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ABSTRACT
We describe the software architecture of a toolbox of reusable com-
ponents for the configuration of convolutional neural networks
(CNNs) for classification and labeling problems. The toolbox ar-
chitecture has been designed to maximize the reuse of established
algorithms and to include domain experts in the development and
evaluation process across different projects and challenges. In ad-
dition, we implemented easy-to-edit input formats and modules
for XAI (eXplainable AI) through visual inspection capabilities.
The toolbox is available for the research community to implement
applied artificial intelligence projects.

CCS CONCEPTS
• Computing methodologies → Computer vision; Machine
learning; •Applied computing→Health informatics; •Human-
centered computing→Visualization systems and tools; • Soft-
ware and its engineering → Development frameworks and
environments.
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1 MOTIVATION
Over the last several years, the quantity of research in the field of ar-
tificial intelligence employing deep neural networks has increased
enormously. This led to the proliferation of open-source libraries,
developed by both industry and academic research labs, and they
now enable us to experiment with new neural architectures, the
most popular among them being Tensorflow [12], PyTorch [5] or
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MXNet [23]. To facilitate and speed-up development processes,
higher level frameworks have been proposed, such as Keras [10].
Nowadays, the most popular programming paradigm used to ex-
ploit the above-mentioned software is through interactive Jupyter
notebooks [9].

Against this background, we face two main problems in applied
artificial intelligence projects. First, all of these tools require solid
programming skills, leaving domain experts (likely non-developers)
without the possibility test, tune or extend a prediction model. Sec-
ond, tools such as Jupyter notebooks are good tools for exploring
different architectures and new solutions [14]. However, they force
developers to release 1-shot scripts which merge into a single se-
quence all of the processing steps needed to develop and deploy a
model. This inevitably leads to bad software engineering practices,
such as in-code absolute paths and machine-dependent parameters.

These findings urge the need for a software toolbox where AI
engineers (developers) and practitioners (domain experts) jointly
work in a machine learning cycle (cf. CRISP data mining cycle
and extensions [22]). As much as we need software engineers to
contribute with new and reusable architectures, we have to give
practitioners the autonomy to setup complex configurations for
training, run them for long periods of time without the need of
user interaction, and examine the results using intuitive interactive
interfaces. An additional aspect is to provide XAI (eXplainable AI)
capabilities on top of that.

Figure 1 depicts our envisioned pipeline for deploying convolu-
tional deep learning architecture, factoring out the separation of
duties and overlapping responsibilities and competences between
the developers and the domain experts. In the remainder of this pa-
per, after reporting on related work, we describe the details and the
software engineering behind its development. The toolbox, named
TIML, is publicly available at the DFKI IML Git repository1. The
toolbox is implemented with the Python language and uses the
Keras framework with Tensorflow backend. All image processing
is based on the Pillow [11] package.

2 RELATEDWORK
Tools offering a pure visual (no-coding) approach for training and
using AI environments do exist (e.g., Kubeflow [24]), but they limit
the possibility to experiment with coding for new architectures.
Among commercial applications, the Deep Learning Toolbox [13]
and Rapidminer (https://rapidminer.com/) offer both visual front-
end and extension capabilities, but bind the user to costly licenses,
closed sources, and those tools do not offer visual explanation tools.

1https://github.com/DFKI-Interactive-Machine-Learning/TIML
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Figure 1: The pipeline for the development, test, deploy and use of convolutional neural networks.

Zacharias et al. [26] surveyed a number of tools and libraries
for the development of deep learning tools for intelligent user
interfaces. A comprehensive list can be found in [26] in table 1.
All of them are low-level libraries offering programing API, thus
unusable by domain experts without programming skills.

NVIDIA/DIGITS [15] is a toolkit that builds on the top of Ten-
sorflow, Caffè, or Torch, offering classes and functions for a quick
configuration of deep CNNs. It also offers a web interface for mod-
els’ configuration. However, the interface is tailored to developers,
not domain experts, and its last update is dated 2018.

In the field of cancer detection, the Cancer Imaging Phenomics
Toolkit (CaPTk) [4] offers a collection of computer vision algorithms
and predictive models for the diagnosis of brain, breast, and lung
cancer. However, no support for deep learning methods is provided.
The toolkit offers a set of command line tools, but no exploratory
web interface.

The End2You toolkit [25] provides means to train end-to-end
deep-learning models for video, audio and other multimedia data
types such as physiological data streams. However, the deep learn-
ing architectures are hard-coded. There is the possibility to include
custom models, but how to integrate them with the existing archi-
tecture is undocumented. The toolkit is controlled via command
line interface, but there is no web-based support.

DLTK [17] and NiftyNet [7] are toolkits specialized in the pixel-
level segmentation of medical images, but not classification. They
offer only a programming API and therefore only suited for pro-
grammers.

MLflow [1] is a framework for the management of machine
learning projects offering command line interface, REST API, and
a web-based interface to monitor experiments progress. However,
it acts more as a container of self-programmed projects, easing

management, deploy and maintainance, without offering any pre-
built machine learning implementation. It is a complement to TIML
rather than a competitor.

From our survey, it appears that our toolkit is the only one
offering, a software architecture facilitating the inclusion of new
models, and at the same time, command line tools for the training
and testing procedures, both command line and web interfaces for
prediction tasks, and a web interface for the exploration of the
results through XAI tools.

3 DEVELOPMENT PIPELINE
In the following, we exemplify the toolbox’s development pipeline
by an image classification example (see figure 1).

The Data Preparation stage is necessary because application
projects all come with their own image formats and resolutions,
data splits, and ground truth labelling idiosyncrasies. It is common
practice to associate each of the train, validation, and test sets
to a directory. However, when different splits are be needed, e.g.,
to perform 5-fold cross validation or to extract a test set from a
train set, copying or rearranging image folders is both time and
space consuming. Hence, in our toolbox we store all images in a
single shared folder, and define the splits using lightweight CSV
(comma-separated values) files, optionally containing the ground
truth needed for training. When facing a new application scenario
(or, e.g., imaging challenge such as ISIC), only a few scripts are
needed from the software developers to normalize the data to meet
the requirements of the applied AI project.

In the CNN configuration stage, developers configure new
CNN architectures for specific domains. This can be tuning the
hyper-parameters of some existing architecture, or defining new
ones. As later explained in section 4, developers have here the free-
dom to propose new architectures without replicating common
training and testing code.
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Table 1: Example of a train input dataframe.

architecture dataset split epochs imgaug batch
size

img
size

resize
filter

color
space

class
weights

VGG16 ISIC-2019 pre 10 hflip_rot24 12 450 nearest RGB [0.2,0.8]
SC19 ISIC-2016 n=100 15 hflip_rot4 64 227 bilinear HSV compute

Training a classifier consists of mainly identifying the data
source and launching the training process. We designed the train
input format to be easily editable and understandable by developers
as well as domain experts. It consists of a single CSV file, thus easily
manageable with a spreadsheet editor (example in table 1). Each
line of the train input is an independent train/test session allowing
for batch test of any combination of data, architectures, and data
parameters. The latter are not the hyper-parameters used to tune
an architecture (which are not visible to the domain experts), but
rather a set of data-manipulation parameters that can be directly
understood and edited by domain experts.

With this strategy, searching for the optimal data parameters (ei-
ther via grid search of random sampling) can be easily implemented
by procedurally generate multiple lines for the train input starting
from a template line. Similarly, to perform statistical tests on the
variance of the results on a data set (e.g., x-fold cross-validation,
test against random initialization), one can procedurally generate
multiple lines with the same parameters’ values but training and
testing on different data splits. While it is true that these strategies
involve the duplication of information across the lines of the input
tables, the duplicated data is limited to textual information; memory
and space footprints are limited with respect to the readability and
easiness of inspection that this approach offers.

In train input tables (see table 1), the architecture column
specifies a CNN configuration. The dataset column contains the
name of the CSV file containing the list of image file names and
ground truth labels. The split column specifies whether the val-
idation and test sets are pre-split on different files or on-the-fly
sampling is needed. The epochs column specifies the number of
training epochs, while the imgaug column contains a preset for
image augmentation, both affecting training time. The batchsize
column is the training batch size, while imgsize is the (squared)
resolution at which each input image will be rescaled, both affecting
the quantity of GPU RAM needed. The resize filter specifies
the resize sampling strategy (nearest, bilinear, bicubic, or lanczos).
The colorspace specifies whether the images should be kept in
their original RGB format or should be converted into HVS, LAB, or
YCbCr. Finally, classweights specifies the weight factors for each
class, which can also be automatically computed from the input
dataset.

It was an explicit design choice to explore the training epochs,
augmentation strategy, batch size, and input image size parameters
because they all influence the time and hardware requirements for
training. Those are aspects which must be controlled by domain
experts when porting the system to new hardware platforms or
when autonomously switching to datasets of different magnitudes.
The resize filter and colorspace are supposed to have an impact on
the performances only on different image distributions.

Training is performed via a command line tool, and its output
is a set of binary Keras models together with test statistics and
TensorBoard log-files to monitor the training history.

In our toolbox, the Prediction command line tool takes as input
a model and a test set dataframe, and produces prediction files as
a CSV file or as binary numpy vectors. Prediction can output in
a single step (i.e., forward pass) not only the final classification
layer, but also any combination of intermediate activation layers.
This last feature is particularly important when the activation of
an intermediate layer of a CNN can be used as feature vector for
training further models. In this way, in further training steps we can
read the binary vectors from disk, rather than running a forward
propagation pass for every image, thus reducing both training time
and memory footprint.

Testing consists of comparing the predictions of a model to the
ground truth data. As the prediction has already been performed,
this process doesn’t require GPU-equipped machines. Our toolbox
computes metrics such as accuracy, specificity, sensitivity, F1-score,
ROC AUC, and more can be added to a centralized testing mod-
ule. Since multi-class prediction is supported, metrics are reported
both per-class and as average among classes. Computed metrics
are written to JSON summary files and also to a CSV dataframe
with the same format as the input training configurations, hence
automatically creating comparison tables to observe the variation
in performance together with the tuning of the training input. By
using CSV files as both input and output formats, domain experts
can (via spreadsheet editors) easily copy-paste valuable configura-
tion results into summary tables, whose lines can be used to define
new input tables for further experiments.

The manual Inspection of the model from the domain-experts
is mandatory to properly verify the credibility of the system in real
settings. Our toolbox includes a Flask [16] server to put trained
models quickly at work. We configured a set of web pages allowing
domain experts to upload single samples, or a batch of them, and
verify classification results. On request, the interface shows the re-
sult of a visual explanation, i.e., the image activation areas that have
driven the network to its final decision. Our framework integrates
both the GradCAM [21] and the RISE [19] methods. Figure 2 shows
an example in the domain of skin cancer classification. Finally, the
server provides the same functionalities though an HTTP REST
API, allowing for the integration with custom web applications.
This is useful when deploying results to remote project partners
while preserving the ownership of the binary trained model.

4 SOFTWARE COMPONENTS
Figure 3 shows the UML class diagram of the core components of
this toolbox. The software is designed using “elements of reusable
object-oriented software” design patterns [6].
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Figure 2: Examples of the inspection web GUI.

Figure 3: UML class diagram of the main components of our toolbox.

The Classifier is an abstract class containing all the code
usually driving CNN engineering: a train() method to tune the
hyper-parameters by minimizing a loss function, and a classify()
method to compute the prediction on (a batch of) samples. Addi-
tionally, given an image, generate_heatmap() computes the XAI
images: a grayscale saliency map, an RGB colored heatmap, and an
overlap between the original sample and the heatmap.

To define a new classifier, software developers can implement
subclasses and specify if the new classifier is a multi-class (argmax
on softmax output) or a multi-label classifier (𝑝 > 0.5 on sigmoid
output). The subclass can also specify a list of training callbacks
(e.g., ReduceLROnPlateau) and the metric used to evaluate and save

the best model before overfitting. The instancing of the Classifier
is performed in the make_classifier() FactoryMethod [6], where
several combination of hyper-parameters can be associated to a
mnemonic ID (e.g., VGG16-fc2048-droupout0.5-nadam).

The DataGenerator class is an implementation of the keras.-
utils.Sequence interface (implementing the len() and the __get_-
item__()methods). Its basic function is to provide image pixels and
the ground truth for training. Given a list of images, the construc-
tor scans the source directory and verifies the existence of every
sample, as well as the consistency of the ground truth data, in order
to avoid time consuming failures at training time. The generator is
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also counting each class occurrence, which is optionally used dur-
ing training for compensating under-sampled classes (parameter
class_weight of method Model.fit_generator()). The image
format is automatically derived from the extension, thus allowing
for mixed image formats in a single folder. Instead of images, the
generator can alternatively read pre-cached numpy arrays, which
is useful to speed up the training of the final classifiers when using
ensembling methods. Ground truth data is optional, so that the very
same generator can be used also for predictions.

Our toolbox provides a configurable Image Augmentation
class set. A DataGenerator reads image pixels through an Image-
Provider. The latter is the top-level interface for a Decorator de-
sign pattern [6]. An ImageProvider gives information of how many
images are available (num_images()), and on request returns one of
them (get_image(i)). The only concrete implementation (Multiple-
ImageProvider) takes a list of image paths in the constructor
and returns them on a given resolution. The abstract subclass
ImageAugmenter implements the ImageProvider interface and at
the same time holds a reference to another image provider (the
decorated instance). Subclasses of ImageAugmenter can augment
the images returned by their provider member. For example, the
HFlipAugmenter returns the double of the images of its provider;
each input image is returned both as-it-is and horizontally flipped.
Software developers can define custom image augmentation chains
and register them in the make_image_provider() factory method,
thus allowing for the association ofmnemonic config IDs to complex
configurations. As an example, the configuration named hflip_rot24,
where each image is both flipped and rotated 24 times, realizing a
48x augmentation, is implemented by:

1 paths: List[str] = [...] # A list of image paths
2 hflip_rot24_provider =
3 # Rotates an image 24 times
4 RotatedImageAugmenter(rot_steps =24,
5 # Flip images horizontally
6 provider=HFlipImageAugmenter(
7 # Reads from disk and rescale
8 provider=MultipleImageProvider(images_path=paths ,
9 resolution =(224 ,224))))

5 CONCLUSIONS
We described the requirements, the software design and the im-
plementation of a software toolbox of reusable components for
the configuration and deployment of deep convolutional neural
networks. The toolbox has already been used in the domain of skin
cancer classification (e.g., ISIC challenges [2, 3]), medical image
concept labeling (ImageCLEFmedical 2020 [18]), and other applied
AI and team collaboration projects. With this tool, we provide prac-
titioners with no coding abilities with a software package to quickly
refine (image) classification pipelines by tuning (hyper-)parameters
and get feedback as quickly as possible, staying focussed on the
machine learning problem at hand. On the other hand, develop-
ers can quickly implement new CNN-based solutions thanks to a
software architecture of reusable components implementing most
of the routines common to image analysis experiments. The API
documentation is available at the Git repository [8]. We hope this
inspires future developments towards the adoption of recognized
software design practices to increase the portability and reusabil-
ity of development efforts across applied AI projects in different

domains.In future developments, we plan the integration of image
segmentation architectures (e.g., U-Net [20]) using the same archi-
tectural principles presented above, i.e., through the introduction
of an abstract Segmenter class.
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