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ABSTRACT We propose a deep learning based framework that learns data-driven temporal priors to perform
3D human pose estimation from six body worn Magnetic Inertial Measurement units sensors. Our work
estimates 3D human pose with associated uncertainty from sparse body worn sensors. We derive and
implement a 3D angle representation that eliminates yaw angle (or magnetometer dependence) and show
that 3D human pose is still obtained from this reduced representation, but with enhanced uncertainty. We do
not use kinematic acceleration as input and show that it improves the generalization to real sensor data
from different subjects as well as accuracy. Our framework is based on Bi-directional recurrent autoencoder.
A sliding window is used at inference time, instead of full sequence (offline mode). The major contribution
of our research is that 3D human pose is predicted from sparse sensors with a well calibrated uncertainty
which is correlated with ambiguity and actual errors. We have demonstrated our results on two real sensor
datasets; DIP-IMU and Total capture and have come up with state-of-art accuracy. Our work confirms that
the main limitation of sparse sensor based 3D human pose prediction is the lack of temporal priors. Therefore
fine-tuning on a small synthetic training set of target domain, improves the accuracy.

INDEX TERMS 3D human pose, deep learning, uncertainty estimation, inertial motion capture, sparse
sensing, magnetic inertial measurement unit (MIMU), 9-axis IMU, wearable sensors.

I. INTRODUCTION
Estimation of 3D human pose is an important goal in
computer vision, augmented and virtual reality, robotics
and human motion capture. Either extrinsic sensors like
cameras or body fixed sensors are utilized for this pose
estimation. In later category, inertial and magnetic sen-
sors have become quite common with advent of low cost
Microelectromechanical systems (MEMS) in recent years.
This technology is called inertial motion capture (i-Mocap).
Compared with camera based 3D pose estimation, body
worn inertial motion capture is robust to occlusion and also
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suitable for pose estimation in the wild. However the number
of sensors or special clothing makes i-Mocap more obtru-
sive. Commercially available i-Mocap systems like Xsens
use upto 13–17 sensors; one per each body segment for
full kinematic capture [1]. The setting up and calibration
of so many wearable sensors take time. Each sensor node
comprises of magnetic-inertial measurement unit (MIMU),
also often called 9-axis IMU. It employs sensor fusion of
rate gyro, accelerometer and magnetometer to obtain an
orientation estimate and linear acceleration in a global frame.
The human body has constrained degree of freedom and
temporal coherence and smoothness is an important fea-
ture of human motion. Many existing kinematic or inverse
kinematic based i-Mocap frameworks, therefore uses

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 36657

https://orcid.org/0000-0002-2561-8304
https://orcid.org/0000-0002-8120-7438
https://orcid.org/0000-0001-6926-7983


H. T. Butt et al.: Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction

predefined constraints to reduce measurement errors or
drifts [2]–[6]. In past research [7]–[9], a small set of iner-
tial sensors is shown to estimate 3D pose to a reasonable
accuracy. The data-driven approaches using reduced sensors
(≤6 instead of 13–17) [10]–[13] are more suitable for ambu-
latory data capture than full kinematic approach [14]–[19].
The scalability of data driven approach to 3D human pose
estimation using reduced sensor set has been demonstrated
using deep learning [20] and a large synthetic dataset. Reduc-
ing the number of sensors and their flexible placement on
body makes the 3D pose estimation less obtrusive and thus
this modality can be used for daily activity monitoring,
ergonomics and wearable health more easily. However a
learned model estimating the 3D pose with reduced sensors,
depends greatly on the correlation in the data. Thus the
predictions with inputs outside the training data are often
inaccurate. In such a case, an estimate of uncertainty of
predicted 3D pose becomes important.

Our presented work focuses on deep learning based uncer-
tainty aware framework that learns data-driven temporal and
spatial priors in a latent manifold to perform constrained
3D human pose estimation from sparsely worn Magnetic
Inertial Measurement units (MIMU) sensors as input. The
main contribution of this work are,
(1) Data-driven uncertainty estimation of 3D human pose

from reduced sensors.
(2) A robust deep learning model which leads to a straight-

forward generalization to real sensor data, by training
on ‘synthetic’ data.

(3) Though our work use full orientation estimation using
magnetometer, we also show that a reduced orientation
estimation (comprising only pitch/roll) from a sparse
set of body worn MIMUs is ‘sufficient’ to estimate
3D human pose but increases the uncertainty. Thus
dependence onmagnetometer can be eliminated, which
is desired in magnetically disturbed indoor environ-
ment or when IMU without magnetometers are used.

(4) As compared to [20], [21], our work shows that linear
acceleration if used as input reduces the generalization
to real sensors, due to different skeletal lengths and
variable placement of sensors on real subjects. Our
model achieves better performance in terms of general-
ization and accuracy than state-of-art [20] by not using
the linear acceleration from sensors.

Also compared to existing state-of-art data-driven
approaches [20], [21], we not only predict 3D human pose
from a reduced number of sensors, but also provide a well
calibrated estimate of uncertainty. This has an advantage
of uncertainty driven information fusion with other sensor
modalities [22] or with the output of other uncertainty based
algorithms like Kalman Filter [3], [5], [23]. Our model also
works in the inhomogeneous magnetic field, by ignoring the
heading or yaw information but it shows more uncertainty in
this case. The later problem is not addressed by [20], [21],
but is a well-known limitation of i-Mocap. To the best of our
knowledge, our work demonstrates a magnetometer robust

3D human pose estimation using reduced or sparse sensors
for the first time. Previous work [2], [3], [5], [23], [24] has
addressed this problem in the context of full body worn
sensors (typical 13–17 sensors).

II. RELATED WORK
A. INERTIAL HUMAN MOTION SENSING
The accelerometers have been used as wearable sensors for
human gait analysis [25] and one degree of freedom knee
joint angle estimation [26]. Themain limitation of accelerom-
eters is that these only measure the pitch and roll angles
(heading angle is missing) with reference to gravity vector.
Also during the movement, the accelerometer not only reg-
isters the gravity but also a linear acceleration, depending
on the displacement from joint axis. Few works in the past
[8], [27] demonstrated that a reduced number of body worn
accelerometers can obtain complete 3D human pose. The
shortcoming of accelerometer based approaches arises from
the fact that real subjects have different lengths of body
segments and placement of sensors also varies, which lead to
variations in sensor readings for same pose. This coupledwith
the fact that accelerometers do not provide absolute heading
angles has been a major hurdle in accelerometer based human
motion sensing. However when MEMS accelerometers are
integrated with rate gyros and magnetometers in a magnetic-
inertial measurement units (MIMU) or 9-axis IMU, sensor
fusion [28] can be used to obtain full 3D orientation (pitch,
roll and heading). More recently 9-axis or 6-axis IMUs (less
magnetometers) have been used [2], [3], [5], [23], [24] for
full body humanmotion capture. The human body is assumed
as comprising of rigid segments articulated at joints and one
sensor per segment is sufficient to compute 3D joint angle
if adjacent segment orientations as rigid body are known.
The main limitation and challenge to i-Mocap frameworks
however is long term drift of sensors. Thus accurate cali-
bration and robust sensor fusion [29, 30] is essential pre-
requisite to inertial human motion sensing. The kinematic
and inverse kinematic based i-Mocap frameworks employ
optimization [31] or stochastic filtering [23].

B. SPARSE SENSING OF HUMAN POSE
Past work has shown that owing to kinematic and temporal
constraints of 3D human pose, it is possible to use only a
reduced set of sensors (as opposed to one sensor per segment)
and still obtain 3D human pose; though in general ambigu-
ity of this ill-posed problem can lead to high uncertainty.
Liu et al. [32] and Chai and Hodgins [33] demonstrated
this with statistical human body model fit to reduced marker
set. A small set of inertial sensors [7]–[9] is shown to esti-
mate 3D pose accurately. Andrews et al. [34] have used an
inverse dynamic solver for joint torques and internal/contact
forces which satisfies motion priors and sparse sensor mea-
surements, and thus generates physically plausible human
motion. The data-driven approaches using reduced sensors
(≤6 instead of 13–17) [10]–[13] are well suited for online
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implementation than optimization or constrained stochas-
tic filtering [15]–[19]. But good scalability of data driven
approaches typically require a large dataset. Huang et al. [20]
used deep learning and a large SMPL synthetic dataset for
learning 3D human pose from sparse (six) ‘synthetic’ sen-
sors and demonstrated state-of-art results after fine-tuning
on real MIMU data. Their work is an extension of earlier
optimization based approach by von Marcard et al. [14].
Wouda et al. [21] show that shallow temporal convolu-
tion (TC) and multilayer perceptron (MLP) yield similar
results but ‘jerkiness’ error is less using deep learning
approach. In their later work, Wouda et al. [35] employed a
Kalman Filter to address this jerkiness from shallow network.
Recently, Ekhoff et al. [36] demonstrated the condition for
observability in a kinematic chain comprising of double hinge
joints using sparse magnetometer free inertial tracking. Their
work highlights that a sliding window (moving horizon) filter
can estimate kinematics of two connected single hinge joints,
using measurements from magnetometer-free IMUs only at
the end links.

C. LEARNING OF HUMAN MOTION MANIFOLD
The data-driven learning of human motion has come to fore
with large human motion capture datasets and deep learning.
The human motion can be represented in a latent manifold
space. Both convolutional and recurrent neural networks are
used to learn humanmotionmanifolds [37]–[39]. This section
only identifies the representative work to emphasize the relat-
edness to our research. Li et al. [40] show that the latent repre-
sentation of human motion learnt by a bidirectional recurrent
autoencoder is robust to both input noise and missing infor-
mation. A related issue in human motion manifold learning
is minimal representation of 3D joint angles (SO3) so that
data-driven learning is not complicated by singularity, duality
and discontinuity problems occurring in input or output data.
Earlier work byMurthy et al. [41] has compared Euler angles,
quaternions and more intuitive swing-twist representation.
Also Zhou et al. [42] show that 5-parameter and 6-parameter
representations (instead of full 9-parameter rotationmatrices)
are continuous and best for deep learning.

D. UNCERTAINTY IN DEEP LEARNING
Estimating uncertainty of deep regression is relatively new
research direction. Both the uncertainty in the data (aleatoric)
and model uncertainty (epistemic) affect the final error
in the output of deep model. The aleatoric SO3 uncer-
tainty is dealt with by negative log likelihood (NLL) cost
function and quaternions in the context of 3D rotation by
Peretroukhin et al. [43] who demonstrated it on KITTI visual
odometery dataset. Russel and Reale [44] extend uncertainty
estimation in deep learning to multivariate outputs and used
a Kalman filter for training and evaluation. Salinas et al. [45]
and Zhu and Laptev [46] deal with uncertainty estimation
in time series forecasting using LSTM. Most frameworks
assume independent Gaussian distributions for outputs and
estimate both mean and standard deviation. Wen et al. [47]

and Kivaranovic et al. [48] have proposed a distribution
free approach and predicted quantiles or prediction inter-
vals of outputs. The main challenge in learning uncertainty
from data in deep learning lies in calibration of regression
uncertainty [49]. Laves et al. [50] propose a framework for
calibration of test data uncertainty by scaling of standard
deviation (σ ) with a scalar value. The robust uncertainty from
deep regression allows detection of unreliable predictions.

To the best of our knowledge, our work is the first to
implement and discuss uncertainty of 3D human pose esti-
mation obtained from sparse MIMUs using deep regression.
It is motivated by the fact that human motion has spatial
and temporal constraints which may be learnt in latent space
and such a latent space representation is then robust to
missing or noisy information in the input space [40]. Our
work differs from Huang et al. [20] and Wouda et al. [21]
in that it also reports the data-driven uncertainty estimation
of 3D human pose from reduced sensors. It also does not
use acceleration as input like [20], [21], which is shown to
improve generalization to realMIMU datasets. Also our work
finds out that the ‘jerkiness’ which is reported by shallow
networks approach [29] results from fixed finite temporal
context. We train a bi-directional recurrent autoencoder and
at inference time use a temporally skewed time window for
real-time prediction with minimum ‘jerkiness’.

A significant improvement that we make over [20], [21] is
the use of 6D parametrization for input 3D orientation and
exponential map for 3D joint angles at the output. The later
allows us to predict the uncertainty in interpretable terms
(radians) directly at the output of network without any post
processing. Both rotation matrix and quaternion require an
orthogonalization step [20], [21] and incorporation of upper
limit of uncertainty is not straightforward especially when a
parameter is near unity.

Apart from uncertainty estimation, most important aspect
of our work is that we develop a robust model and show
that even a reduced orientation estimation (comprising only
pitch/roll) from a sparse set of body worn MIMUs is
‘sufficient’ to estimate 3D human pose with enhanced uncer-
tainty. Thus dependence on magnetometer can be eliminated,
which is desired in magnetically disturbed indoor environ-
ments. The estimation of kinematic uncertainty of 3D human
pose obtained from sparse sensors may be used for uncer-
tainty driven information fusion with other sensor modal-
ities [22], or with the output of other uncertainty based
algorithms like Kalman Filter [3], [5], [23].

III. PROPOSED METHODOLOGY
In our work we train a deep bidirectional recurrent autoen-
coder to learn a rich set of temporal priors for human pose
in latent space using SMPL datasets [51]. The model is
driven using an input of five body segment orientations (left
wrist, right wrist, left leg, right leg, head), normalized with
respect orientation of the root of human skeleton. These are
‘synthesized’ using forward kinematics. The model outputs a
full human pose (joint angles) in SMPL space, less rotation
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FIGURE 1. Overview of our framework with key contributions.

and translation of root. Only major1joint angles in SMPL
pose are estimated, assuming no 3D rotation at other joints.
The overview of our framework is shown in Fig. 1 (graphical
abstract). The trained model has then been tested on two real
MIMU datasets in Section V-B. The results of our framework
are also compared with existing frameworks (SIP [14] and
DIP [20]) on same datasets. A robust input parametrization
is further suggested to eliminate the yaw drift/errors due to
magnetometer in SectionV-C.Ablation studies are performed
to understand the limitations and to come up with a more
optimal model in Sections V-D to V-I.

A. SYNTHETIC DATASET
The deep learning for human motion requires an abundant
dataset comprising of many subjects, varying movements and
activities, at different temporal speeds and range of motion
of human joints. Many motion capture datasets are available,
but these do not use standardized 3D skeleton and to the
best of our knowledge only few [52], [53] include data from
inertial sensors with associated calibration. Thus [20] have
used a large synthetic dataset developed based on SMPL [51]
for training their model. We have employed the synthetic
dataset made publically available by [20]. But we also added
data augmentation to achieve a more robust training of our
models. This SMPL dataset includes Human3.6 [54], CMU
human activities [55], Human Eva [56], Joint Limits [57] and
eight other datasets all transformed to SMPL skeleton using
AMASS framework [51]. The frame rate of standardized
SMPL dataset is 60Hz. The body segment orientations are
then ‘synthesized’ using forward kinematics from root sensor.
The orientation of root sensor is simply obtained from SMPL
pose. Assuming that inertial sensors body frames are aligned
with human body segment (i.e. sensor-to-segment align-
ment is identity), the ‘synthesized’ body segment orientations
then represent sensor orientations as well. For augmenting
this ideal senor data, we have introduced both zero mean

1Major SMPL joints include Left Hip, Right Hip, Spine0, Left Knee,
Right Knee, Spine1, Spine2, Neck, Left Clavicle, Right Clavicle, Head, Left
Shoulder, Right shoulder, Left Elbow and Right Elbow.

Gaussian white noise as well as random impulse noise to ideal
sensor orientations. For each sequence in the dataset, we also
introduced a drift in yaw angle of 3D orientation (based on
random small bias value integrated over time). Our model
was initially trained on raw ideal synthetic data and then fine-
tuned on noise/ drift augmented data.

B. REAL MIMU SENSOR DATASETS
Two realMIMU sensor datasets are used for testing ourmodel
trained on ‘synthetic’ augmented dataset. DIP-IMU dataset
has been provided by Huang et al. [20] as open source. Total
capture MIMU dataset [52] is a publically available dataset
with MIMU orientations and calibration. Both these datasets
have an advantage that Huang et al. [20] have performed
testing on these and our results are thus directly comparable.
Also in case of total capture dataset, SMPL ground truth pose
are obtained using AMASS framework [51]. In comparison
Wouda et al. [21] has also used own real MIMU dataset, but
their ground truth 3D poses are not in SMPL and instead are
based on biomechanical model of XSens MVN. All these
datasets are obtained using Xsen motion tracking MIMUs,
hence apart from experimental conditions or calibration accu-
racy, the test results demonstrated on DIP-IMU and total
capture, would be applicable to [21] as well.

C. SENSOR PLACEMENT
Six MIMU sensors are placed near left wrist, right wrist, left
lower leg, right lower leg, lower spine and head. The sensor
at lower spine is treated as reference or root sensor. The five
sensors located at lower/upper limbs and head provide orien-
tationmeasurements w.r.t. root sensor which is used to predict
full 3D human pose. An alternate sensor configuration with
lower legs sensors moved to feet and wrist sensors moved to
hands, i.e. the end effectors of kinematic chain, is tested to be
worse in performance.

Another interesting configuration is with sensors located
on left/ right upper arms and left/right upper legs. Theoret-
ically, this predicts shoulder joint and hip joint angles with
high accuracy. However it is completely unable to constrain
and predict the elbow and knee joints during arbitrary move-
ments.

The acceleration readings from these sensors depend on
their exact location w.r.t joint axis and center of rotation.
Although Huang et al. [20] has used the sensor accelerations
like earlier work by vonMarcard et al. [14], we notice that the
accelerations vary based on where the sensors are mounted
on skeleton and hence are not a reliable input feature. von
Marcard et al. [14] got better results with accelerations (SIP
versus SOP), because they obtained SMPL model shape with
laser scans. The training by Huang et al. [20] uses synthetic
data from a standard SMPL skeleton and authors are able
to generalize to real subjects with real sensors only after
fine-tuning. Even on synthetic data, we show that the error
obtained by Huang et al. [20] is more than our work, which
only uses sensor orientations.
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D. CALIBRATION OF INPUT DATA
Both the ‘synthetic’ and real MIMU 3D orientation data
needs proper calibration before it can be used as input to
the model. The orientation of the root of the human skeleton
varies as subjects perform movement. But the overall 3D
human pose is invariant to the rotation and translation of the
root. Thus the orientation of five end effectors (left wrist, right
wrist, left leg, right leg, head) is normalized w.r.t. orientation
of the root (base of the spine near hip) in SMPL according to,

RR0Bit =

(
RTR0t

)−1
RTBit (1)

where T and Bi represents the SMPL frame of reference
and reference frame attached to bone segment respectively
as shown in Fig. 1 and R0 is frame of reference fixed to
root. RR0Bit : Bi → R0 is the rotation matrix from root frame
to respective bone frame of reference at time instant t and
same convention holds for other rotation matrices represent-
ing orientations. As evident we need 3D orientations from
root to SMPL and bone to SMPL to compute our ‘invariant’
orientation input to the model using (1). This is trivial for
‘synthetic’ data, since both the orientations can be obtained
from SMPL ground truth pose using forward kinematics.

But when real MIMU sensors are employed, the frame of
reference of sensor Si is not always aligned to reference frame
of body segment Bi. We need to compute a sensor-to-segment
calibration matrix RBiSi : Si → Bi. This is done at startup
time using a ‘static’ calibration pose. We have implemented
static I-pose for this calibration due to ease of implementation
for elderly and functionally impaired subjects. More details
are available in [58]. Also due to residual intra-sensor startup
and calibration errors, each MIMU sensor after sensor fusion
provides an orientation, RIiSi , where the ‘perceived’ inertial
frame Ii is slightly offset from actual global inertial frame of
reference G. Hence we also need to obtain RGIi : Ii → G for
each sensor at startup. The full calibration of real MIMU data
then proceeds in following steps,

RGSit = RGIiRIiSit (2a)

RGBit = RGSit

(
RBiSi

)−1
(2b)

RR0Bit =

(
RGR0t

)−1
RGBit (2c)

R
R0Bi
t = RTGRR0Bit (2d)

We obtain RTG from root sensor as opposed to head sensor
(unlike [20]) at initial body model calibration. This is found
to be more robust to inter and intra subject variations.

As opposed to [20], [21], we have not used acceleration
for reasons discussed before and later in results section,
we demonstrate the advantage as well. Hence the calibration
of acceleration is not discussed.

E. INPUT & OUTPUT PARAMETERIZATION
Two different 3D angle parametrization have been used in
our work for input body segment orientations and output

human pose respectively and the motivation for using both
is explained in this section.

Earlier work by Huang et al. [20] employed full
9-parameter rotation matrix for both input and outputs,
whereas Wouda et al. [21] have used quaternions. Both rota-
tion matrix and quaternion require norm constraints since
underlying degree of freedom (DoF) is only three in case
of 3D rotation. This is accomplished as post-processing
of output in [20] and [21] and thus cause additional jit-
tering error. Moreover the input is over-parameterized in
case of either quaternions (4 parameters) or rotation matrix
(9 parameters). This redundancy both of input and output also
increases the number of model parameters, which increase
the training and test time by order of O(n), where n is number
of model parameters. On the other hand, if a minimal 3DoF
parametrization is used, it introduces gimbal lock, singularity
and discontinuity issues in input space as highlighted in [41].

We have employed for input orientations, a 6-parameter
representation (motivated by Zhou et al. [42]). A complete
3× 3 rotation matrix is over-parametrized. But cross product
of any two rows and columns in a right handed order leads to
third row/column. Zhou et al. [42] chose first two columns
for its 6D representation, since it uniquely determines the
remaining column. Our 6-parameter representation (derived
in Appendix. A) is a simple extension of the fact that yaw,
pitch and roll angles (which completely define 3DoF) can be
conveniently derived from rotation matrix as follows (ZXY
order),

γ = tan−1 (r21/r11) (3a)

θ = tan−1
(
−r31/

√
r232 + r

2
33

)
(3b)

ϕ = tan−1 (r32/r33) (3c)

Here γ , θ , ϕ are yaw, pitch and roll angles respectively
and r11, r21, r31, r32, r33 are components of 3 × 3 rotation
matrix. As evident only 5 components of 3 × 3 rotation
matrix are sufficient to obtain 3DoF. However to avoid an
indeterminate case (Appendix. A)we also include r22 tomake
a 6-parameter representation. Compared to Zhou et al. [42],
our 6-parameter representation can also be used to derivea
reduced 3-parameter representation derived from (3) com-
prising of r31, r32, r33 which only account for pitch and roll
angle information. Though the reduced 3-parameter represen-
tation increases the ambiguity and uncertainty, the motiva-
tion of it is ‘justified’ for reasons related to magnetometer
error in inhomogeneous magnetic field and discussed later in
Section V-I.

For output human pose (joint angles), we have directly
used exponential map (3-parmeters) representation of SMPL.
By SMPL definition of human skeleton, the joint angles in
exponential map representation are always continuous owing
to joint constraints (explained in Appendix. B). It is not only a
minimal DoF representation for human pose, but also allows
us to learn uncertainty directly in quantitative terms in output
space. If either rotation matrices or quaternions are used
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for output, then post-processing would be needed to obtain
uncertainty measure in radians or degrees. The calibration of
uncertainty in later case would also be complicated.

F. APPROXIMATE BAYESIAN MODEL
Given a training dataset, D =

{
(xt , yt)i

}N
i=1, where each

training example (xt , yt) is a sequence or time series, we learn
an approximate Bayesian model to infer probability distribu-
tion P (yt |xt) of 3D human pose from a sequence of sensor
orientations xt . If we assume a Normal distribution with
diagonal covariance for the full 3D human pose P (yt |xt) =
Ny(µt , σ 2

t I ), we can write our model as,

Ny

(
µt , σ

2
t I
)
= Fµt ,σt

(
{xt }

t+m
t−n ; ht , {θ}1:p

)
(4)

where our modelF performs an approximate Bayesian infer-
ence using p perturbations of its parameters θ to obtain
mean pose µt and its diagonal covariance vector σ 2

t , given
a sequence of inputs xt over a sliding time window [t − n :
t + m]. Here, n are input samples from past and m are future
samples; ht represents the latent state of the model for a given
sequence of inputs. In deep learning framework, this model
has been implemented as a shallow (but wide) MLP neural
network or a 1D CNN by Wouda et al. [21] and a recurrent
temporal network by Huang et al[20]. In case of MLP neural
network or a 1D CNN, the input time window remains fixed
and cannot be changed at inference. To retain flexibility at
inference time and learn a compact model, we have imple-
mented a recurrent model which propagates the latent state
ht forward-backward recurrently and compose (hFt ◦ h

B
t ) at

time t to get the output. It is given as follows,

Ny

(
µt , σ

2
t I
)
= F

(
{ht |ht−1, xt }

t+m
t−n

◦ {ht |ht+1, xt }
t−n
t+m ; {θ}1:p

)
(5)

Consistent with previous literature [45], [46], the aleatoric
uncertainty σ 2

t is learnt directly as an output alongside the
mean pose µt , as an attentive regularization term in nega-
tive log likelihood (NLL) cost function (to be described in
Section IV-D). The aleatoric uncertainty adapts to variance
of data in the domain of training set. The model (epistemic)
uncertainty is obtained using approximate Bayesian infer-
ence as explained above and for that Monte-Carlo dropout
(MC- Dropout) [34] is used at inference time. Ensemble
approach [59] is also possible for epistemic uncertainty but
is computationally more expensive. The composition of two
types of uncertainty (aleatoric and epistemic) is described
in Section IV-F.

IV. IMPLEMENTATION
We have implemented our deep learning framework in Ten-
sorflow 1.15.2 and Python 3.6 on a Desktop computer with
GPU-NVidia GTX 1060 and CUDA 10.1. The data pre-
processing, preparation and results evaluation is performed
using Matlab2019a.

FIGURE 2. Our Bidirectional Recurrent Autoencoder (BiRAE) model.

FIGURE 3. (a) Forward pass in BiRAE (offline/ training). Blue are the
forward cells. Red are backward cells. (b) Sliding time window inference
in BiRAE. The past (blue window) and future (red window) subsequence
is used for real-time prediction of current time step. The size of future
window plus computation time defines latency.

A. MODEL ARCHITECTURE
For the model given in (5), we have implemented Bidi-
rectional LSTM auto-encoder with two stacked hidden
Bi-LSTM layers each of size 512 (the size of our latent
state). The input to Bi-LSTM is fully connected layer of
size 512 with a drop-out of 0.2 and ReLU function. A fully
connected output layer after Bi-LSTM stacked layers is cho-
sen with size 150 and linear output to obtain mean pose µt .
The same layer with independent weights predicts the diag-
onal covariance vector σt . The overall architecture is shown
in Fig. 2. A forward pass on this bi-layer Bi-LSTM comprise
of four sub-passes as shown in Fig. 3.
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B. PREPROCESSING
Huang et al. [20] employed and tested different normal-
ization schemes on the input to their model. We have also
tested such normalization of input, but no significant dif-
ference is noticed with or without normalization. Since we
are only using orientations (and no accelerations), both the
6-parameter input representation and output 3D pose in expo-
nential map (in radians) vary in small range around zero, and
normalization has no advantage.

C. POSTPROCESSING
Of 24 joints in SMPL model, only 15 major joints are pre-
dicted by our model which includes: Left Hip, Right Hip,
Spine0, Left Knee, Right Knee, Spine1, Spine2, Neck, Left
Clavicle, Right Clavicle, Head, Left Shoulder, Right shoul-
der, Left Elbow and Right Elbow. Since the rest of joints are
located forward of sensors positions at limbs, these are not
predicted and substituted by unit rotation as a post-processing
step to get the full 3D human skeleton.

We predict the 3D pose directly in exponential map param-
eterization of SMPL, and obtain the uncertainty directly
in radian for each component of exponential map repre-
sentation at the output. Unlike quaternions [21] or rotation
matrices [20], the uncertainty prediction using our proposed
representation is smooth and does not need Unscented trans-
form in post-processing.

D. COST FUNCTION FOR ALEOTORIC UNCERTAINTY
The aleatoric uncertainty deals with covariate uncertainty
found in the training data for a given model structure. If the
test data also lies within the domain of training data, it is suf-
ficient to use aleatoric uncertainty. We learn this uncertainty,
using a ‘regularization’ term in negative log likelihood (NLL)
cost function that we use for our training as follows,

LNLL (θ) =
∑m

i=1

∑t+m

t=t−n

((
σ
(i)
t (θ)

)−2∥∥∥y(i)t − µ(i)
t (θ)

∥∥∥2
+ln

(
σ
(i)
t (θ)

)2)
(6)

Here the inner sum is over the temporal subsequence [t−n :
t+m] and m is the number of subsequences in a batch. Since
we assume only diagonal covariance σt I for the full 3D
human pose, our cost function is simplified compared with
multivariate case of [44]. Also we assume that Euclidian
distance approximate SO(3) error in exponential map space.
This assumption is true for small errors upon convergence of
training.

Huang et al. [20] includes sensor accelerations as addi-
tional input. To force the network learning on this predictor,
they also introduced an auxiliary task during training and
their model was also forced to reconstruct the accelerations.
Due to inherent problems with acceleration that we noted
before, we have not used it as predictor. But we have used this
‘auxiliary’ loss as motivation to reconstruct 3D angular rate
readings when we opted for reduced 3-parameter representa-
tion, which only account for pitch and roll angle information.

Discarding yaw information, we used3D angular rate read-
ings as additional input and also used auxiliary reconstruction
loss on the later input; by this we got slightly better results
(Table 1) than using 3-paremeter pitch/roll representation
alone.

E. TRAINING
The sequences in our synthetic dataset used for training have
variable length. Due to limitation of GPU memory size,
we use truncated Backpropagation through time (BPTT), and
divide our sequences in synthetic data into subsequences of
length 300, discarding those with length ≤ 200, to avoid too
much zero padding. We have randomly divided our synthetic
data into training, validation and test set in 70/20/10 ratio.
We also later perform testing on validation data, to understand
better the poor learning of some pose subsequences.

Our model was trained using Adam algorithm with an
initial learning rate of 0.001, exponentially decayed at rate
of 0.9 with decay step 5000. Batch size for training was set at
16. Gradient clipping with a norm 1 was applied to Bi-LSTM
training. The loss on validation set was used as early stopping
criteria while training was set to max epoch size of 2000. The
model with best error on validation set was saved during the
training run.

F. INFERENCE WITH EPISTEMIC UNCERTAINTY
We carry out the evaluation using the trained model in two
ways. In offline end-to-end inference mode, we use a max-
imum batch size for which the test dataset is divisible by
an integer, for fast evaluation. During inference, four end-
to-end sequential sub-passes are performed on the trained
Bidirectional LSTMmodel as depicted in Fig. 3a (two passes
per Bi-LSTM layer). At each time t , we obtain two hidden
vectors after four sub-passes and compose them (hFt ◦ h

B
t )

to obtain the output. This gives us mean pose µt and its
diagonal covariance vector σ 2

t , given a sequence of inputs xt .
The later represent aleatoric uncertainty and henceforth we
assign a superscript a in its symbol σ at . Our model is trained
using a dropout of 0.2 for regularization, and we use the
same for Monte Carlo dropout (MC-Dropout) at the time of
inference to obtain epistemic (model-based) uncertainty. This
is essential to deal with out-of-domain data which was not
seen in training. If µ(i)

t (θi) is the mean pose prediction for
ith Monte Carlo iteration of model dropout, the we write for
epistemic uncertainty,

σ e
2

t =
1
M

∑M

i=1

(
µ
(i)
t (θi)−

1
M

∑M

i=1
µ
(i)
t (θi)

)2

(7)

The epistemic uncertainty is then combined with aleatoric
part to get overall uncertainty as follows,

σ 2
t = σ

e2
t +

1
M

∑M

i=1
σ a

2

t (8)

The problem with end-to-end bidirectional estimation as
shown in Fig. 3a is that it can only be carried out offline.
For a real-time application, we define a sliding time window

VOLUME 9, 2021 36663



H. T. Butt et al.: Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction

with past frames and future frames and only predict the
output

(
µt , σ

2
t I
)
at time t , after four sequential sub-passes

are performed within that time window, as shown in Fig. 3b.
The advantage of our online approach is clearly evident over
shallow temporal convolution (TC) andmultilayer perceptron
(MLP). Our BiRAE model can be trained end to end on
sequences and then desired time window or unroll can be
selected at the run-time (see also Fig. 6 for results). The
former models take only fixed time window and hence their
scope and performance is limited.

V. RESULTS AND DISCUSSION
We analyze the baseline performance of our trained model
first on the synthetic dataset to validate the extent of learn-
ing on ideal data, in order to choose the best performing
architecture. Then we compare results of our best performing
model on real MIMU data, mainly with state-of-art, i.e. DIP
by Huang et al. [20] who have also tested on the same real
MIMU datasets, i.e. DIP-IMU and Total Capture [52]. The
results of offlinemode of model inference are presented first.
Since code and data by Wouda et al. [21] has not been
publically made available and it does not use SMPL, it is
left out of comparison. We also perform ablation studies for
self-comparison between different variants of our model on
real MIMU data. In particular we discuss and compare the
results of 6-parameter and reduced 3-parameter representa-
tion and the significance of each. Next, the effect of real-
time window length/configuration is also discussed based on
results of online mode versus offline mode. Lastly, we report
the uncertainty estimation obtained using our framework and
discuss it. We also discuss the effect of covariate and domains
shift, and show that sensor noise in real MIMU data of
DIP-IMU and Total capture is not significant to cause covari-
ate shift. But the trained model performs poorly for those
data sequences for which similar ones are absent in training
data. This is identified as the main limitation of pose tracking
based on sparse sensors. We also show how much fine tuning
can help address this problem. Since the real MIMU data
used in evaluation is not much perturbed, we create simu-
lated magnetic perturbation in yaw part of 3D orientation
and demonstrate the performance advantage obtained using
3-parameter model in this scenario.

The metrics we have used throughout is mean per joint
angle error (MPJAE) or per joint angle error of individual
joints. Positional error is not used for two reasons; first we are
interested in 3D human pose which is agnostic to scale of the
skeleton and thus can be used for biomechanical or activity
ergonomics across subjects, 2nd we observe that the position
of 3D joints when used alone, loses the information of ‘twist’
along a body segment [41] and hence is not useful for the
above mentioned target applications focused by us.

A. PERFORMANCE ON SYNTHETIC DATA
After training our model, most important aspect to investigate
was how well it performed on ideal sensors of ‘synthetic’
dataset. This sets a baseline on which we can then evaluate

TABLE 1. Performance on synthetic data.

the performance of real MIMU datasets. We performed this
evaluation on 10% test set drawn at random from ‘synthetic
test’ and not used in training. The comparison was made
between a model trained on synthetic data by Huang et al.
(DIP) [20] and variants of our method. The results in Table 1
demonstrate the effectiveness of 3D angle parameterization
chosen by us for our model both for the input and output,
which is different from [20], who chose 9-parameter rotation
matrix and also included sensors acceleration. We also build
a model that uses 6D parameterization of Zhou et al. [42]
for both input and output. In summary, results of our model
with 6-parameter input and exponential map 3D pose are
slightly better on synthetic data (our trained model performs
much better on real MIMU data, as shown in next section)
than DIP [20] and at par with using 6-parameters of [42].
It may be noted that our model parameters are also 20%
less than DIP [20]. The performance comparison is depicted
in Table 1

Once we evaluated the results on individual sequences in
test data, we found thatmean per joint angle error (MPJAE) is
particularly high for certain sequences as shown in Fig. 4 and
it is uncorrelated with the length of sequences.

We investigated the failure cases further for 3D angle esti-
mation of a joint as shown in Fig. 5. It was seen that the model
converges to correct 3D angle at the start of sequence and also
predicts the accurate values for periodic movement of joint,
however intermittently it shows large error.We infer that main
limitation of 3D pose prediction from sparse sensors comes
from the imbalance or absence of certain subsequences in the
training dataset. Detailed reasons with experimental evalua-
tion would be discussed in section V-H on fine tuning.
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FIGURE 4. Performance of trained model on synthetic test data (Blue
dotted). For comparison error on a random subset of training data is also
shown (in red). The sequences are shown in order of ascending error. The
x-axis is sequence number.

FIGURE 5. Trained model performance on 3D angles of a joint in
synthetic test data. Intermittent failure on ‘unseen’ subsequence.

B. PERFORMANCE ON REAL MIMU DATA
The real MIMU dataset used in our evaluation are DIP-IMU
and Total capture, we have used these datasets because these
are publically available and two prior works [20] and [14]
have reported results on the same datasets. For comparison of
our trained model with [20] and [14] in this paper, we there-
fore use these datasets. The quality of sensor orientations
obtained in these datasets has been evaluated by using for-
ward kinematics on SMPL ground truth in either case. This
point will be discussed in a section V-G on covariate and
domain shift. We report better accuracy with and without
fine-tuning on real datasets compared with DIP [20] and
SIP/SOP [14], and results are depicted in Table 2.

The model errors in case of real MIMU data are large
compared to ‘synthetic’ training data. As would be shown
in section V-G and V-H, it is attributable less to the sen-
sor errors than to the absence of similar sub-sequences in
the training data. We have earlier seen that ‘synthetic’ test
data also has such subsequences on which error is large,

TABLE 2. Performance on real MIMu data.

since those are under-represented in training data. We have
trained our model on ‘synthetic’ data augmented with noise
and disturbances, which might explain its better performance
without fine-tuning on real MIMUs. But disturbances such as
magnetic conditions and bias integration are non-stationary
in nature. It is shown by Butt et al [28] that sensor fusion
might be affected greatly by magnetic disturbances, while
the orientation errors due to body acceleration are bounded.
We therefore also tested a variant of our model with a
reduced 3-parameter input from sensors which only rep-
resent pitch/roll, i.e. magnetometer or heading information
is ignored. It will be discussed in next section. We how-
ever point out that DIP model [20] performs very poorly
on DIP-IMU data without fine tuning, and we attribute it
to linear acceleration used by [20]. For training data, they
used a standard body model and fixed sensor positions,
which explain why the results on synthetic data in Table 1
obtained by DIP [20] are comparable to our model. But in
real scenario, linear accelerations vary based on where the
sensors are mounted on skeleton and hence are not a reliable
input feature. von Marcard et al [14] got better results with
accelerations (SIP versus SOP), because they obtained SMPL
model shape with laser scans and measured sensor position
accurately for the subjects.

C. EFFECT OF REDUCED 3-PARAMETER INPUT
Our model with 3-parameter sensor input takes into
account only the pitch/roll information and drops the other
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components with yaw angle information from 6-parameter
representation. This provides intrinsic robustness against
magnetic disturbances. Although magnetometers are still
used for sensor fusion and proper calibration to fit in with the
full framework, the yaw information is finally not available
to the model for training or at inference time. The compari-
son of 3-parameter versus 6-parameter input on real MIMU
datasets (Table 2), shows that the use of 3-parameter repre-
sentation degrades the performance. However the periodic
activities like walking etc. are still predicted good using
3-parameter model. The advantage of using 3-parameter
input model over 6-parameter is not obvious on real MIMU
datasets used in this study, since these datasets are not highly
perturbed by magnetic interference or a yaw angle drift
(Fig. 11). More challenging datasets (with SMPL ground
truth and magnetically perturbed MIMU data) are not avail-
able at the time of this study. Later in this paper, we show
a comparison on simulated strong magnetic interference on
DIP-IMU to demonstrate the value of 3-parameter model in
such situations.

We have further augmented the 3-parameter sensor
pitch/roll input with 3D angular rate. It is derived as additional
3-vector from the difference of two consecutive 3D orienta-
tions in case of each of five sensors readings using quater-
nion formalism given in [28]. As explained in section IV,
we use an auxiliary reconstruction loss on this later input;
and by this we got better results than using 3-paremeter
pitch/roll representation alone. Instead of raw sensor accel-
eration or rate gyro readings, we have used 3-parameter
pitch/roll and 3-parameter angular rate normalized w.r.t root
frame of reference, as described above. The advantage of
this approach is that we compute all input parameters in root
sensor frame of reference and our body calibration procedure
as implemented in section III, works without any change.

D. EFFECT OF TIME WINDOW AT INFERENCE
As pointed out by Wouda et al [21], the main difference
between shallow approaches using limited temporal context
and recurrent neural networks is the ‘jerkiness’ that appears
in the motion. While Huang et al. [20] have demonstrated
that Bidirectional LSTM can be used for real-time 3D pose
regression in online mode with limited context of past and
future frames, they have not discussed the issue of ‘jerkiness’.
We also carry out this evaluation for our model and compare
the online mode with offline mode for different configura-
tions of time window in Fig. 6.

We carried out a grid search in variable increments over
a range of [0,500] of past/future frames used in pose pre-
diction. A window size of [130,30] for past/future frames
gives an accuracy comparable to offline mode. The latency
in this case is only 0.3 sec (at frame rate of 60Hz) plus
computation time. The ‘jerkiness’ depicted in Fig. 6 for this
window configuration, is also acceptable. The end-to-end
offline mode is however recommended for all non-realtime
applications.

FIGURE 6. Comparison of ‘Jerkiness’ for different time window sizes
(online vs. offline mode).

TABLE 3. Frame rate ablation study.

E. FLEXIBLE FRAME RATE AT INFERENCE
It is interesting to point out that at the time of infer-
ence our recurrent model is flexible to frame rate of input.
We trained our 6-parameter model on ‘synthetic’ dataset
obtained at 60Hz. But at time of inference, we performed
under-sampling of recorded data from 60Hz to 30Hz and
even 15Hz. We show that the degradation in performance is
only gradual as reported in Table 3. We infer that the learned
recurrent model is only acting by propagating latent state
in time and is not affected by its actual rate. The gradual
increase in error occurs from loss of high rate component of
the motion. In comparison, the shallowMLPmodel proposed
by Wouda et al. [21] not only depends on exact window
configuration but also the frame rate on which it is trained.
There is no flexibility to change either at the inference time.

F. UNCERTAINTY ESTIMATION
The main feature of our work is estimation of 3D human
pose uncertainty, while regressing from a sequence of sparse
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FIGURE 7. Uncertainty estimation and actual error on synthetic test data
sequence, using 6-parameter trained model.

FIGURE 8. Uncertainty estimation and actual error on total capture data
sequence, using 6-parameter trained model.

MIMU sensors. We estimate both aleatoric and epistemic
uncertainty and then combine these in overall estimate
using (8). Fig. 7 depicts the output 3D angle with uncertainty
(±1δ) bounds for a test sequence from synthetic data. It is
clear that uncertainty on ‘synthetic’ data from test set is
predicted very well. In Fig. 8, we further show uncertainty
(±1δ) bounds for a sequence from real Total capture dataset.
Again the uncertainty of our model learned using synthetic
data alone scales well to real MIMU data.

The investigation of uncertainty reveals that it correctly
scales with the actual error. Since we assume a parametric
model of uncertainty and predict Normal distribution with
diagonal covariance for the full 3D human poseNy(µt , σ 2

t I ),
the actual error must lie within (±1δ) bounds, 68% of
the time. We also note that both the synthetic sequence
in Fig. 7 and Total capture sequence in Fig. 8, do not start
at zero initial pose of SMPL (T-pose), yet model converges
to low error after first few frames (at inference time, model
hidden state is always initialized as zero at start of sequence).

FIGURE 9. Uncertainty estimation and actual error on synthetic test data
sequence, using 3-parameter trained model.

The uncertainty prediction during initial frames is not always
accurate, but then it gets better. The uncertainty and absolute
error is more when the amplitude of movement is more.
The absolute error is stochastic (max: ±20 deg), but the
mean absolute error is low (<5 deg). The model attempts to
replicates the movement patterns.

FIGURE 10. Uncertainty estimation and actual error on total capture data
sequence, using 3-parameter trained model.

For a comparison Fig 9 and 10 show the results obtained
with 3-parameter model for the same sequences in ‘synthetic’
and Total capture data respectively. We noted in Table 1 and
Table 2 that 3-parameter model performance is lower than
6-parameter model. We can also identify from Fig. 9 and 10
that the uncertainty and error of prediction from 3-parmeter
model is slightly higher, but it still predicts the movement and
changes reasonable well. We demonstrate later in Section V-I
that in case the sensor data is highly perturbed by magnetic
interference (yaw angle), the performance of 3-parameter
model is more robust than 5-parameter model.
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G. COVARIATE AND DOMAIN SHIFT OF REAL DATA
Real MIMU data is never the same as ideal sensor data we
created in synthetic dataset. Although we did data augmenta-
tion of synthetic data by adding noise and disturbances, but in
fact the real artifacts are non-stationary. So it is necessary to
investigate covariate and domain shift that exist in real data.
Since we found that DIP-IMU dataset shows highest error
when our model is not fine-tuned (Table 1), we focused on
this dataset for analysis.

We synthesized an ideal MIMU orientation, from ground
truth pose available for DIP-IMU using forward kinematics.
In order to check how the real sensor data differed from
‘synthetic’ data on which we trained our model, we obtain
the angular difference between the real and ‘synthetic’ orien-
tations of respective sensors in SO(3) space, using axis-angle
metric.

FIGURE 11. The error between real and ideal sensor orientation for a
sequence in DIP-IMU dataset.

In Fig. 11, we depict the angular difference between ideal
sensor data that we should have for a given 3D pose and the
real sensor orientations for a typical sequence in DIP-IMU
dataset. It is important to note that despite real sensors in
DIP-IMU are perturbed, the nature and severity of pertur-
bation is only 5–10 degrees and there is no drift. This alone
does not explain the high error that we get on DIP-IMU, when
we estimate 3D pose from this dataset using a synthetic data
trained model. Although not shown here, but sensor errors
on Total capture are also of same order, yet we obtain much
better 3D pose estimation on Total capture, even without fine
tuning.

H. EFFECT OF FINE TUNING
Since no significant covariate shift was found out by compar-
ing the real and ideal sensor data, we investigated the domain
shift of input sequences. Earlier, we observed for synthetic
test data, that certain sequences displayed unusually high
error (Fig. 1). Similarly, we hypothesize that the temporal pat-
terns in the DIP-IMU dataset are different than the sequences
on which our model is trained; therefore the error is more

FIGURE 12. Performance of trained model before and after fine tuning on
DIP-IMU sequences.

on DIP-IMU. In order to validate this hypothesis, we first
tested the performance of a synthetic data trained model
(without fine tuning) on real DIP-IMU data and then using
the synthesized ideal DIP-IMU data. The results are depicted
in Fig. 12. It is evident that both the real and ideal MIMU
data result in almost same error for different sequences in
DIP-IMU test data. Therefore we conclude that the noise and
data augmentation that we used during training, make the
model robust against real sensor errors.

Next, we fine-tuned the model on a subset of ‘synthetic’
DIP-IMUdata (not the same onwhich test results are depicted
in Fig. 12). Using this fine-trained model, we again tested for
the error onDIP-IMU test sequences, using both ideal sensors
and real sensor readings. The results again shown in Fig. 12,
clearly depict a decrease in error. Therefore we conclude that
fine-tuning on a class of activities in a dataset, obtains better
error performance on test data from the same set, especially if
the temporal patterns in such a dataset are under-represented
in previous training.

It is also interesting to note the effect of fine-tuning on
uncertainty estimation in case of DIP-IMU. Fig. 13 shows
the output 3D joint angle with uncertainty (±1δ) bounds for a
test sequence fromDIP-IMU, estimated using a trainedmodel
without fine-tuning. Unlike Total capture dataset, where the
estimation error was lower and uncertainty also scaled well
with the estimation error (Fig. 8), we observe that in case of
DIP-IMU not only error is higher but also the uncertainty is
underestimated.

We then depict the results in Fig. 14 for same sequence of
DIP-IMU, obtained using a model fine-tuned on training data
of DIP-IMU. Clearly not only the error has much reduced in
this case, but uncertainty is also better calibrated now, after
fine-tuning.

Therefore we conclude that only a small training set
even with ‘synthetic’ sensor orientations is sufficient to
achieve good accuracy and well-calibrated uncertainty on
unseen temporal patterns. For instance, the ground truth for
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FIGURE 13. Uncertainty estimation and actual error on DIP-IMU data
sequence, using trained 6-param model (without fine-tuning).

FIGURE 14. Uncertainty estimation and actual error on DIP-IMU data
sequence, using trained 6-param model (after fine-tuning).

a set of training exercises can be obtained in an elaborate
optical or inertial capture set-up. The ‘synthetic’ sensor data
can then prepared from ground truth poses. Once the pre-
trained model is fine-tuned using this small dataset, it can
then be deployed in arbitrary setting with real sensors (only
six) for inference.

I. SIMULATED MAGNETC INTERFERENCE
We see from Fig. 11 that DIP-IMU data is not strongly per-
turbed by magnetic interference (error between 5–10 degrees
only). The covariate shift for Total capture data has been
found out to be of same order. But in general the MIMU
orientation is strongly affected bymagnetic interference espe-
cially indoors and it can be quite significant [28]. Also
when only IMU (rate gyro/accelerometer) is used without
magnetometer, it leads to constant drift in yaw part of 3D
angle. It is with these considerations in mind, that we trained
a model on 3-parameter (pitch/roll) representation of sensor
input. Since the two real MIMU datasets are not affected
much by either yaw drift or strong interference, we tested

the 3-parameter versus 6-parameter model on DIP-synthetic
IMU data (as obtained in previous section), after it is cor-
rupted by simulated yaw drift and strong magnetic interfer-
ence [58]. The results of performance comparison are shown
in Table 4. The models used are first fine-tuned for DIP-
synthetic IMU data without magnetic perturbations and then
tested on DIP-IMU magnetically perturbed data.

TABLE 4. Performance under magnetic interference.

As evident from Table 4, when DIP-IMU data is perturbed
by yaw drift and strong magnetic interference, the perfor-
mance of 6-parameter model is much worse than 3-parameter
model. There is almost no significant degradation in per-
formance of 3-parameter model for perturbed (yaw) and
unperturbed DIP-IMU data. However when perturbation is
negligible (or none), 6-parameter model indeed performs
better than 3-parameter model, as shown earlier.

VI. LIMITATIONS
As evident from discussion in Section V-H, the major limi-
tation of our work is the dependence on temporal priors due
to sparse sensors information. Although we used a synthetic
dataset rich in activities and movements with data augmenta-
tion, it is not exhaustive for data-driven learning. We found
that fine-tuning on a small subset of activities or movements
on which prediction is required, addresses this limitation
quite well. Another limitation of our work is that we did
not use an inertial motion capture dataset with sequences
collected in both homogenous magnetic field as well as in
highly perturbed magnetic environment. The DIP-IMU and
Total Capture datasets have been found out to be very ‘clean’
(both employ full 13-sensor MVN algorithm and then isolate
6-sensors data for evaluation). However if there would be
only 6 sensors on the body then the individual sensor fusion
(orientation estimation) would not close the gap between
ideal synthetic and real MIMU data so well. In order to do
more realistic testing, we had to simulate the magnetic inter-
ference to test the robustness of our proposed 3-parameter
(pitch/roll) sensor input model. Although we demonstrated

VOLUME 9, 2021 36669



H. T. Butt et al.: Magnetometer Robust Deep Human Pose Regression With Uncertainty Prediction

its robustness vis a vis full 6-parameter sensor orientation
in magnetically perturbed scenario, this still needs to be
evaluated more with real perturbations. A dataset collection
with SMPL ground truth in magnetically challenging envi-
ronments is our next goal for this testing.

VII. CONCLUSION
Our work proposes an uncertainty aware bi-directional deep
recurrent model to estimate 3D human pose from only six
magnetic-inertial measurement units. To the best of our
knowledge, our model is the first to provide and test uncer-
tainty estimation for this problem. Our model output the 3D
pose directly in exponential map representation of SMPL.
This avoids the renormalization of output as required in
case of quaternions or rotation matrices. Also the estimation
of uncertainty and its interpretation is straightforward. The
definition of SMPL avoids the discontinuities in exponential
map, owing to joint constraints. For sensors input, we pro-
pose a new 6-parameter representation for 3D orientation,
which avoids the singularity and ambiguity in input space.
In order to deal with magnetic perturbations, we further
introduce a ‘reduced’ 3-parameter representation for input
sensor orientation. This ignores the yaw part in 3D orien-
tation. Our results show that even this reduced 3-parameter
(pitch/roll) representation accomplishes 3D pose estimation
albeit with higher uncertainty. The uncertainty estimated as a
part of our model output, is found to be well correlated with
ambiguity and actual error. We test our model on two real
MIMU datasets and show that the major limitation in sparse
sensor based 3D human pose estimation is the need to train
on representative motion sequences, on which prediction is
required. Our model can be used both in offline mode for
end-to-end bi-directional inference or in online-mode using
a moving window over inputs at run-time.

APPENDIX A
In this appendix, we derive our 6-parameter representation
from 3 × 3 rotation matrix. We also demonstrate that the-
oretically, it is at par with 6-parameter representation of
Zhou et al. [42], but gives us an advantage that we can
easily obtain a reduced 3-parameter representation from our
6-parameters, by masking three parameters in it.

The 3 × 3 rotation matrix is an over-complete repre-
sentation of a 3D angle. There are six constraints on its
9 parameters, which reduce it to 3DoF. These constarints
arise from vector cross-product of its three rows and columns.
Zhou et al. [42] have used this fact to define a 6-parameter
representation. They show that the remaining 3-parameters
can be uniquely determined from the first two columns of a
rotation matrix by a righ handed cross-product.

Motivated by [42], we also define a 6-parameter rep-
resentation using cross-product constraints. We first iden-
tify 5 parameters comprising first column and last row of
a rotatio matrix. Using a cross product of column 1 and 2 and
3 and 1 respectively, we obtain following

(c21c32 − c31r22) = r13 (9a)

(c11c32 − c31r12) = −r23 (9b)

(c11r22 − c21r12) = c33 (9c)

(c31r23 − c21c33) = c32 (9d)

where c11, c21, c31, c32, c33 are the components of our
6-parameters representation which are same as the cor-
responding components of 3 × 3 matrix. The unknown
components r12, r13, r22, r23 of rotation matrix can be
unambiguously obtained from (9). The only exception is
when c11, c21, c31, c32, c33 := [0, 0, 1, 0, 0], where above
equations converge to a singleton solution, whereas infinite
number of solution exist. Therefore in order to resolve this
ambiguity, we also include c22 = r22 in our representation.

Compared to [42], the advantage of our 6-parameter rep-
resentation is that we can uniquely identify, the components
which correspond to yaw, pitch and roll, as given by (3)
and hence drop the components c11, c21 and c22, in order to
obtain a yaw-free 3-parameter representation that we propose
to be used for magnetically perturbed environments. The
results given in Table 1 show that our 6-parameter represen-
tation is at par with 6-parameter representation proposed by
Zhou et al. [42].

APPENDIX B
In this appendix, we justify the use exponential map repre-
sentation for the output 3D human pose of our model, instead
of quaternion [21], rotation matrix [20] or 6-paramater [42].
We show that SMPL skeleton, owing to joint constraints of
human body does not present any discontinuity in exponential
map representation of 3D joint angles. Since demonstrating
this rigorously for human joints is non-trivial, we chose
the data-driven approach [41] and check if by performing
extreme range of human motion, any of the 3D joint angle
reach their limits [π,−π ] radians in exponential map rep-
resentation of SMPL, where such discontinuity might arise.
We did this analysis for the complete SMPL dataset and found
out that none of the joints ever reach the limits of [π,−π ]
radians and that discontinuity does not occur. In Fig. 15 for
clarity we show only the sequences in which extreme range of
motion of a joint is performed. The SMPL data for this was
obtained from both Joint Limit [54] and Total capture [52],
in which extreme motions are present.

Clearly there is no discontinuity seen in SMPL data. The
maximum range of motion occurs for x and y-component
of Left/Right Knee and Elbow Joints in SMPL exponential
map representation respectively but these are still within
[150,−150] degrees. The shoulder and hip joints are well
within [100,−100] degrees in SMPL exponential map rep-
resentation. Thus the discontinuity of expmap representation
i.e. at [180,−180] degrees is completely avoided in SMPL.
There is obvious advantage of regressing 3D human

pose directly in exponential map representation of SMPL.
No orthogonalization of model output is needed like quater-
nions or rotation matrix. The uncertainty which is predicted
as a part of output can be also directly interpreted. If 3D angle
output is estimated in quaternions or rotation matrix, it is
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FIGURE 15. Joint limits constraint in exponential map (SMPL).

FIGURE 16. Exponential map output versus 6-parameters [38] output.

observed (Fig. 16) that few components violate the constraint
of unit norm. The orthogonalization is therefore necessary as
a post-processing or additional step.

This on average leads to slightly more error compared to
exponential map as shown in Fig. 16. Also the computation of
uncertainty in case of quaternion, 6-parameter or 9-parameter
representations, require the use of unscented transform and
we note that due to orthogonalization step, the probability dis-
tribution of output samples is distorted. This again introduces
errors in the uncertainty prediction as well.
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