SEMANTIC SEGMENTATION IN DEPTH DATA : A COMPARATIVE EVALUATION OF
IMAGE AND POINT CLOUD BASED METHODS

Jigyasa Singh Katrolia™, Lars Kriamer®, Jason Rambach', Bruno Mirbach®, Didier Stricker'

'DFKI, Germany *Technische Universitit Kaiserslautern, Germany

ABSTRACT

The problem of semantic segmentation from depth images
can be addressed by segmenting directly in the image domain
or at 3D point cloud level. In this paper, we attempt for the
first time to provide a study and experimental comparison of
the two approaches. Through experiments on three datasets,
namely SUN RGB-D, NYUdV2 and TICaM, we extensively
compare various semantic segmentation algorithms, the input
to which includes images and point clouds derived from them.
Based on this, we offer analysis of the performance and com-
putational cost of these algorithms that can provide guidelines
on when each method should be preferred.

Index Terms— scene segmentation, depth image, point
cloud

1. INTRODUCTION

Conventionally, deep learning based semantic segmentation
networks, methods that assign a class label to each pixel in
an image, have been applied to RGB images [1} 2| 3], largely
ignoring depth information. Depth modality is essential in
several scenarios where the requirement is to perceive the 3D
structure of a scene. While several RGB-D methods for seg-
mentation already exist [4} 15, 6], there are very few methods
relying exclusively on depth images [7]]. This suggests that
it is generally overlooked that in real world many situations
often arise where only depth data is available either by design
or as a consequence of other limitations. Using only depth
information can be advantageous in several indoor applica-
tions, for example, smart building, in-car TICaM monitoring
or robotic applications [8[9]. Depth images preserve privacy
as subjects cannot be identified, they are more robust to illu-
mination and color variations, and allow natural background
removal. Additionally, it is easier to generate realistic syn-
thetic depth data for training machine learning systems than it
is to generate RGB data. Due to this, [7]] achieved comparable
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performance to state-of-the-art RGB-D systems on NYUdV2
dataset even when trained only on depth images. For real-
time applications, depth data lends itself well to training light-
weight models. For all these reasons, it becomes important to
compare state-of-the-art semantic segmentation methods that
can be applied to depth data in various formats (2D depth
map, point cloud, etc.). Such a comparison is meaningful
when the only input modality available is depth data due to
one of the aforementioned reasons or when training a parallel
depth-only stream of an RGB-D network for late-stage fusion
of predictions.

There are different ways to represent depth information,
ranging from two dimensional representation like images cap-
tured by a depth camera to three dimensional representations
like meshes, voxels and point clouds captured with a 3D scan-
ner. Corresponding to each of these representations exist se-
mantic segmentation methods that are designed to leverage
the properties of these representations to extract semantic la-
bels for each pixel in the scene. In this paper, we present the
first experimental comparison of semantic segmentation from
depth images in different depth representations like 2D depth
images and 3D point clouds, and analyze their performance
with respect to various factors to answer the following ques-
tions: (a) which representation of depth data gives best perfor-
mance on scene segmentation and (b) under which conditions
should one prefer one representation over the other? This is in
contrast to previous surveys that have focused on specific data
representations and related segmentation methods [[10} [11]].

We select two representative image based semantic seg-
mentation methods, namely FCN [1]], and DeepLab [2] and
two point cloud based segmentation methods PointNet [12]]
and PointNet++ [13], and through experiments compare the
usability of images and single view point clouds for the
task of semantic segmentation. We focus on performing a
fair comparison by using point clouds directly derived from
depth images (single-view point cloud) and by evaluating run
time, memory footprint and network training time. Three
datasets are selected for this purpose: SUN RGB-D [14],
NYUdV2 [15] and TICaM [16].



2. SEGMENTATION APPROACHES

2.1. Image based semantic segmentation methods

Classically, deep learning based semantic segmentation meth-
ods have been applied to RGB images because of the ease of
acquisition of ground truth annotations and intuitive usage of
CNNSs on images due to their spatially invariant nature. Pop-
ular Deep Convolutional Neural Networks or DCNNs meant
for image classification like VGG [17] and ResNet [18]] have
been modified into a fully convolutional form to adapt them
for the task of semantic segmentation [1} 2, 3]. FCN [1]]
championed the idea of using only convolutional layers in
conjunction with fusing lower layer features with higher level
features through upsampling via transposed convolutions.
DeepLab [2] substituted the transposed convolutions with a
range of atrous convolutions applied with different rates to
capture a bigger receptive field as well as objects at different
scales.

2.2. Point cloud based semantic segmentation methods

The seminal work of PointNet [12] addressed the use of deep
learning architectures for point cloud classification and seg-
mentation while respecting the limitations and properties of
point cloud representation like absence of point order, invari-
ance of point cloud semantics to rigid transformations and
physical world meaning of distance between points. It uses
a series of Multi-Layer Perceptrons (MLPs) to learn a fea-
ture representation of points followed by a max-pooling oper-
ation to learn an order invariant global signature of the point
cloud. Combining both local and global point cloud features
they were able to achieve good results on point cloud seg-
mentation. PointNet++ [13] went one step further to emulate
the concept of multiple levels of abstraction associated with
CNNs. They used PointNet as a feature descriptor to extract
features from multiple overlapping neighbourhoods of points,
where each neighbourhood could vary in scale depending on
the point density.

3. EXPERIMENTAL SETUP

Datasets. We evaluate the segmentation methods on three
datasets, SUN RGB-D [14], NYUdV2 [15] and TICaM [16].
SUN RGB-D and NYUdV2 are RGB-D datasets of indoor
scene images whereas TICaM contains depth images captured
with a Kinect AZURE camera that is fitted inside a driv-
ing simulator [19] where the rear view mirror would be in
a real car. Figure [I] shows the data capturing setup and a
sample depth image from TICaM. We train for segmentation
on only three classes for TICaM namely person, object and
background. We use preprocessed depth images from SUN
RGB-D and NYUdV2 where the noisy depth images have
been inpainted to fill holes. However, we do not fill the holes

in TICaM images in order to include a dataset with raw noisy
depth images in our evaluation.
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Fig. 1. Left: A sample image from the TICaM dataset, Right:
The driving simulator setup used to capture TICaM dataset
images.

Image segmentation implementation. We refer to the
implementations of DeepLab and FCN provided by Py-
Torch [20l 21] to train the image segmentation models. We
employ ResNet-101 [[18] as the backbone for both the net-
works and initialize them with pretrained weights on COCO
dataset. We use a batch size of 2 and SGD with momentum
of 0.9 [22] and an initial learning rate of 0.005. The learning
rate strategy is same as in [2] (poly learning rate policy with
power 0.9).

Point cloud segmentation implementation. We gener-
ate single-view point clouds from the depth images and use
them to train PointNet and PointNet++ networks as adapted
from [23]. We train both models for 128 epochs with batch
size of 4. We use Adam optimizer with initial learning rate of
0.001 and momentum of 0.1. The learning rate is decreased
by a factor of 0.7 after every 10 epochs.

4. EVALUATION AND RESULTS

4.1. Performance Metrics

We report the mean Intersection-over-Union (IoU) and mean
Precision performance of the four segmentation methods on
the three selected datasets in Table[Il All models are evalu-
ated on a GeForce GTX 1070. Note that the point cloud meth-
ods presented here are trained with randomly selected 4096
points. It is notable that on challenging NYUdV2 and SUN
RGB-D datasets image segmentation methods vastly outper-
form point cloud based segmentation methods with DeepLab
superseding FCN. For comparatively simpler TICaM dataset,
PointNet++ leads in IoU and is comparable to other image
segmentation methods overall. It maybe interesting to re-
member here that the TICaM dataset has a lot of missing
depth values in the image.

An apparent shortcoming of point cloud based methods
is that they provide point labels for only a subset of points
randomly sampled from the point cloud unlike image based
methods that provide dense pixel labels. For a one-to-one



Table 1. mean IoU and mean Precision of compared methods.

DeepLab FCN PointNet PointNet++
ToU Precision IoU Precision ToU Precision TIoU Precision
NYUdV2 31.46 48.81 29.06 46.97 9.18 15.92 14.53 25.52
SUN RGB-D | 27.55 45.54 21.27 45.60 9.04 19.16 12.98 30.82
TICaM 85.35 94.60 81.49 96.74 75.07 84.16 87.32 91.19
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Fig. 2. Number of model parameters in millions.

comparison between dense mask predictions, we use K-
Nearest Neighbour algorithm to upsample sparse point cloud
segmentation output to get labels for each point in order to
have a better comparison between the image based and point
cloud based methods. Figure[@ shows the upsampled version
of PointNet++ prediction [@d, whereas Figure {f shows it in
the image for comparison with[@. In Table[3] we can see that
although the upsampling strategy is naive, it does not affect
the performance of point cloud methods greatly.

4.2. Space-time complexity

For practical considerations, we also compare the number of
model parameters and per image inference time for each of
the segmentation methods. Figure [2| shows the number of
model parameters in millions. We can observe that point
cloud methods have significantly less parameters than image
based methods. We also compare in Figure [3|per image infer-
ence time in milliseconds against the precision metric on SUN
RGB-D dataset. Overall we can see that point cloud methods
can be a good option when resources are limited. In the next
section we compare in detail the performance of point cloud
methods trained with varying number of points.

4.3. Resolution of input

We compared different versions of PointNet and PointNet++
on each of the three datasets where we vary the number of in-

mean Precision on SUN RGB-D dataset

Fig. 3. mean Precision vs. per image inference time trade-off
on SUN RGB-D dataset.

BN
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Fig. 4. Dense mask predictions from image based and point
cloud based methods.

put points to the two networks. All points are randomly sam-
pled. It is clear from Table 2] that for a negligible increase in
inference time PointNet offers little increase in performance
as the number of points is increased. However, for Point-
Net++, significant improvement can be noticed with inference
time also growing, albeit less than proportionally.

4.4. Effect of frequency and size of class mask

We also analyze the effect of size of a class object and its
frequency in the training dataset on the precision of a method
for that class. We use the term ’frequency’ to signify the num-
ber of images which contain that class in a dataset. Whereas
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Fig. 5. Precision of FCN (top-left), DeepLab (top-right), PointNet (bottom-left) and PointNet++ (bottom-right) on different

classes of NYUdV?2 against the size and frequency of that class.

Table 2. Inference time and mean precision of PointNet and PointNet++ on all test datasets when trained with 1024, 2048 and

4096 points.
Inference time (ms) [| Precision
1024 2048 4096 1024 2048 4096
PointNet 33 34 34 17.78 19.82 19.16
SUN RGB-D PointNet++ 312 333 354 2149 30.02 30.86
PointNet 27 27 28 16.01 16.43 15.92
NYUdV2 PointNet++ 312 337 357  20.23 23.81 25.52
TICaM PointNet 23 23 23 70.08 83.32 84.16
PointNet++ 317 347 356 88.57 90.61 91.19

Table 3. mean Precision and IoU of PointNet and Point-
Net++ on NYUdV2 dataset when evaluated on 4096 subsam-
pled points and entire point cloud.

N = 4096 I All points
Precision = IoU Precision = IoU
PN 15.92 9.18 18.38 9.09
PN++ 25.52 14.53 25.14 14.04

’size’ refers to the total number of pixels labelled as belong-
ing to a class across the dataset divided by the frequency of
that class. In Figure [5] we compare the precision of FCN,
DeepLab, PointNet and PointNet++ on each of the 40 class of
the NYUdV?2 dataset and see how per-class precision varies
with the size of that class object and its number of instances in
the training data. It can be seen that most of the performance
loss of point cloud based methods can be accounted for by

attributing them to both small and infrequent object classes.

5. CONCLUSION

In this work, we have evaluated and compared two representa-
tives each of image based and point cloud based semantic seg-
mentation methods on depth images. Coming to the questions
that we set out to answer, we can say that doing segmentation
in image space yields better results than point cloud based
methods if speed is not a priority and the dataset is quite chal-
lenging with many classes. For simpler datasets, both image
based and point cloud based methods have comparable per-
formance. PointNet++ offers an acceptable combination of
runtime and performance even when run with 4096 points.
Lastly, we can say that the lower mean precision of point
cloud based methods can be mostly attributed to small and
infrequent object classes in training data.
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