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Abstract. In the Horizon 2020 funded Clean Sky 2 programme, the Cognitive Collaboration for 

Teaming project aims at positioning a roadmap towards Single Pilot Operations (SPO) and 

human intelligent machine teaming. Built on top of the states-of-the art of human factors, a 

careful examination of the factors and parameters to be taken into account to form a Human 

intelligent Machine Team (HiMT) was carried out. Each parameter can influence positively or 

negatively teaming. A good HiMT is a HiMT that communicates, shares knowledge, 

information, collaborates and trusts each other to ensure flight safety at the highest level. This 

review shows the added value of multimodality for bidirectional communication in the HiMT. 

Multimodality will allow both verbal and non-verbal communication to be maintained in both 

directions. A review was conducted on the benefits of each of the modalities and means of 

interaction under different conditions and how each modality can complement each other for 

better bidirectional communication that is natural, efficient, and reliable. The objective is to 

transmit information in a clear, accurate and concise manner, but also to ensure that it is well 

received by the receiver (i.e. the CCTeammate and the pilot) and well understood. Each modality 

will allow the CCTeammate to present and/or represent the information in the best possible way 

to the pilot depending on the context and the task at hand. 

1. Introduction 

During a flight, pilots must master complex situations, while facing increasing system complexity due 

to the amount and type of information available. As part of the Horizon 2020-funded programme Clean 

Sky 2, Co2Team (Cognitive Collaboration for Teaming) pursues the idea that a system based on artificial 

intelligence can effectively support the pilot using cognitive computing towards single pilot operations 

(SPO). To create collaboration between the pilot and the intelligent agent, an innovative bi-directional 

communication paradigm and an intelligent allocation of roles and tasks are needed, based on the 

concept of keeping "pilot in the loop". In this way, it is possible to benefit from the most effective pilot 

skills, such as decision making, to achieve flight objectives and guarantee a maximum level of safety 

and better acceptability. 

1.1 Towards Single Pilot Operations (SPO) 

One of the objectives for airlines and aircraft manufacturers in the years to come is to move towards 

SPO and maintain the level of flight safety at its highest level in all circumstances. But SPO without 

extra help for the pilot or without a total redesign of the cockpit adapted to SPO is hardly conceivable. 

A study of single-pilot operations in a legacy cockpit [1] showed that flight performance decreased, and 

that safety margins and workload were considered unacceptable by pilots, especially in an emergency 

situation. So, to help the pilot, different strategies are envisaged such as assistance provided by 

automated systems and replace the co-pilot and his/her role as Pilot Monitoring by automation. 

Increasing automation in a cockpit would reinforce the automation paradox and increase the burden of 
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system monitoring [2, 3] by the pilot alone in the cockpit. To minimize this effect, several research 

works [4, 5] are studying the establishment of a relationship of trust by creating a Human Automation 

Team (HAT). Co2Team’s project goes further by proposing a Human Intelligent Machine Team (HiMT) 

with cognitive computing as a teammate for the pilot instead of more automation. The recommendations 

proposed by Cummings et al. and Shively et al. [5, 6] for HAT comply with Co2Team Cognitive 

Computing Teammate (CCTeammate). It keeps verbal and non-verbal communication, with a good 

HMI², and create a HiMT with the human that understands the machine and the machine that understands 

the human and establishes mutual trust. The CCTeammate of the Co2Team project aims to help the 

transition to SPO but will not replace the pilot in the role of decision maker (captain) and Pilot Flying. 

2. What is Cognitive Computing (CC) 

CC and Artificial Intelligence (AI) use the same technologies i.e. machine learning, deep learning, 

Natural Language Processing (NLP), neural networks and so on. Both can solve complex problems, but 

they have different purposes. CC aims at improving human decision-making and focuses on natural 

interaction with humans. Whereas AI aims at automating processes and solve problems without human 

intervention. CC attempts to build computer systems modelled after the human brain (using deep 

learning approach), which possess NLP, learning and decision-making capability. CC systems have six 

major characteristics: 

1) Information adaptability to integrate big data from heterogeneous sources and then creating ideas 

from them (e.g. multi-sensory integration) 

2) Dynamic Training and adaptation - learning and chaining as they receive new information, new 

analyses, new users, new intersections, or new activity 

3) Probabilistic - discovering relevant patterns based on context, statistically generating and 

evaluating series of evidence-based hypotheses, predicting the probability of valuable connections, and 

returning answer based on learning inferencing. This also includes detection of unexpected patterns. 

4) Highly integrated - automated systems workload management through which all modules 

contribute to a central learning system and are affected by new data, interactions and historical data. 

5) Meaning-based - performing natural language processing and using embedded analytics to 

leverage language structures, semantics and relationships. 

6) Highly interactive - providing tools and interactions design to facilitate advanced communications 

within the integrated system and incorporating human-computer interactions (HCI), data analysis and 

visualizations [7]. 

CC is a barrier-free communication between human and computer in a natural language (in verbal 

and nonverbal forms) is one of the primary goals of CC systems. The CC systems should augment 

human abilities assisting their decision-making processes in the real world [8].  

The functionality of CC however, strongly depends on the methods and techniques of AI. In such a 

way, cognitive computing is an AI based system with a strong focus on helping humans to make 

decisions by communicating with them in a natural manner. That is why a CC system would have more 

chance to pass through the Turing Test than an AI system. 

3. Human factors as the main and central approach 

The state of the art carried out, examines the different human factors (HF) identified in the literature that 

are involved in the integration of an intelligent agent for cockpit operations with all that this implies in 

terms of complexity. 

The Human intelligent Machine Team (HiMT) will operate in a legacy cockpit and will therefore 

deal with the automated systems of the aircraft. The review highlights the benefits and weaknesses of 

avionics automation [9–12] and how cognitive computing could address or help manage them. The 

human tendency towards automation bias is of particular concern, as it occurs when a human decision-

maker ignores or does not seek conflicting information and favours the computer-generated solution that 

is accepted as correct [13–15]. This bias affects teams of people as much as individuals [16]. Co2Team 

wants to take a different approach and see how cognitive computing can help the pilot in a different way 

than automatization and avoid automation bias. On the contrary of avionics systems that are not designed 

and does not behave like a team member, the focus here is on how to create a HiMT. 

Previous attempts in the field of aviation have been studied, such as the French "Electronic Copilot 

(FR)" for Rafale [17–20], the US "Pilot Associate" by DARPA (Defense Advanced Research Projects 
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Agency) and US Air Force’s Wright Laboratory [21], Rotorcraft Pilot's Associate (RPA) [22–24]. And 

also more recent attempts such as IBM and Airbus CIMON [25–27]. 

3.1 Teaming 

Co2Team aims to build a HiMT, so a review has been conducted to look at what cooperation is, how it 

works for human-human cooperation, and for human-machine cooperation [28–32]. A recent 

experiment in 2019 [33, 34] showed that human-AI cooperation is possible and that the team's 

performance is improved as a result.  But Co2Team is about human- intelligent agent collaboration, 

which is why a precise study has been carried out on what collaboration is and the differences with 

cooperation. In both there is an allocation of tasks and roles between the team members, but 

collaboration is spontaneous and based on commitment. It is more an active and voluntary act where 

each member of the team is responsible for the whole [35–38]. The cultural effect and context on 

communication and collaboration in a small-group was considered, based on what is already applied, 

such as Crew Resource Management. Since CRM trainings have given pilots the tools to move from 

good cooperation to better collaboration, it may be important to maintain this even in the SPO and to 

adapt it to the HiMT [39]. More specifically Co2Team means Cognitive collaboration for Teaming, 

collaboration was presented, but what is teaming from a cognitive point of view for each individual and 

as a team? Team cognition [40] is a dynamic team activity inextricably linked to context that applies to 

the team (i.e. shared mental model [5, 37, 41]). This implies that the CCTeammate must also be equipped 

with the ability to deduce certain elements from a real situation (i.e. theory of mind ToM [42–44]). In 

other words, it means knowing the capacities and limits of the other teammate and being able for each 

member of the team to deduce, foresee and adapt his/her behavior, actions, needs. 

The use of AI does not escape the need for mutual trust between the pilot and the CCT, nor from the 

trust the team will establish in the avionics. Therefore, an in-depth review has been carried out on how 

trust is built [45, 46] and maintained at the right level through positive and negative feedback, to avoid 

under and over trust [13, 14, 47–56]. Human decision making (DM) process [57–61] has also been 

considered as well as risk management to understand how the CCT may assist the pilot [62, 63], using 

the same DM model as the pilots (e.g. FORDEC). CCT will serve all the necessary insight to provide 

decision makers, the pilot with the information needed to make better and data-driven decisions and 

minimize the risks of DM bias and avoid some cognitive bias. 

4. Multimodal Human Machine Interface and Interactions (HMI²) 

Always with a human factors (HF) centered approach a review was conducted about the interactions 

between man and machine and how these interactions would be with a Cognitive Computing Teammate 

(CCT). The aim being to form a hybrid HiMT, the review focuses on the different aspects of multimodal 

communication (MMC) to keep the most familiar way of communication and collaboration for the pilot 

(i.e. Human-Human). It will be important to keep the verbal and non-verbal parts of communication. 

This last point is all the more important as the absence of non-verbal communication leads to more 

confusion (especially when discussing charts or briefings), and more difficulties in interpersonal tasks 

that require knowing the state of the teammate [64]. Bidirectional MMC is therefore promoted, aiming 

not only at keeping the non-verbal bi-directional communication, but also at task efficiency, fluidity and 

understanding. And it's through this bi-directional MMC that the HiMT will be possible. The use of bi-

directional MMC should also ensure good usability and provide a form of redundancy and diversity (e.g. 

verbal + visual) which is one of the most useful tools to reduce the probability of a major fault and thus 

ensure good reliability of the interaction.  

Most importantly the CCT will have to adapt the MMC to the context (e.g. ongoing task, gaze) but 

also adapt the content and representation to the context and modalities chosen. Jones (1990) [65] 

suggested, that if each modality performs better in relation to a specific task in a specific context, and if 

they complement each other and address each other's weaknesses, then combining them may be the most 

natural and effective method of interaction. But the use of MMC can overload the visual and audio space 

if it is poorly designed. A good MMC with adapted HMIs must not create a cognitive, visual, or auditory 

overload for the pilot. The means used for MMC must complement each other but not add up on the 

same channels. 

The HF and user-centred approach led us to conduct semi structured interviews and cognitive 

walkthroughs with pilots to find out their needs and desires concerning the CCTeammate and this MMC. 
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Based on these interviews and the literature review, the CCTeammate will use as its primary modality 

of interaction the one favoured by the pilots i.e. oral. Oral communication using NLP as well as the other 

modalities and HMIs will have to be adapted to the culture of the pilots, the airlines and the manufacturer 

using the same phraseology, the right units, and the right terms, etc.  

The different possibilities of interaction were investigated as well as the interests of each of them 

under different conditions and for both way of communication. The survey starts with the different 

inputs the pilot can provide, like the one already implemented like the voice via the microphone of the 

headset, the KCCU and the touch screen (TS). And those that are interesting to implement such as eye 

and gestures tracking. In addition speech to text (STT) and convolutional neural networks (CNN) 

technologies can be used for speech emotion recognition (SER) [66, 67]. Mainly because it is through 

speech that people communicate emotions, cognitive states and intentions [68]. So oral will be used as 

main communication modality, it is the one promoted by the pilots, it is the most natural and needs no 

additional equipment. TS can also be used, allowing a quick direct interaction [69–71]. But it cannot be 

used as main interaction modality because it requires a free hand and gaze [72, 73]. Eye and gesture 

tracking [74–82] can be used in a complementary way to enable non-verbal communication like pointing 

at something. The infrared cameras used for gesture tracking can also be used for facial emotion 

recognition [83, 84] to complement the SER as the emotions of the pilots cannot be neglected in the 

HiMT. Emotions affect, among other things, attention, startle effect, motivation, and ToM. Talking to 

an intelligent machine incapable of recognising and reacting to emotions and without empathy would 

be like talking to a sociopath you do not want to team up with. 

But how the CCT can communicate in a multimodal way with the pilot using the different senses of 

the pilot? Oral communication will also be chosen as the main modality of communication e.g. NLP 

Text to Speech and also to convey emotions such as smooth talking to calm the pilot in a stressful 

situation. It will be possible to use a visual support e.g. if there is too much information at the same time. 

But it is not interesting or even useless to display information Head-down if the pilot is looking Head-

up. For this it will be interesting to use the Augmented Reality to display information wherever the pilot 

is looking and to draw pilot’s attention. 

The Figure 1 summarizes the different modalities according to each direction of communication. 

Human factors and certification recommendations have been considered in this review to select an HMI² 

with good usability. The goal being for the pilot to have an intelligent teammate who is pleasant to use, 

reliable, and resilient. 

 

Figure 1: Bi-directional MMC 

5. Conclusion 

To move towards SPO, additional assistance is needed to ensure acceptable working conditions for pilots 

and maintain a high level of safety. This work examines the different human factors identified and 

involved in the integration of an intelligent agent for cockpit operations with all that this implies in terms 

of complexity (work, tasks and environment). And the factors involved in forming a hybrid team with a 

pilot, the HiMT. In the course of reading and research, a selection has been made of the factors that 

seem to be most relevant in the literature and most adapted to the intelligent agent. The goal being to 
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design a HiMT with the human that understands the machine and the machine that understands the 

human and to maintain mutual trust. Based on a thorough study of the literature, a review and selection 

of each means and modality of communication was carried out for each of the two directions of 

communication. The survey studied the advantages and disadvantages of each of them and how they 

complement each other in their use, adding up their strengths and complementing their weaknesses. The 

use of multimodality will ensure operational resilience. Human factors and certification 

recommendations were considered in this review to select an HMI² with good usability. The objective 

being for the pilot to have an intelligent teammate who is pleasant to use, reliable, resilient, 

understandable with few constraints and with whom s/he will be able to communicate and collaborate 

effectively. By taking human factors into account, the power of human-machine symbiosis can be 

enhanced. Pilot and CCT collaborate by doing what they do best. Co2Team is in line with the vision of 

Horizon Europe's CleanSky2 programme with the use of the CCT, which could serve as an intermediate 

step towards opening avionics to the open world and intelligent unmanned aircraft. 
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