probabilities of the
grammar rules are extracted after several training it-
erations with the inside-outside algorithm using the
training corpus of 450 sentences.

Disambiguation using maximum-probability
parses. In contrast to most approaches to stochas-
tic modeling of UBGs, PCFGs can be very easily
used to assign probabilities to the readings of a
given sentence: the probability of a syntax tree (the
reading) is the product of the probabilities of all
context-free rules occurring in the tree.

For example, the two readings of the sentence
measure temperature at all three decks, as dis-
played in figure 3, have the following probabilities:'#(�'*),+.-0/#13254

(first reading on the left-hand side)
and

-6(�798:+#-0/;1325<
(second reading on the right-hand

side). The maximum-probability parse is therefore
the syntax-tree on the left-hand side of figure 3,
which is the reading, where the PP at all three decks
is attached to the NP temperature.

A closer look on the PCFG fragment shows that
the main contribution to this result comes from the
two rules 929 & 1028 951 (0.938) and 183 & 960 951
(0.042). Here, the probabilities encode the statistical
finding that PP-to-NP attachments can be expected
more frequently than PP-to-VP attachments, if the
context-free approximation of the Gemini grammar
is used to analyze the given corpus of 500 sentences.

5 Evaluation
Evaluation task. To evaluate our models, we used
the testing corpus mentioned in section 4. In a next
step, the correct parse was indicated by a human dis-
ambiguator, according to the intended reading. The
average ambiguity of this corpus is about 1.4 parses
per sentence, for sentences with about 5.8 words on
average.

Our statistical disambiguation method was tested
on an exact match task, where exact correspondence
of the manually annotated correct parse and the
most probable parse is checked. Performance on this
evaluation task was assessed according to the fol-
lowing evaluation measure:

precision = > correct> correct ? > incorrect
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where “correct” and “incorrect” specifies a success
or failure on the evaluation tasks, resp.

Evaluation results. First, we calculated a random
baseline by randomly selecting a parse for each sen-
tence of the test corpus. This baseline measures the
disambiguation power of the pure symbolic parser
and was around 72% precision.

Optimal iteration numbers were decided by re-
peated evaluation of the models at every iteration
step. Fig. 6 shows the precision of the models on the
exact match task plotted against the number of iter-
ations of the training algorithm. The baseline repre-
sents the disambiguation accuracy of the symbolic
approximated UBG which is clearly outperformed
by inside-outside estimation, starting with uniform
or random probabilities for the rules of the CF ap-
proximation. A clear overtraining effect occurs for
both cases (see iterations @ )

and @ 'A7
, resp.).

A comparison of the models with our random
baseline shows an increase in precision of about
16%. Although we tried hard to improve this gain
by varying the starting parameters, we wish to re-
port that we found no better starting parameters than
uniform probabilities for the grammar rules.

6 Related Work and Discussion
The most direct points of comparison of our method
are the approaches of Johnson et al. (1999) and Rie-
zler et al. (2000), esp. since they use the same eval-
uation criteria than we use.

In the first approach, log-linear models for LFG
grammars were trained on treebanks of about 400

sentences. Precision was evaluated for an ambigu-
ity rate of 10 (using cross-validation), and achieved
59%. If compared to this, our best models achieve
a gain of about 28%. However, a comparison is dif-
ficult, since the disambiguation task is more easy
for our models, due to the low ambiguity rate of
our testing corpus. However, in contrast to our ap-
proach, supervised training was used by Johnson et
al. (1999).

In the second approach, log-linear models of
LFG grammars were trained on a text corpus of
about 36,000 sentences. Precision was evaluated
on 550 sentences with an ambiguity rate of 5.4,
and achieved 86%. Again, a comparison is difficult.
The best models of Riezler et al. (2000) achieved
a precision, which is only slightly lower than ours.
However, their results were yielded using a corpus,
which is about 80 times as big as ours.

Similarly, a comparison is difficult for most other
state-of-the-art PCFG-based statistical parsers,
since different training and test data, and most
importantly, different evaluation criteria were used.

7 Conclusion
This paper concerns the problem of how to disam-
biguate the readings of sentences, analyzed by a
given UBG.

We presented a novel approach to disambiguation
for UBGs, shifting the responsibility to simpler CF
models, obtained by the approximation of the UBG.

In contrast to earlier approaches to disambigua-
tion for UBGs, our approach can be effectively ap-
plied in practice, enables unsupervised training on
free text corpora, as well as efficient disambigua-
tion, and is mathematically clean.

We showed that our novel approach is feasible for
a mid-size UBG of English. Evaluation of an unsu-
pervised trained model achieved a precision of 88%
on an exact match task.
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