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Abstract

Detecting small objects in video streams of head-worn
augmented reality devices in near real-time is a huge chal-
lenge: training data is typically scarce, the input video
stream can be of limited quality, and small objects are noto-
riously hard to detect. In industrial scenarios, however, it is
often possible to leverage contextual knowledge for the de-
tection of small objects. Furthermore, CAD data of objects
are typically available and can be used to generate synthetic
training data. We describe a near real-time small object de-
tection pipeline for egocentric perception in a manual as-
sembly scenario: We generate a training data set based on
CAD data and realistic backgrounds in Unity. We then train
a YOLOv4 model for a two-stage detection process: First,
the context is recognized, then the small object of interest is
detected. We evaluate our pipeline on the augmented reality
device Microsoft Hololens 2.

1. Introduction

For assisting workers in manual assembly, it is often re-
quired to detect objects manipulated by the worker via head-
worn augmented reality devices [17]. This task of near real-
time object detection in egocentric video streams is already
a hard problem by itself: Viewpoints, angles, the distance
to camera etc. change frequently, images are lower-quality
due to poor focus and occlusion [15], and there is typically
a lack of high-quality training data. Moreover, object detec-
tion can usually not be performed on the augmented reality
device due to resource constraints, and is typically offloaded
to the edge or the cloud, which can introduce latency is-
sues [11]. The task becomes even more challenging when it
comes to detecting small objects: These are typically repre-
sented by very few pixels in the input image, and the ground
truth bounding box is small in comparison to the overall im-
age, so the signal to be detected is small. Moreover, in the
detection process, information is aggregated over the lay-
ers of the detector, hence the information representing small

objects is gradually lost. Since hand-labelling images con-
taining small objects is tedious, training data sets are typi-
cally of limited size. Furthermore, small objects frequently
suffer from labelling errors [16]. The problem of too little
training data can be overcome by using synthetic training
data. However, the problem of small signals remains. For-
tunately, in manual assembly, it is often possible to leverage
contextual knowledge. We propose a pipeline for near real-
time object detection in egocentric video streams that first
detects the context of a small object, then ”zooms in” on
the context and then detects the object itself (see Fig. 2).
We evaluate our approach in three experiments in a manual
assembly scenario (see Fig. 1).

Figure 1. Experimental setup.

2. Related Work
Detection of Small Objects: There is no common no-

tion as to what is a small object. We follow the defini-
tion of Chen et al. who consider an object as small if the
overlap area between the bounding box area and the im-
age is 0.08% to 0.58% [2]. Nguyen et al. evaluate state-
of-the-art object detectors on small objects, finding that the
YOLO series provides the best trade-off between accuracy
and speed [12]. Methods to improve model performance on
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Figure 2. Two-stage object detection pipeline.

small objects include: increasing image capture resolution
[19], increasing the model’s input resolution [5], tiling the
images [13], data augmentation to generate more data [10],
auto learning model anchors [3], and filtering out extrane-
ous classes [16]. Another possibility is to leverage contex-
tual information to include visual cues that can help detect
small objects [18].

Synthetic Training Data Generation: Gajic et al. pur-
sue a semi-synthetic data generation approach: foregrounds
and backgrounds are captured separately from 3 positions
and mixed [9]. Elfeki et al. generate training images for
egocentric perception based on 3rd person view (exocen-
tric) using GANs [6]. Cohen et al.’s approach is similar to
ours, albeit bigger objects are detected in a bus seat assem-
bly process: CAD-based images are overlaid on industrial
backgrounds, then 2D views with 162 camera viewpoints
and 5 colors per viewpoint are generated [4].

Egocentric Perception: Sabater et al. evaluate YOLO
on object detection in egocentric perception videos [15].
Farasin et al. describe a real-time object detection pipeline
for the Microsoft Hololens, where object detection is car-
ried out in the cloud [7]. Fathi et al. leverage contextual
knowledge in video image segmentation: They exploit the
fact that there is a hand, an object and a background in each
image [8].

3. Methodology

We train on a dataset of synthetic images generated by
combining real background images with objects generated
from CAD models in Unity. This allows us to generate a
comparatively large training data set with different view-
points, angles, and illumination. The process of synthetic
training data generation is described in Section 4; the train-
ing process itself is described in Section 5. The trained
YOLOv4 [1] models were deployed on a laptop with an
Nvidia GeForce RTX2080 as an edge device. For the ac-
tual detection, the camera stream of a Microsoft Hololens
2 is sent to the laptop, where object detection is performed.
Our training and object detection pipeline is depicted in Fig.
1.

4. Synthetic Dataset
Synthetic data generation is a much easier process and

less time consuming than manually capturing and labelling
a huge dataset of real images. Also, the CAD models in syn-
thetic images can show better clarity than their real counter-
parts. Our synthetic images are created by loading 3D CAD
models of the objects into a Unity 3D scene. In the 3D en-
vironment the virtual camera then captures images of the
CAD object from various viewpoints around the object. We
also considered the varying scale of the object by varying
the distance of the camera from the object. This allowed
us to simulate the process of capturing real image data [4]
within the renderer. In our use case, the objects have a rel-
atively simple geometry and are perceived from a limited
number of viewpoints. Hence, our viewpoints cover only a
portion of the complete hemisphere around the object (see
Fig. 3a). For generating the labels, we projected the bound-
ing box around the CAD object onto the image screen and
saved the bounding box coordinates in a label file.

Domain Randomization: For domain randomization
we included various backgrounds captured from our work-
station (see Fig. 3c). The real background images were used
randomly on a plane in line with the camera axis, behind the
CAD model. We also varied illumination and object view-
points (see Fig. 3b). We used white lights and yellow lights
with random illumination in the virtual scene while captur-
ing images for the dataset. On the generated dataset, we
carried out data augmentation in the form of random rota-
tions of the labelled object and random shear in horizontal
as well as vertical direction.

Domain Adaptation: YOLO is pre-trained on real im-
ages, so we adapted our dataset to the domain using photo
realistic rendering on our CAD models. Since one of the ob-
ject classes consists of 5mmx5mm size buttons, clarity was
important in the training images. CAD objects with photo-
realistic rendering achieved this clarity and thus allowed us
to attain better quality of the small object images.

5. Experiments and Results
We have defined 3 experiments to evaluate the results of

our proposed methodology (see Fig. 1): For Experiment 1,
the YOLOv4 model has been trained with real images of
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Figure 3. Synthetic dataset generation, a) Camera positions around CAD object, b) Variation in illumination, c) Variation in backgrounds,
d) Dataset generated from virtual scene.

small objects in front of realistic backgrounds. Experiment
1 serves as a baseline that enables us to compare the train-
ing performance of a small dataset of real images to that
of a large dataset of synthetic images. For Experiments 2
and 3, the YOLOv4 model has been trained on synthetic
training data (see Section 4). All models have been trained
on an Nvidia RTX A6000 GPU with CUDA 11.2. As we
evaluated our approach on a manual assembly scenario, the
small objects are tiny buttons, and the context is a bread-
board where the buttons are to be assembled on.

5.1. Experiment 1: Training with Conventional
Photos

For Experiment 1, we have trained our YOLOv4 model
with a hand-labeled dataset of tiny buttons. We captured 95
photos using a Google Pixel 4a 5G camera. Then, with the
RoboFlow platform [16], we applied preprocessing of resiz-
ing the images to 416x416 and augmentation of clockwise,
counter-clockwise, upside-down and random shear horizon-
tally and vertically. After applying the augmentations we
had a dataset of 295 images. In this experiment, we used
the pretrained model yolov4.conv.137 and trained for 2000
epochs. For the test phase, we captured around 90 images
(3904x2196px) from manual assembly, containing 221 tiny
buttons, using the Hololens 2 camera with different lighting
conditions, orientation, and distances from wearer. The re-
sults of Experiment 1 are shown in Table 1. They show that
the model detected almost nothing; it could not generalise
to the test data.

5.2. Experiment 2: Training with Synthetic Images
of Large and Small Objects

For Experiment 2, we generated a training dataset of
1300 synthetic images of breadboards (large object) and
2500 synthetic images of tiny buttons (small object) in
Unity (see Section 4) and trained two separate models of
YOLOv4 with these datasets separately. The training pa-
rameters were the same as in Experiment 1. For testing, we
added 153 real images of breadboard – partially occluded
with tiny buttons and captured using Hololens 2 – to the
test dataset from Experiment 1. This enlarged test set was
used in Experiments 2 and 3. The images were fed into the

trained models for detecting the two separate classes of ob-
jects in parallel. The results are presented in Table 1 (detec-
tion of button) and Table 2 (detection of breadboard). Table
1 illustrates that the detection of buttons in Experiment 2 is
far better than in Experiment 1: The larger dataset and the
wider diversity of data assists the trained model to gener-
alise to the new unseen test dataset.

5.3. Experiment 3: Two-Stage Process

For Experiment 3, we used hierarchical detection and
took into account the context (breadboard) of the small ob-
ject (button): The first YOLOv4 network detects the bread-
board in the test input image, we crop the part of the im-
age containing the breadboard and feed it into the second
YOLOv4 network (see Fig. 2) which is trained to detect
the small buttons. Both networks have the same configu-
ration as in Experiment 2. Using this method, false detec-
tions of the breadboard (false negative or false positive) in
the first stage directly affected the second stage, i.e. button
detection, hence we included this point for Experiment 3
evaluation. The results are presented in Table 1: The mAP
for the detection of small objects (cropped) in Experiment
3 is better than in Experiment 2. For IoU=10% the mAP
reaches 70%. This means that hierarchical detection im-
proves the detection of small objects. This pipeline runs at
9.4fps, which is considered near real-time (see Fig. 4).

Figure 4. Two-stage object detection: The camera stream from the
Hololens is analyzed on the edge device. First the context is de-
tected (left), then the small objects (right).

6. Conclusion and Future Work
In this paper, we have shown that the task of detecting

small objects in egocentric video streams in near real-time
can be made easier, at least in industrial scenarios, if we
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mAP (full size) mAP (cropped)

IoU 0.01 0.10 0.20 0.30 0.40 0.50 0.01 0.10 0.20 0.30 0.40 0.50

Exp. 1 0.3% 0% 0% 0% 0% 0% 2.6% 0% 0% 0% 0% 0%

Exp. 2 44% 26% 4% 0.6% 0.03%

Exp. 3 44% 26% 4% 0.6% 0.03% 70% 69% 58% 27% 8.5%
Table 1. This table illustrates the mAP for detection of the small button on the breadboard for our three experiments. The mAP is calculated
according to [14].

mAP (breadboard)

AP AP50 AP75 mAP
55% 76% 65% 77%

Table 2. This table depicts the mAP [14] for the detection of the
breadboard for Experiment 2 and 3 (IoU=0.50).

leverage the specific circumstances of this domain: Since
the context is usually clearly defined and well-structured,
we can make use of it in the object detection process by first
recognizing the context of a small object and then the object
itself. Furthermore, CAD data of small objects is usually
available and can be used to generate comparatively large
amounts of high-quality training data. Our proposed two-
stage small object detection pipeline performs significantly
better than its single-stage counterpart. Future work in-
cludes displaying the object detection results as holograms
on the Hololens, modelling objects and contexts in knowl-
edge graphs for the object detection process, and leveraging
eye-tracking data for small object detection.
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