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Figure 1: Attention guidance for three different scales.

ABSTRACT
This work proposes a new method for guiding a user’s attention
towards objects of interest in a cyber-physical environment (CPE).
CPEs are environments that contain several computing systems
that interact with each other and with the physical world. These
environments contain several sensors (cameras, eye trackers, etc.)
and output devices (lamps, screens, speakers, etc.). These devices
can be used to first track the user’s position, orientation, and focus
of attention to then find the most suitable output device to guide
the user’s attention towards a target object. We argue that the most
suitable device in this context is the one that attracts attention
closest to the target and is salient enough to capture the user’s
attention. Themethod is implemented as a functionwhich estimates
the "closeness" and "salience" of each visual and auditive output
device in the environment. Some parameters of this method are
then evaluated through a user study in the context of a virtual
reality supermarket. The results show that multi-modal guidance
can lead to better guiding performance. However, this depends on
the set parameters.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; Ambient intelligence.
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1 INTRODUCTION
Throughout the years, we have seen the evolution of computing
give rise to cyber-physical systems (CPS). CPSs are physical and
engineered systems whose operations are monitored, coordinated,
controlled, and integrated by a computing and communication core
[22]. These systems are capable of interacting with the physical
world [24]. As CPSs become more and more common, certain en-
vironments will contain several of them. These systems can then
be integrated to become a cyber-physical environment (CPE). A
CPE consists of a large number of CPSs distributed in a local envi-
ronment (factories, homes, cars, etc.). Part of the challenges these
environments entail is that they must be dynamic and context-
aware. In other words, they must monitor and react to changes in
the environment [23]. This is done by reading information from
the physical environment through a variety of sensors, identifying
its current state, and inducing some change in the environment by
the use of actuators or output devices.

In certain situations, users in CPEs need to find or be aware of
certain objects. For example, an apprentice in a car workshop who
needs help finding a tool. In a smart home environment, the system
might want to let the user know he left a window open before going
to bed. A smart car could warn the driver of a pedestrian suddenly
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attempting to cross the street. Whatever the case, the user needs to
be made aware of the location of a certain object or area.

People communicate verbally and non-verbally, such as when
pointing at things they are talking about [12]. Unfortunately, CPEs
have had, so far, no way of pointing at the things they are referring
to when interacting with humans. In order to breach this gap in
communication between humans and CPEs, attention guidance is
necessary.

In this context, attention guidance refers to the deliberate shift-
ing of a user’s focus of attention (FoA) towards an object or area of
interest (target highlighting) or away from distracting ones (distrac-
tion avoidance). Guiding attention towards a target object could be
accomplished by making the object more salient than its surround-
ings (see figure 1).

These target objects are not always located in the user’s vicinity
or range of perception. A small LED display may attract the user’s
attention when standing three meters away from it, but be barely
visible at a distance of 50 meters. Nevertheless, there could be other
devices that are more suitable to guide the user’s attention at such
a distance (see figure 2 ). In such situations it becomes necessary to
use a multi-scale attention guidance method that determines the
most suitable device to guide the user’s attention towards the target
at any given point. This method should take into account different
parameters about the environment, the user, the target, and each
of the devices’ properties (position, effective ranges, etc.).

(a) Barely visible red display (b) clearly visible ceiling lamp

Figure 2: An example of how a different kind of device may
be more suitable than another depending on the user-target
distance. Left: an electronic label is not perceived from far
away. Right: at the same distance a ceiling lamp succesfully
attracts attention.

It is important that the system also takes the devices’ modalities
into account. Not only are certain modalities not suitable for some
users (e.g. auditive devices for deaf users), but their usefulness could
also vary with the situation. A visual device behind a user would
not be as suitable as an auditive one to guide the user’s attention.

Another challenge is that CPEs are very dynamic. Users are often
moving and interacting with multiple CPSs at the same time. Thus,
an attention guidance method should consider this and adapt the
guidance accordingly.

The contributions of this work are twofold: first, we describe
a novel attention guidance method that quantitatively ranks the
suitability of visual and auditive devices for a given user and target.
Second, we discuss the results of the first user study using this
method, which investigates some of the parameters of this method.

The next section will describe some of the background and re-
lated work in the area of attention guidance. Section 3 will disclose

the developed method, explaining each of the parameters of the
main functions. Then, sections 4 and 4.4 will describe an experi-
ment that validates some of these parameters and discuss the main
findings. Finally, section 5 summarizes this work and proposes
possibilities for future research directions.

2 BACKGROUND AND RELATEDWORK
To understand how we are able to find an object in our surround-
ings, cognitive mechanisms like selective attention are necessary.
Selective attention is the process of selecting relevant and deselect-
ing irrelevant information. Two major factors influence the focus of
attention: top-down and bottom-up. While top-down processes are
goal-driven and regulated by our intentions and expectations (en-
dogenous), bottom-up processes are object-driven and attentional
shifts occur involuntarily (exogenous) [10, 19, 21]. An important
factor is the salience of an object. As stated in Wolfe [29] “Salience
is the signal to noise ratio”. Therefore, when searching for an ob-
ject, its salience represents the differences between objects in each
feature dimension (e.g. color) [20, 29]. In terms of guided attention,
visual and/or auditive cues play an important role. Cues don’t al-
ways attract attention to a single point in space, in fact, they can
attract attention to an area of certain dimensions. There is evidence
that objects that are located inside the focus of attention (FoA)
can be detected more easily [9, 21]. This area is adjustable and the
wider it is, the harder it is to locate targets within it [9]. Contrary to
location-based selective attention (FoA is shifted to an area), there
exists as well object-based attention (FoA is shifted to an object)
[6]. There is evidence that both processes work at the same time
and parallel to each other [7, 13]. Other research has focused on
Cross-Modal Cueing i.e., cues presented in another sensory modal-
ity than the target (e.g. auditive cue for visual target). Several other
studies have shown that auditive cueing can influence the visual
FoA and if valid enhance the detection performance [2, 5, 25].

Selective attention has been of great importance for wayfinding
(knowing where you are and where you want to go and how to get
there) [4]. For instance, in videogames, visual and auditive cues lead
the players attention to find places and objects. A comparison of
five types of cues found that, while some cues are obvious and easy
to follow, others are not very precise [27]. However, a key aspect of
designing wayfinding systems for games is that they are not meant
to be as clear as directions found in the real world [18]. By using sev-
eral game parameters such as objects in the scene, objective, camera
position, etc., the ALVA (Adaptive Lighting for Visual Attention)
system was able to determine which game objects were important
and dynamically highlight them by using in-game lighting [8]. An
advantage of games and virtual worlds is that the designer has full
knowledge and is in complete control of the environment. Cues
to guide attention can be placed anywhere in the environment. In
the real world, however, knowledge of the environment is limited
to whatever information sensors provide, and control over it will
depend on the actuators and output devices found therein. In the
real world, attention manipulation is often done manually. How-
ever, computer-based approaches have also been implemented in
the real world. Booth et. al. [3] used a technique called Subtle Gaze
Direction [1]. A limitation of their approach was the simplicity of
the scene. Environments such as CPEs can be very complex. Project
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REAL [26] tried to assist users in instrumented environments with
navigation and shopping. Two kinds of navigation were described:
macro- and micro-navigation. Macro-navigation was used when
the goal was outside the user’s perception. Directions were given
in either a PDA or public displays. Micro-navigation tried to guide
the user’s FoA to a spot within their range of perception using a
steerable projector. Similarly, the IRL SmartCart [15] also adopted
these kinds of navigation. However, macro-navigation was han-
dled with an on-screen map that displayed the route from a user’s
current position to their target destination. Both of these works
required specialized hardware that might not be available or even
applicable to many CPEs. A better alternative would be a guiding
method that can be adapted to different kinds of environments and
output devices and that automatically chooses the most suitable
device to guide the user.

3 CONCEPT
Although related work on the topic of attention guidance exists,
corresponding research for CPEs is still lacking. The reviewed meth-
ods require specialized hardware or are simply not applicable to
some environments. This section describes a multi-modal, multi-
scale, attention guidance method applicable to all CPEs that have
controllable audio and visual devices, and where the position and
orientation of the user relative to these devices is known. The
next few sections describe the suitability function of an attention-
management system in charge of selecting the devices with which
to guide the users’ attention. We define this function with primary
and secondary functions. The range of all primary and secondary
functions is kept to be within [0, 1]. Primary functions (sec. 3.1)
are the main idea of this attention guidance method. Secondary
functions (sec. 3.2) expand the primary functions and show how
the method might work in general. An important feature of this
distinction is that secondary functions could be easily substituted
by other functions as long as the range of the function is kept the
same. These functions could then be better suited for a specific CPE.
Secondary functions for the auditive modality are then discussed
in section 3.3 and additional details of the suitability function are
given in section 3.4.

3.1 Primary functions
The role of an attention management system is to choose the most
suitable device d∗ to guide the user’s attention towards a target area
or object. For this, it is necessary that it takes into account user
properties u like their position, orientation or FoA and the target
properties t . If one could represent the suitability of a device as a
function F , then one could simply select the device that maximizes
this function:

d∗ = argmax
d ∈D

F (d,u, t ;C) (1)

where D is the set of all output devices in the CPE and C is a set
of context parameters about the environment. Unfortunately, even
if such a function did exist, it would still be difficult to envision what
it could look like in detail. We argue that such a function would
consist of at least two things: the salience of the device and its
closeness to the target. If the device is not salient enough, the user
will not perceive it. If the device is not close to the target, cueing

the user will distract or lead the user away from the target. One
could further imagine a kind of trade-off between these two aspects:
when a user is far away from the target, saliency might be more
important and how close a cue is to the target may be less relevant.
However, as the user approaches the target, the discrimination of
these devices’ closeness to the target becomes much more relevant,
as otherwise the user’s attention might be guided in the wrong
direction. If one could quantify how salient a device’s cue is to
a user and how close it leads the user to the target through two
functions S and C respectively, one could then define a function
F as follows:

F (d,u, t ;C) =(1 −wi)
(
ws ·S(d,u;C) + (1 −ws) ·C(d,u, t ;C)

)
+wi ·

(
S(d,u;C) ·C(d,u, t ;C)

)
(2)

where +wi is the interaction weight.
As can be seen from equation (2), as the weight assigned to

saliency (ws) decreases, the weight assigned to closeness ((1 −ws))
increases. In the same way, the interaction term interaction weight
controls how important it is that a device is both salient and close
at the same time. By decreasing this weight more importance is
given to salience and closeness as individual components. We now
describe what is meant by these two terms in more detail, starting
with the visual modality.

One could understand closeness as an estimate of how well a
cue might lead to the target. We argue two things are important in
this regard: accuracy and precision (see eq. 3 and figure 3).

(a) High Precision High Accuracy (b) Low Precision High Accuracy

(c) High Precision Low Accuracy (d) Low Precision Low Accuracy

Figure 3: Depiction of accuracy and precision. The area to
which the cue attracts attention is denoted by a green circle.
The target is denoted by a blue circle. 3(a): A perfectly close
cue. It guides a user’s attention to the target and nothing
else. 3(b): A potentially acceptable cue, as it attracts atten-
tion to the target, though it also attracts attention to other
nearby-objects. It could be good to attract attention to a gen-
eral area 3(c): A very specific cue targets an area where the
target is not located. Depending on the distance to the tar-
get, this cue might still be relatively good. 3(d): A cue that
is neither precise nor accurate. This cue will probably guide
the user’s attention away from the target.
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We assume that, depending on how well the cued area fits the
target and how similar the cued area is to the target’s size, the cue
will guide the user’s attention to the target differently. Consider
the target shooting analogy in figure 3 where one could interpret
each of the black dots as a saccade or the gaze of a user looking
for a target within a certain period of time. If the cue is perfectly
accurate and precise, the user’s attention is guided directly to the
target. However, if the cue lacks precision, the user’s attention gets
guided to a larger area near the target, but the user still has to
scan this area to find the target. On the other hand, if the cue is
precise but lacks accuracy, the user’s attention gets guided towards
a specific object or area that is not the target. It could then take
some time for the user to realize that the guidance is not accurate
and start looking around outside the cued area for the target. The
time it takes the user to find the target would depend on whether
or not the user knows what they’re looking for and how inaccurate
the cue was. Finally, if the cue is neither precise nor accurate, the
user will be looking for the target in a completely wrong area. One
could, thus, define the closeness function as follows:

C(d,u, t ;C) = wp ·P(d,u, t ;C) + (1 −wp) ·A(d,u, t ;C) (3)

where P and A are functions that determine how precise and
accurate a cue is respectively and wp is the weight assigned to
precision. These functions are further explained in section 3.2.

The second part of equation 2 is salience. Salience could be under-
stood in this context as the "probability" that a cue will be detected
by the user. It is certainly difficult to quantify users’ knowledge,
goals, and expectations such that one can estimate whether or not
a user will see a cue or not. Salience, on the other hand, could be
manipulated. Stimuli can be different across several feature dimen-
sions like luminance, size, color, orientation, etc., but also in others
like loudness and frequency in the auditive channel. Although it
could be possible to create an accurate computational model that
predicts how salient a cue will be to a user, it is difficult to do so
outside a controlled environment and in particular in a CPE. This
is mainly because of the lack of information in a very complex
and dynamic environment. This work does not claim to objectively
predict exactly how salient a certain cue might be for a user. As
it stands, the saliency function simply outputs a confidence that
the user will detect the cue produced by a certain device based
on some heuristics. Saliency could be decomposed into different
conspicuity factors such as intensity, color, orientation, etc. If not
enough is known about the environment one could then make some
assumptions about it and what kind of features will be salient in
it. For some features, it’s difficult to make assumptions about what
the environment might look like regarding e.g. color or orientation.
Here, we make the assumption that brighter and larger cues attract
more attention. Luminance is the first type of information extracted
by our visual systems and luminance contrast seems to be the pri-
mary variable on which visual salience computation is based [28].
Also, increasing the size of a non-salient target decreases the time
it takes to locate it, compensating for the lower saliency. Not only
that, but it seems as if the function relating increase of salience to
feature value ratios is similar for the size and salience dimensions
[14]. Having selected these two parameters, one could define the

saliency function to be:

S(d,u;C) = wz ·Z(d,u;C) + (1 −wz) ·B(d,u;C) (4)

whereZ and B are functions that determine how salient a cue will
be to the user depending on its size and brightness respectively.

If more is known about the environment or if at some point a
new method could predict how salient a cue will be for a user, or
how likely a user is to pay attention to the cue either by top-down or
bottom-up factors it could be plugged into this method and improve
it without having to change any other function. For this, the range
of the function should be consistent with the other functions and
be set to [0, 1].

3.2 Secondary functions
As previously mentioned, secondary functions expand on and fur-
ther explain primary functions. However, the exact mathematical
definition of these secondary functions is outside the scope of this
work. Instead, we abstract from the details and provide an intuition
on how these functions work. We start by explaining the closeness
function (eq. 3).

In general, the intuition of whether two objects are close to
each other or not depends on what the distance between both
objects is being compared to. The distance to the moon might be
considered close when comparedwith the distance to the sun.While
closeness could in general be considered a target-cue relation, it is
also important to compare it to something. One could compare it to
the distance from the user to the target (see figure 4(a)). If the user
is far away from the target, the attention guidance system should
be less "picky" with what makes up a close cue. As the user gets
closer to the target, it becomes more and more important, that the
system outputs more accurate cues that guide the user in the right
direction.

A sigmoid function could be adapted between the target and
the user. When the user is far away, the sigmoid could look almost
linear, resulting in far away cues being still relatively accurate, but
still discriminating between cues that are farther away from those
that are closer. As the user gets closer to the target, the sigmoid is
adapted in such a way, that farther cues’ accuracies are dropped to
nearly zero. One could also adapt what is considered precise as the
user moves in the environment in a similar way to the accuracy
function.

An important distinction is that, while the accuracy function
evaluates the distance from a cue to the target in meters, the pre-
cision function evaluates the relative error in the size of the area
highlighted by the cue. The relative error is the difference in size
between the highlighted area and the target proportional to the
target. This could again be implemented with a sigmoid function
that is adapted to the distance from the user to the target (see figure
4(b)). When the user is near the target, only the cues with the most
similar size will be considered precise. But if the user is far away,
even cues that highlight areas are much larger than the target are
considered somewhat precise.

Having both the accuracy and the precision functions, one can
then calculate how close all cues are to the target in terms of ac-
curacy and precision and in relation to the user. Now we focus on
the saliency function (eq. 4). The size of the cue is not just relevant
for precision, but also for the saliency function. However, the focus
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(a) Distance-dependent Accuracy (b) Distance-dependent Precision

Figure 4: 4(a): Accuracy is adapted depending on the distance from the user to the target (marked by a ’T’). Three scales are
presented. As the user approaches the target, the accuracy of the cues (noted by circles c1 to c4) farther away decreases to zero.
4(b): Shows how the perception of what cues are precise becomes more relaxed the farther away the user is from the target.

here is on the user-cue relation in contrast to the target-cue relation
when talking about precision. In this case, what matters is how big
cues are perceived by the user. A smaller cue might be perceived
by the user as the same size as a larger cue that is farther away.
To account for this, one could consider the angular size of the cue,
instead of the actual size. The result could then be again rescaled
with the sigmoid function to ensure that the range of the function
remains between 0 and 1.

Regarding brightness, we should distinguish between luminosity
and brightness. Whereas the first is the constant amount of light
emitted by a source, the second is the amount of light perceived
at a certain distance. To calculate this, one could apply the inverse
square law. The inverse square law implies that as the observer
gets closer to the source of light, the perceived brightness will
tend towards infinity, so in order to ensure that the range remains
between 0 and 1 as in the other functions, the output of the function
is again rescaled.

Finally, one should also consider that, in case of visual cues, they
are only visible if they are within the user’s field of view. One could
then use an activation function that outputs 1 if this is the case or
0 if not and multiply the output by equation 4. This would result
in the visual device having 0 salience whenever its produced cue
lies outside the user’s FoV. Visibility is of course not a problem
for auditive cues. In the next section, the secondary functions are
revisited with a focus on the auditive modality.

3.3 Auditive Modality
Visual devices are not the only ones capable of attracting human
attention. A great advantage of auditive cues over visual ones is
that they are not limited by peripheral vision, but can still attract
the user’s attention and orient the user in the right direction. The
user could then be guided further by the same auditive cue, or by
a visual one which was previously not within the user’s field of
view. While visual and auditive cues are inherently different, they
do have certain properties in common and, in particular, they can
be closer or farther away from the target and they can be salient or
not for the user. In principle, this means their suitability could be

represented in the same equations as for the visual modality, with
slight adaptations.

In regards to closeness, if the position of an auditive cue is con-
sidered to be the device’s position, one could directly calculate
accuracy by applying the same equation as in the visual modality.
For precision, on the other hand, it is not entirely clear what the di-
mensions of the focus area should be. However, since sound sources
don’t need to lie within the user’s field of view, they could be used
to attract the user’s attention in roughly the right direction and
letting visual cues take over the guidance as soon as this happens.
When talking about auditive cues, it might be enough for the user
to know the general direction of the target and to define precision
by how precisely a cue points the user in that direction. The angle
between the cue and the target could then be scaled with a sigmoid
function just like the other functions (see figure 5).

The other component would be the saliency of the device. Here
again, the definition of visual cues does not apply to auditive ones.
However, just like with brightness for visual cues, we make the
assumption that louder cues attract more attention. Instead of calcu-
lating brightness, we calculate the sound pressure level (SPL) which
describes how loud a sound is perceived at a certain distance, which
follows the inverse square law, similar to brightness. To scale the
result to be in a range between 0 and 1, we first define a constant
in decibels that is considered maximally salient and then scale it
again using the sigmoid function. This is because very loud noises
can cause discomfort or even harm humans.

3.4 Multi-scale transition
Up to this point, we have discussed a function that selects the most
suitable device to guide the user’s attention towards a target in the
environment. An important question would be how the transition
from one device to the other takes place as the user gets closer to
the target. If the system always selects the most suitable device,
space would be partitioned into regions with hard borders such
that crossing a region’s border would switch the selected device.
This could make the system very volatile. Due to imprecision in
the system, standing still at one of these hard borders could switch
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Figure 5: A graphical representation of the precision func-
tion for the auditive modality. A user (black triangle) is pre-
sented with two auditive cues (speaker icons) for the target
(T). The user is depicted as if looking away from the target in
the direction of the triangle. As the angle difference between
the target and the device increases, the precision of the cue
decreases in a sigmoid-like fashion. The left speaker shows
a cue that is relatively accurate but not precise and the right
speaker a cue that is relatively precise, but not accurate.

the selected device back and forth. Moving quickly through the
environment could make devices switch immediately after being
selected, constantly attracting the user’s attention in different di-
rections. This could be distracting and annoying for the user but
also confusing and lead to difficulties locating the target. To avoid
this, one could take inspiration from the way thermostats work: the
heating is turned on after the temperature drops to a certain level
and is kept on until it is hot enough. Once this happens, the temper-
ature starts decreasing, but the heating is not immediately turned
on until a certain threshold is reached. For multi-scale attention
guidance, what could be done is adding a margin λ. To be selected,
a device would have to be at least more suitable than the currently
selected device plus this margin. By doing this, the current guiding
device is kept until a significantly better device is found:

dst =

{
d if F (d,u, t ;C) > F (dst−1,u, t ;C) + λ
dst−1 otherwise

(5)

where dst is the device to be selected at time t and dst−1 is the
currently selected device. This would of course mean that once a
device has a suitability larger than 1 − λ no other device would be
selected. Since it would be desirable that at some point the best
guiding device does get selected, selected devices gain momentum
for a short time. The margin λ is active only while the device has
momentum and is slowly decreased as momentum is lost. This
ensures that after momentum is lost, a more suitable device is
selected if such a device exists.

4 STUDY
The multi-modal and multi-scale attention guidance method de-
scribed above was evaluated in a virtual reality (VR) supermarket
environment. For these purposes, we conducted an experiment in
which participants were asked to find a target cereal box. Users
had to walk in the virtual supermarket until they found the shelf
and the target cereal, which was cued by the system according to a
certain combination of conditions.

4.1 Hypothesis
The goal of this study was to examine the effectiveness of the
multi-modal multi-scale guiding method, as well as the effects of
the margin and interaction weight. This led us to the following
hypotheses:

• A mixed guiding method of visual and auditive cueing leads
to better guiding performance compared to a guidingmethod
with only using visual cues.

• No interaction weight (wi= 0) leads to a worse guiding per-
formance compared to conditions withwi of 0.5 and 1.

• No margin ( λ=0) leads to a worse guiding performance
compared to the condition with a λ of 0.2.

• No margin makes a more volatile system compared to con-
ditions with a margin of 0.2.

4.2 Method
4.2.1 Demographics. A group of 46 participants took part in the
study. One participant could not complete the experiment due to
dizziness and one third of the data of two participants was lost
due to an error during the evaluation. These cases were excluded
from the analysis of the data. The remaining participants (22 female,
20 male, 1 not specified) had a mean age of 24.95 years old (SD =
4.11). The genders showed equal distributions across the conditions.
Visual impairments1 were reported by 39.5% of the participants.
The majority reported seldom to no previous interaction with VR
(n=39). The average dizziness level was 2.84 (SD = 1.49) in a 1 to 7
rating scale (1=not at all dizzy, 7= very dizzy). Participants reported
only little (n= 17) or no (n= 26) difficulties seeing clearly in VR.

4.2.2 Setting. The participants started in the center of the environ-
ment, surrounded by four groupings of 4x4 supermarket shelves
with a rotation of either 0◦ or 45◦. To ensure a standard starting
orientation, participants had to fixate a red ball for two seconds at
the beginning of each trial. Each shelf contained 15 different labeled
cereal boxes (see fig. 6).

Before the start of each trial, all the products on the shelves
were randomized and a randomly selected target was placed on one
of them. The visual cues could be either a lamp located over the
shelf (area light), a row of red lights indicating the level of the shelf
(group light), or a single light (point light) directly below the cereal
box (see fig. 1). In addition, auditive cues in the form of speakers
behind the cereal boxes were used to guide the participant. The
salience weightws, was set to 0.5, as it is not clear whether or not

1All participants performed a sight test before the experiment and were able to read
the boxes’ labels in the virtual environment. Participants with corrected vision were
allowed to wear glasses or contact lenses while performing the sight test and the
experiment.
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Figure 6: Top-down view of the evaluation environment.
The user (blue triangle at the center of the map) looks at
a red ball for 2 seconds to start the experiment. The posi-
tions of the shelves containing the four kinds of devices are
indicated by the rectangles.

salience or closeness should be given more importance. For the
same reasonwp, andwz for the visual modality were also set to 0.5.

4.2.3 Study Design. For the experiment, we used a between-within
fractional factorial design, in which the modality (between factor),
as well as the interaction weightwi and the margin λ (within fac-
tors), was varied. The interaction weight was set at either 0, 0.5, or 1
while the margin was set at 0 or 0.2. Due to the chosen experimental
design, we decided to vary interaction weight when the margin
was set at 0.2 and vary the margin when interaction weight was set
to 0.5. This resulted in four conditions: one in which the margin
was 0 and interaction weight was 0, 5, and three conditions where
the margin was 0.2, and interaction weight was either 0, 0.5, or 1.
Participants were randomly assigned to a cueing modality: In the
visual-only modality, participants were only guided by visual cues
(area light, group light, and point light). Likewise, participants in the
mixed modality received additional guiding information through
auditive cues.

4.2.4 Procedure. Participants were asked to imagine that theywere
employees in a supermarket and that their task was to collect prod-
ucts for a delivery service. Thus, they should work as swiftly as
possible. A random permutation of the experiment condition was
generated for each participant. After the explanation of the task
and the controls, the participants had to perform four test trials
(one for each of the conditions). The main experiment consisted of
20 trials (5 of each condition).

At the beginning of each trial, participants were given the label
of the target and had to fixate a red ball. This indicated the starting
position and orientation. Both, the ball and the target label disap-
peared after 2 seconds of fixating the ball. Participants were then
able to move in the environment using an HTC Vive controller
at a maximum speed of 3m/s . Once the participants were close
enough to the target, they were allowed to move physically in an
area of 2.2m × 2.2m and grab the product with the controller. As
soon as the participants grabbed the correct product the trial ended

and they were transported back to the middle of the map. Visual
feedback was given if the wrong product was chosen. Participants
were also able to re-display the target label by pressing a button on
the controller at any point during the experiment run.The partici-
pants were told they could take a break after the first half of the
experiment as well as any time they felt dizzy or tired. After the ex-
periment, the subjects were asked to answer a short questionnaire.
Once they were done, they thanked and rewarded with 5€ for their
participation.

4.2.5 Measurements. We hypothesize that a multi-modal multi-
scale guiding methods leads to a more effective guiding perfor-
mance. Effective performance was defined as fast task-solving and
less walking distance. We observed, that a lot of participants, had
only little experience with VR and that many reported a feeling of
discomfort and dizziness in the experimental situation. This might
have impacted the time a participant needs to find a target. Tak-
ing into account that the walking distance has a high influence on
the time it takes to solve a task, we decided to measure guiding
performance as the distance that participants traveled to a target
in meters (distance traveled). For our calculations, we included the
mean of the trials for each condition. The initial travel distance to
the target was randomized and should have no influence on the
results. This is supported by the fact that extra travel distance (dis-
tance traveled – initial distance to the target) and distance traveled
are highly correlated (r=.98, p<.001).

We assumed that in the no-margin condition more cues occur
due to the subject’s movement and that the system becomes more
volatile as a result. Hence, as an indicator of a more volatile system,
we measured the number of cues presented in a trial (number of
cues). Similar to guiding performance, we calculated a mean for
the number of cues per condition. All dependent variables were
normally distributed.

4.2.6 Apparatus. The test environment was developed using Unity
3D version 5.6. As user input, Unity’s standard first-person con-
troller was taken as it provides all required movements out of the
box. An obvious shortcoming of this is that the user’s gaze di-
rection cannot be tracked, so it was assumed to be the camera’s
directional vector. The input and output of the application were
integrated through a VR headset. The VR headset used in this study
was the HTC Vive which has a refresh rate of 90Hz, an FoV of about
110◦ × 110◦ and supports spatial audio. It is capable of tracking
motion from the headset and the controllers in a room with the
help of two base stations located at opposite corners of the room.
The experiments were conducted with an MSI GT73VR 6RF Titan
Pro with an NVIDIA GeForce GTX 1080 graphics card, an Intel
Core i7-6820HK CPU with a clock speed of 2.70GHz, and 32GB of
RAM running Windows 10 64-bit.

4.3 Results
The reported effects were statistically significant associated with a
p value below .05. In average the participants traveled a distance of
35.29m (SD=4.86). The values for distance traveled per condition
are shown on table 1.

To estimate the effects of interaction weight and modality we cal-
culated a MANOVA to compare the differences in distance traveled
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Table 1: Descriptive statistics

condition Mixed M(SD) Visual-only M(SD) total M(SD)
λ(0.0) ×wi(0.5) 35.32 (7.95) 34.51 (5.30) 34.90 (6.62)
λ(0.2) ×wi(0.0) 33.74 (4.40) 36.81 (7.99) 35.31 (6.60)
λ(0.2) ×wi(0.5) 33.12 (3.38) 39.02 (9.79) 36.21 (7.95)
λ(0.2) ×wi(1.0) 33.63 (4.53) 36.05 (5.37) 34.87 (5.07)

Mean and standard deviation of distance traveled for each
condition in mixed and visual-only modality and in total
for all participants. M = Mean, SD = Standard Deviation, λ =
margin,wi = interaction weight.

for the three interaction weight levels in each modality under a con-
stantmargin of λ= 0.2.We found a significant effect between the two
modalities (F (1,41)=5.97, p=.019, η2p=.127). Participants walked less,
when guided with auditive and visual cues compared to only visual
guiding (see fig. 7(a)). The interaction weight had no significant
effect on distance traveled (Pillai-trace=.03, F (2,40)=0.70,p=.503,
η2p=.034). There was no significant interaction between interaction
weight and modality (Pillai-trace=.09, F (2,40)=1.20,p=.149, η2p=.091).

A second MANOVA was calculated to examine the effects of the
margin in distance traveled, while interaction weight was onwi=0.5.
There was no significant effect neither for margin (Pillai-trace=.02,
F (1,40)=0.80, p=.376, η2p=.020) nor modality (F (1,40)=2.07, p=.158,
η2p=.049). Instead a significant interaction between margin and
modality was found (Pillai-trace=.15, F (1,40)=6.79, p=.013, η2p=.145).
Figure 7(b) shows that when the margin was λ=0.2 participants
walked less in the mixed modality (M=33.12, SD=3.38) compared to
the visual modality (M=39.02, SD=9.79). However, when the margin
was set to λ=0 the difference between the modalities decreased
and in average visual-only guidance (M=34.51, SD=5.30) was more
effective than mixed guidance (M=35.32, SD=7.95).

A third MANOVAwas calculated to analyse the effect of the mar-
gin on the number of cues. The margin showed a significant effect
on these variables (Pillai-trace=.83, F (1,41)=194.97, p<.001,η2p=.826).
The no-margin condition was assosciated to significantly more
cues (M=25.16, SD=4.71) compared to the 0.2-margin condition
(M=14.05, SD=4.61).

The effect of the number of cues on distance traveled were held
constant in an explorative MANCOVA with modality and margin
for distance traveled. When controlling for number of cues, the
significant interaction of margin and modality remained significant
(Pillai-trace=.12, F (1,39)=5.11, p=.029, η2p=.116).

4.4 Discussion
In this user study, we aimed to evaluate a multi-modal, multi-scale
attention guiding method, while varying the margin and interaction
weight for each participant, as well as the modality between partic-
ipants. The results suggest that when a margin is present (λ=0.2), a
better guiding performance can be found in the visual-auditive guid-
ing method compared to a guiding method using visual cues only,
independently of the interaction weight. This partially confirms
our first hypothesis, which stated both visual and auditive cues
leads to better guiding performance, than using visual-only cues.
This is in accordance with the literature [2, 5, 25]. It is surprising

to see that, this benefit was lost in case there was no margin (λ=0).
Performance in the mixed condition and visual-only condition was
comparable when λ=0. Instead, in the presence of a margin (λ=0.2)
and an interaction weightwi (0)=0.5, the performance in the mixed
modality was slightly improved, while in the visual-only modality it
declined. The reason for this interaction effect is not yet completely
explained.

According to our hypothesis, the absence of a margin should lead
to a more volatile system. This hypothesis was confirmed. In the
no-margin condition, there was a significantly higher number of
cues compared to a 0.2-margin condition. We further examined the
influence of the number of cues on distance traveled. The interaction
of margin and modality remained significant, while the effect size
of the interaction between margin and modality was lower when
controlling for number cues. This might indicate that the present
effect could be partly explained by the number of cues.

For the visual-only condition, the reduced number of cues un-
der the presence of a margin could imply less regularly updated
guiding information. This may have contributed to a longer trav-
eling distance. We assume that a user might have been guided to
an inaccurate cue for a longer period of time. In the mixed modal-
ity, the auditive cues could perhaps compensate for the decreased
amount of visual cueing by providing better guidance. It may have
been that whenever the participant was guided towards an inaccu-
rate cue in the 0.2-margin condition, the auditive cue could have
redirected the participant towards the target location. Moreover,
sporadic cueing might have also resulted in slightly better guidance
when visual and auditive cues were combined since many cues
of multiple modalities might have confused the participant in the
no-margin condition. This seems to be the case in the context of
warnings [11, 17]

Contrary to our hypothesis, the main effect of the interaction
weight failed to reach significance. This may suggest that the param-
eter had no strong influence on the guiding performance. Another
possible explanation might be that the design of the virtual su-
permarket simply did not have enough cues that were either only
salient or only close, such that the interaction weight makes a dif-
ference in the guiding performance. An alternative design of the
environment could still prove the usefulness of this parameter. This
could be assessed in a future study.

When looking at the results, however, one has to consider the
limitations of the study. First, the study was conducted in a vir-
tual environment instead of a real-world environment. While VR-
environments have advantages, such as complete control of the
setting, there are also downsides. Most users had little or no previ-
ous experience with VR which lead to difficulties in navigation and
the feeling of dizziness. In turn, this could have been contributed
to noise in the data. Second, as there are conflicting results about
how the number of cues might impact the guidance performance,
further research is necessary. Comparing the developed method to
a system that highlights the target with a single cue could better
explain how the quality and the number of cues impact the guid-
ing performance and usability. Third, is that the current design is
a fractional factorial design: margin levels were varied only un-
der specific parameter settings of the interaction weight and vice
versa. In that case, the effects of interaction weight and margin are
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(a) Mean distance traveled for interaction weight and modality (b) Mean distance traveled for margin and modality

Figure 7: Mean distance traveled (see also table 1) under various conditions of interaction weight, margin, and modality. In
7(a) mean distance traveled as a function of interaction weight and modality while margin is set at 0.2. In 7(b) mean distance
traveled as a function of margin and modality while interaction weight is set at 0.5.

not completely independent of interacting effects between these
parameters.

5 CONCLUSION AND FUTUREWORK
Attention guidance in CPEs is important because it allows the
environment to highlight areas and objects of importance to the
user. However, selecting the right devices or cues to guide the user’s
attention is not a trivial decision. In this work, we address this
problem by introducing a novel method for multi-scale attention
guidance for CPEs. This consists of a flexible function that can
be adapted by a designer to a specific CPE by modifying a few
parameters and weights. The function quantifies the suitability of a
device to lead a user’s attention to a specific target object or area.We
argue that a suitable device is one that is salient enough to attract
the user’s attention and is close to the target such that the user is
guided in the right direction. The salience and closeness functions
were then defined with the help of some secondary functions that
attempt to quantify salience and closeness individually for both the
visual and the auditive modalities. One of the advantages of defining
salience and closeness this way is that the secondary functions could
easily be replaced by better alternatives should they arise. Another
important feature was the transitioning between devices. To avoid
an overly volatile system, a numerical advantage was given to the
currently selected device for a short period of time. Continuous
device switching could then be avoided.

We tested our guiding method in a user study in terms of guiding
performance for visual-only or mixed visual and auditive guiding
information while varying specific parameters (margin and inter-
action weight). The results suggest that multi-modal guidance can
have a supportive effect on the distance a user travels. However,
these results seemed to be dependent on distinct parameter set-
tings, in our case the margin. Future work could provide a more
detailed insight on how different parameter settings could enhance
the guiding performance in general as well in specific multi-modal
multi-scale attention guidance. In the same way, it would be in-
teresting to examine how changes in the properties of the cues
may affect the performance while interacting with the system. For
example changing the frequency or the intensity of the visual and
auditive cues.

This work opens up many new opportunities and research di-
rections. While the attention guidance method evaluated in the
user study managed to guide users to the target objects in VR, an
important next step would be to test the system in a real-world
environment. Doing this would present the system with new chal-
lenges like sensor imprecision and lack of availability of output
devices. Coming up with better alternative secondary functions
that can more accurately estimate the salience and closeness of a
device would also be of great interest. In addition, other devices or
even modalities might improve the guidance performance of the
user. Haptic feedback, for instance, has already been successfully
used to guide users towards a goal[16]. Finally, this method has,
thus far, focused solely on how to guide a single user’s attention
in a CPE. It would be interesting to see how this method could be
adapted to a multi-user setting, where cues from one device may
be perceived by more than one user.
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