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Abstract: One of the main challenges for the implementation of artificial intelligence (AI) in agricul-
ture includes the low replicability and the corresponding difficulty in systematic data gathering, as
no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different
fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this
work provides a summary of the most recent research activities in the form of research projects
implemented and validated by the authors in several European countries, with the objective of pre-
senting the already achieved results, the current investigations and the still open technical challenges.
As an overall conclusion, it can be mentioned that even though in their primary stages in some
cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing
production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting
yields and reducing water use and greenhouse gas emissions. Future extensions of this work will
include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval,
and effective livestock management.

Keywords: agriculture; artificial intelligence; data analysis; computer vision; robotics

1. Introduction

The information of interest in the agricultural sector consists of traits or features of
systems that vary in space and time. Understanding how to manage agricultural processes
implies considering many hundreds if not thousands of variables. Thus, agriculture is
one of the most difficult fields for statistical quantification. Even within a single field,
conditions are always changing from one section to the next. The weather is hard to predict,
the quality of the soil changes and there is always the possibility of pests and diseases.
Traditionally, many of these traits have been managed by the own experience and expertise
of the farmers. Although they may think the prospects for an upcoming harvest are good,
the outcome is always uncertain until the harvest day arrives.

Precision agriculture (PA) is seen today as a key technological solution enabling the
more efficient use of agricultural resources. General goals of PA are the increase of farmers’
profits by improving harvest and/or quality yields, while reducing inputs, and the negative
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impact of farming on the environment, e.g., such that stems from the over-application of
pesticides and fertilizers, and inefficient irrigation.

The emergence of new technological trends like artificial intelligence (AI) enables
farmers to take a data-driven approach to collect and analyze large amounts of data
to gain knowledge about the real-time status of their fields to improve farm yield and
mitigate risks from weeds, pests, and diseases. The development of intelligent sensors,
instrumentation and machines is beginning to play a crucial role in agricultural systems,
which are affected by several factors such as environmental conditions, soil characteristics,
water availability, harvesting practices, plant diseases, weeds, and other pests. In the
near future, the integration of automated data collection and analysis, AI algorithms and
decision support tools will provide advanced tools towards PA. Moreover, robotic systems,
on the ground and in the air, will also have a major role in bringing PA and digitalization
to the field, for harvesting, pest control or data collection, just to name a few.

This paper explains how data-driven AI applications are key enablers for PA in several
European countries. First, the paper summarizes several definitions about terms and con-
cepts related to PA; describes global trends and policies that will foster the implementation
of the AI-based solutions in the agricultural sector; provides an overview of the current
state-of-the-art regarding the application of AI technologies within the PA. Secondly, the
paper provides a summary of the most recent research activities in the form of research
projects implemented and validated by the authors in several European countries, with the
objective of showing the already achieved results, the current investigations and the still
open technical challenges. Finally, several conclusions and future works are presented.

2. Artificial Intelligence for Precision Agriculture
2.1. Global Trends

From ending poverty and hunger to responding to climate change and sustaining
natural resources, agriculture is a key component in the 2030 Agenda for Sustainable
Development to achieve the Sustainable Development Goals (SGD), as it can be said that
agriculture is the common thread which holds the 17 SDGs together. Despite greater
productivity, the agricultural sector faces new challenges that threaten human civilization
worldwide. With a growing population and the complexity of climate change, the sector
has been forced to transition away from industrial methods to data-driven management
and automation to grow more food while using fewer precious resources.

In Europe, the Farm to Fork Strategy presented in the first quarter of 2020 plays a key
role to achieve the goals of the EU’s Green Deal, which sets out how to make the continent
climate-neutral by 2050 [1]. It fixes the measures needed to create more efficient, climate-
smart agricultural systems that provide healthy food, while securing a decent living for
EU farmers. The Strategy targets a significant reduction of the dependency, risk and use of
chemical pesticides, as well as of fertilizers; an increase in the EU’s land area dedicated to
organic farming; the development of innovative farming techniques that protect harvest
from pests and diseases; the reduction of the carbon footprint and water pollution.

To achieve the objectives of both the SDGs and the Farm to Folk Strategy, European
farmers need to transform their production methods more quickly and make the best use of
nature-based, technological, digital and space-based solutions to optimize their inputs (e.g.,
water, pesticides, fertilizers) and deliver better climate and environmental results. Such a
new paradigm will only be possible with the adoption of technological applications and
solutions that are driven by the convergence of several fundamental technologies, which
keep a farm productive and profitable by collecting and analyzing data to help farmers
manage their resources, produce better crops while optimizing energy and chemical use
and mitigating risk.

2.2. What Is Precision Agriculture (PA)?

In the context of digitization in agriculture, two concepts are usually mentioned:
precision farming and smart farming. On the one hand, the former can be defined as “an
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information-led management concept in both plant and animal production that is based
on a wide range of technologies”. This concept is based on digital processing of specific
information so it can support decision making processes. On the other hand, the latter
relates to a “knowledge-based approach in which machines can at least take partially
autonomous decisions in collaboration with management systems. The decisions taken
by machines are based on autonomously obtained and processed information in real-time,
even though farmers always have the possibility to correct them” [2].

Moreover, the PA concept has also gained ground in the European Union as a “farm-
ing management concept based upon observing, measuring and responding to inter and
intra-field variability in crops or in aspects of animal rearing” [3]. PA brings about a
change in the land use, by fostering “whole-farm management strategies using information
technology, highlighting the potential improvements on production while reducing envi-
ronmental impacts”. Yost et al. simplified this definition and described PA as a “suite of
Information Technologies that focus on producing immediate benefits by being conscious
of the environment” [4]. Moreover, Lezoche et al. have defined the term “Agriculture 4.0”
as “the provision of advanced technologies to farmers to meet their production challenges”
by establishing the linkages between new 4.0 trends in technologies and agri-food supply
chain challenges [5].

Regardless of the term used, it is undeniable that digitization is leading to on- and off-
farm management tasks that focus on different data sources (location, weather, phytosani-
tary status, inputs consumption, prices) using sensors, machines, unmanned autonomous
vehicles (UAV) and satellites to monitor soil, water, plants and humans. Obtained data
can be used to make more informed decisions and to reduce uncertainty when predicting
the future.

2.3. AI in Precision Agriculture (PA)

Current adoption rate of AI technologies in the agricultural sector is not high due to
distinct factors among which a lack of knowledge on its real use plays an important role.
Therefore, several studies have focused on the identification of the main AI technologies
used in PA as well as documented implementations.

Liakos et al. have presented a comprehensive review of research dedicated to applica-
tions of machine learning (ML) in agricultural production systems [6]. The key fields of
application were categorized into crop management, water management, and soil man-
agement. They concluded that it is undeniable that agriculture will benefit from ML
technologies, which will allow Farm Management Systems to evolve into real-time decision
support systems (DSS) thanks to the application of AI algorithms.

Furthermore, van Klompenburg, Kassahun and Catal have performed a systematic
literature review (SLR) about the ML algorithms and features used in crop yield prediction
studies [7]. The results show that no specific conclusion can be drawn as to what the best
model is, but they clearly show that some ML models such as the random forest, neural
networks, linear regression, and gradient boosting tree are used more than the others.

Additionally, Noon et al. have presented a large survey of the application of deep
learning (DL) techniques for plant leaf stress identification [8]. The techniques reviewed
were divided in vegetables, fruits and other crops on the basis of stress type, size of dataset,
training/test size and the deep network used. Several research gaps have been identified,
such as the detection and classification of all severity levels of a stress to detect contagious
diseases, or the generalization of algorithms to different crops.

Finally, AI and robotics are playing a key role in helping or substituting manual
intervention in the agricultural sector, which covers a large application panel. On the one
hand, robotics has played a key role in agricultural production and management, so robots
are performing several operations autonomously such as weeding, irrigating or managing
individual plants. Zhang et al. have provided a detailed summary of the state-of-the-art
robotic grippers, grasping and sensor-based control methods, as well as their applications
in robotic agricultural tasks [9]. Compared to industrial grasping, higher requirements
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of grasping in agriculture are rising since most of the food and agricultural products are
always fragile, easily marked or bruised, adhesive or/and slippery.

On the other hand, drones are being implemented in agriculture for crop health
monitoring, irrigation equipment monitoring or weed identification. Roshanianfard et al.
described different aspects of autonomous agricultural vehicles that have been developed
at Hokkaido University [10]. The development procedures and characteristics of each
unmanned aerial vehicle (UAV) were compared and discussed. Case studies of autonomous
vehicles designed and the development process have been presented as practical cases and
representative development challenges.

In last years, the EU has actively undertaken R&D activities related to the application
of AI for the digitization of agriculture. For example, Bacco et al. provided a survey
of the most recent research activities with two main contributions: a survey of relevant
research projects recently funded by the EU in the field of PA; a review of the scientific
works that propose solutions for its implementation [11]. Regarding the former, they aim at
highlighting the increasing attention towards those research activities and the identification
of the involved technologies.

However, to the best of the authors’ knowledge, there are no recent surveys of research
activities at European level related to the application of AI technologies for the agricultural
sector. Following the approach from Bacco et al., this paper aims at providing an updated
version of several European research projects that have been or are being run by the authors.
Taken together, these examples represent the current abilities and future potential for AI
applications in European agricultural research projects.

3. Results of the European Research Projects

Low replicability and the corresponding difficulty in systematic data gathering is a
key challenge in agriculture, as no two fields are exactly alike. Therefore, the comparison
of several pilot experiments in different fields, weather conditions and farming techniques
can enhance the collective knowledge. Thus, this section provides a summary of the
most recent research activities in the form of research projects implemented and validated
by the authors in several European countries, with the objective of showing the already
achieved results, the current investigations and the still open technical challenges. Figure 1
depicts relevant agricultural operations faced by the research projects, and the AI-based
technological solutions for each of those projects. The objectives, methodologies and
material used are different for each of the research projects, and when available, can be
further assessed from the existing references.

3.1. AI-Based Data Fusion for Crop Monitoring

Data collection from agricultural areas related to soil watering, plant health or pest
infestation often relies on manual inspection due to insufficient capturing methods and
missing aggregation of different data sources. However, thanks to the increasing dig-
itization of the sector, the fusion of remote sensing for automated scanning and data
analysis with other sources of information (soil analyses, weather forecasts) and powerful
AI algorithms is leading to a reduction in the application of fertilizers and pesticides.

In this context, the German Federal Ministry for Economic Affairs and Energy has
recently funded the large scale NaLamKI initiative, which aims at developing a cloud-
based Software as a Service (SaaS) platform with open interfaces for providers from the
upstream and downstream sectors of agriculture, industry, and service providers for special
applications in crop production. The initiative aims at the creation of a dataset by the fusion
of sensor data from machines, remote sensing (satellites and drones), soil, weather and
other existing data sources [12], so that agricultural processes like irrigation, fertilization,
or pest control can be optimized thanks to the application of advanced AI methodologies.
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Figure 1. Conceptualization of the several agricultural operations and AI related technologies of the European research
projects described in the paper.

An important focus of the initiative is the visual analysis of plants and fields from
images captured by satellites [13], drones or agricultural vehicles. Furthermore, the combi-
nation of multispectral imaging with radar and soil sensors addresses the determination of
plant and soil condition [14]. Finally, powerful AI algorithms will fuse the data and extract
information for the optimization of the agricultural processes.

The initiative will target two open research challenges within the AI community. On
the one hand, even though methods based on AI have shown precise performance, they
degrade with small training datasets (e.g., when trying to detect rare events or diseases
on plants). Thus, domain specific knowledge and semantic models should be integrated
into the AI methods to increase precision. On the other hand, AI algorithms look like black
box systems for farmers, who find it difficult to understand results, reducing acceptance of
such solutions. Therefore, methods for explainability will be exploited to validate network
decisions and to improve training and network generalization.

Finally, it should be mentioned that the initiative will also focus on the potential
problems arising from data privacy with cloud-based agriculture as data will be shared
among different stakeholders. Thus, the development of AI methods and services must
always ensure data sovereignty along the entire value chain and interoperability between
various central and decentralized cloud providers and users in order to increase the
acceptance by partners and farmers.

3.2. Agricultural Digital Twins for Geospatial Monitoring

Within the manufacturing domain, the digital twin (DT) concept allows for testing
hypotheses through simulations, establishing continuous monitoring and implementing
measures for management and maintenance. Although agriculture cannot be compared
one-to-one with a factory production line, this concept can be extended to fulfil similar
expectations as in the Industry 4.0.

An agricultural DT [15] represents a generic key component for agricultural applica-
tions to build up a reliable database for plantations and fields, to increase accuracy and
coverage of crop prediction, and to significantly reduce costs and time expenditure. Acting
as a virtual replica of the physical system, the DT provides the ability to examine complex
scenarios which involve multiple, intertwined factors at once. Limited existing use cases
include, for example, the ability to take measurements ranging from phenotype traits to
plantation inventory, the generation of precise weed control maps, or the control of the
evolution of the assets over time.
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A distinctive characteristic of a DT in agriculture lies on the spatio-temporal dimen-
sion of its operation, as it ranges from individual plants to twins of land parcels, farms or
regions [16]. Thus, one of the key concepts required for geospatial DT consists in finding
adequate feature spaces for geospatial entities. As a basis for so-called “Spatial Digital
Twins”, 3D point clouds can be defined as a universal digital 3D representation for environ-
ments in almost all geoscale ranges. They are characterized by their enormous data volume
and lack of semantics, so that their added value is often limited to manual evaluation and
interpretation (e.g., by surveying offices). However, a single point of the 3D point cloud
does not allow constructing meaningful feature vectors.

Therefore, geospatial AI algorithms based on ML and DL have been implemented in
the German project DEAL to automatically derive vegetation objects from 3D point clouds
so that a fully automatic workflow that generates an agricultural DT can be implemented
(Figure 2) [17]. In such context, geospatial AI offers manifold ways to “distil” object-based
information from 3D point clouds, as ML and DL algorithms are able to identify and
interpret orchards and tree plantations, including the whole range of what constitutes
“trees” and “vegetation” (e.g., “crooked trees”, “flat bushes”, “diseased trees”, etc.).
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Figure 2. Two examples of derived vegetation objects based on 3D point cloud analysis.

Furthermore, a knowledge base can be built to answer questions such as the location
and main characteristics of orchards and tree plantations (e.g., height, crown set, volume,
diameter of trees, flowering characterizing, ripening velocity); the location of other vegeta-
tion stocks (e.g., shrubs, bushes, ground level vegetation, green areas); or the detection of
differences between inventory data and current state of the orchards and tree plantations.

3.3. AI-Based Irrigation to Optimize Water Use

The European project Internet of Food and Farm 2020 (IoF2020) explores the potential
of the Internet of Things (IoT) technologies for the European food and farming industry
to make precision farming a reality [18]. IoT-driven PA enables farmers to optimize
their operating tasks to increase crop yields and to minimize costs of inputs such as
water, fertilizer, insecticides, and herbicides. The project has implemented the QUHOMA
platform [19], a smart irrigation solution developed as a FIWARE-backed end application
(Figure 3). The irrigation schedule is calculated by a complex event processing (CEP) AI
approach based on current algorithms used for irrigation. This approach relies on the daily
accumulated sensor data. Therefore, if the data stream were interrupted or inaccurate
due to malfunction or failure of the sensors, and/or loss of connection during long-time
periods, calculations would deviate from the optimized target.
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To overcome these limitations, the project has implemented AI-based predictive
analytics that fuse the gathered datasets with other public data sources to train models.
As a result, data customized to the field are generated and used as a workaround for the
following two scenarios. On the one hand, sensor data streams may become unavailable for
a period longer than the estimated tolerance threshold of the CEP algorithm. In this case,
accumulated historical data from sensors and previously defined irrigation schedules are
used to calculate the irrigation schedule. On the other hand, sensor data may be inaccurate.
Thus, predictive analytics based on the historical data can detect anomalies in the values of
the sensor data (e.g., when stream data values are not in the estimated acceptable value
span) and use this information for the proactive maintenance of the affected sensors.

Real-life irrigation experiments started in 2020 in Cyprus and Slovenia. The objectives
and methodology of the pilots are available in [20]. As an example, an experiment was
conducted during a crop session of strawberries (approx. 100 days), planted in a tunnel
farm with Clay Loam soil in the coastal Ammochostos district in Cyprus (Figure 4). In
order to perform this experiment, critical values of the climate zone, ETo (reference evapo-
transpiration), ETc (crop evapotranspiration) and other sensitive irrigation parameters were
implemented on the algorithm which handles the smart irrigation schedule on QUHOMA.
Several tasks such as quality assessment and cleaning of weather data, or the identification
of inputs and their impact on water retention have been completed. Algorithms and models
have been calibrated and adjusted for the experiments. The use of the QUHOMA irrigation
platform led to a reduction of the 10.88% in water used when compared to the empirical
irrigation scheduling program available for the farmer.

Although predicting yield in vineyards represents a challenging task due to high
interannual and spatial variability derived from the effects of several factors, quantifying
temporal, regional and local variability of vigor and yield of a vineyard can bring several
advantages for the entire production chain [21]. In this context, the EU-funded project
VINBOT aimed at developing an all-terrain AGV with a set of sensors capable of capturing
and analyzing vineyard images and 3D data by means of cloud computing applications, to
obtain yield maps representing the spatial variability of the vineyard plots [22].
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3.4. Robotics for Precision Viticulture

The navigation solution is based on a hybrid reactive/GPS based navigation scheme
tested successfully in the vineyard (Figure 5). On the one hand, the navigation scheme
uses a laser range finder and RGBD device to perform reactive row following and obstacle
avoidance. On the other hand, the scheme includes other reactive behaviors or GPS
waypoint navigation to change from row to row or field to field, thus supporting different
levels of automation (Figure 6).
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A ground truth evaluation trial was set up in an experimental vineyard in Lisbon with
two plots of the white varieties “Alvarinho” and “Arinto”. For each varietal plot, six smart
points were selected with 10 contiguous vines each [23]. During the ripening period of
the 2016 season, the vines were manually assessed for canopy dimensions. The VINBOT
platform showed an acceptable performance for the automated estimation of canopy
features, although results were very dependent on the variety of the grapes (Figure 7).
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Moreover, a general underestimation of actual yield based on the combination of image
analysis and automatic canopy porosity assessment using a laser range finder has been
observed. This result can be attributed to a combined effect of bunch occlusions, low
accuracy of grape detection algorithms, and empirical relationships used in final yield
calculations. Thus, further research on computer vision algorithms, especially related to
hidden bunches by vegetation, is needed to improve the reliability and accuracy of the
yield estimations.
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3.5. Yield Prediction of Olive Trees Based on Phenotypic Data

Phenology is one important parameter when estimating final yield. Thus, models
simulating phenological phases are valuable tools to plan agronomic strategies to optimize
production and to assess the impact of climate change. Prediction of flowering and yield,
and monitoring phenology, as well as pests and diseases, are important to model the impact
of climate change on productivity. In olive trees, a relation between phenological phases
and climate variables has been found. Indeed, the occurrence of each phenological stage is
based on the accumulation of temperatures above a base temperature calculated on daily
(growing degree day—GDD) or hourly (e.g., normal heat hours) time steps up to a fixed
amount that depends on crop and variety.

The EU-funded project DEMETER is developing prediction models of the phenological
state based on the day of the year (DOY) and GDD using ML algorithms. Such models
have been trained and tested with data collected during the monitoring of phenology in
olive orchards in Tuscany (Italy) in 2008–2010. For each olive orchard, five olive trees in
good health conditions and with homogeneous productivity were selected. The monitoring
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consisted in visiting the orchards at different time spans during the year, according to the
development stage of olive trees in the different seasons [24].

There are 821 data points in the dataset that belong to 22 different locations with an
average of 34 data points per location and 274 data points per year. The dataset was split
into training (60%), validation (20%), and test (20%) disjoint sets with the particularity that
data were chosen using stratified sampling from the data for the different years.

Four different ML models have been tested (linear regression, CART regression tree,
random forest, and neural network). Each model was used twice, one time with linear
features and another time with polynomial features up to the fourth degree. A baseline
model was used to benchmark the performance of the ML models. For each phenological
phase, the average GDD accumulated from the 1st of January until the DOY of observation
with a base temperature of 10 ◦C is the baseline model taken as prediction and benchmark.
The olive tree phase is predicted with the GDD, considering whether the GDD cumulated
are equal to or greater than the GDD of the baseline model, but lower than the GDD of the
next phase.

The different models were evaluated according to the root mean square error (RMSE)
metric on the validation set. The model with the lowest RMSE on the validation set was
the selected model. For this dataset, random forest with linear features was the best model
using GDD and DOY as predictors and rounding the prediction to an integer. The trained
models can predict GDD indices with a RMSE of 0.65% on the datasets considered in
the validation.

3.6. Simultaneous Localization and Mapping (SLAM) in Agricultural Robotics

Implementations of automatic agricultural robotics or vehicles can be grouped into
four categories [25] which are not independent. As illustrated in Figure 8, the robot or
vehicle needs information about its position, the map of the surroundings for guidance,
and the awareness of the presence of trees or moving obstacles in its navigation for safe
and successful navigation. This information can be integrated into a SLAM system.
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extracted from open-source dataset Rosario [26].

SLAM is a proper solution for occluded GPS (sometimes blocked by dense foliage),
crop-relative guidance in open fields, tree-relative guidance in orchards, and more im-
portantly, sensing the crops and its environment [27]. Various sensors, such as on-board
cameras, laser scanners and ultrasonic devices, have been used to extract features from the
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crops themselves and to determine the location of the robot related to the crop lines or tree
rows to auto-steer.

Researchers from the French–German MOVEON project have recently demonstrated
a comprehensive breakdown of a visual SLAM system based only on a single camera
combined with state-of-the-art multi-view stereo (MVS) algorithms and DL techniques [27].
It overcomes some of the constraints of current autonomous vehicles or robots working
on agricultural environments, such as overly repetitive patterns, the need of very detailed
reconstructions, or the abrupt movements caused by uneven roads. The results of the
project have been extended towards the agricultural sector. Therefore, experiments have
been conducted over the Rosario dataset, which consists of six sequences recorded in a
soybean field, captured by forward looking stereo camera, showing real and challenging
cases such as highly repetitive scenes, reflection and burned images caused by direct
sunlight and rough terrain, among others.

In our approach, the dense point cloud can be generated offline up to real scale
(see Figure 9a), so that it is suitable for tasks like 4D monitoring of the crop and the
provision of valuable information to the farmer (e.g., size, disposition, maturity, volume,
width and height of the crop). As dense mapping can be achieved also in real-time, the
agricultural vehicle or robot can sense the environment to its position and auto-steer. More
important, it is also possible to use unsupervised depth estimation using convolutional
neural network (CNN) combined with the SLAM system (see Figure 9b) to tackle the
problem of manual labeling of agricultural data, and further boost the performance of
real-time dense reconstruction of the agricultural environment.
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4. Conclusions

As stated in the report Harnessing Artificial Intelligence for the Earth, the World Economic
Forum (2018) observed that smart agriculture has the potential to “fundamentally change
agriculture even more than the 20th century mass farming methods did” [28]. In particular,
PA technologies that deploy AI and advanced robotics are expected to improve decision
support at farm level, monitoring conditions and optimizing production to allow farmers
to apply the optimal number of inputs for each crop, thereby boosting yields and reducing
water use and greenhouse gas emissions.

This paper summarized the most recent research activities in the form of research
projects implemented and validated by the authors in several European countries, with the
objective of presenting the already achieved results, the current investigations and the still
open technical challenges.

First, as low cost and accurate monitoring of crop and soil health has long been key to
a successful agricultural economy, two examples of current German projects that deal with
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the availability of agricultural data and its potential use in DT to provide insights into such
complex systems have been described. On the one hand, the large scale NaLamKI initiative
will lead the implementation of a dataset by the fusion of sensor data from machines, remote
sensing (satellites and drones), soil, weather, and other existing data sources to overcome
the current limitation of data availability when implementing advanced AI methodologies
for the optimization of agricultural processes. Furthermore, current research challenges
for AI such as explainability and the integration of semantic agricultural models will
be targeted.

On the other hand, even though still in primary stages, the application of DT in
agriculture can bring a technological breakthrough in the near future. In order to provide
insights into complex agricultural systems, the DEAL project has implemented geospatial
ML and DL algorithms to automatically derive vegetation objects from 3D point clouds,
transcending explicit geospatial modeling and overcoming heuristics-based reconstructions
and model-based abstractions. Therefore, agricultural DT can be fully automatically
implemented to simulate, plan, analyze and improve the way crops are grown so that
yields are maximized, stress on water supplies and soil quality is reduced, and agriculture
becomes a sustainable practice.

Secondly, AI in agriculture is helping farmers to shift their management strategies to
precise cultivation for higher crop yield and better quality while using fewer resources. On
the one hand, AI applications in agriculture such as for irrigation, weeding or spraying,
save the excess use of water, pesticides and herbicides while maintaining the fertility of
the soil to improve both productivity and quality of produced goods. In this way, the
QUHOMA irrigation platform developed within the IoF2020 project has been extended
with AI-based predictive analytics that fuse the gathered datasets with other public data
sources to train models when data stream is interrupted or inaccurate due to malfunction
or failure of the sensors, and/or loss of connection during long time periods. Real-life
experiments conducted in strawberry crops in Cyprus led to a significant reduction (from 6
to 11% less) in water used when compared to the empirical irrigation scheduling program
available for the farmer. The platform is currently being adapted to groves of olives in
order to optimize their irrigation using the minimum number of sensors.On the other
hand, while many analytical models have been developed to plan agronomic strategies to
optimize production, AI leads current research since it enables to take into account complex
multidimensional holistic approaches. This paper describes two examples of the use of ML
techniques for the yield prediction, both in the automated estimation of canopy features of
an experimental vineyard in Lisbon and in olive tree plantations based on phenotypic data.

First, the VINBOT project aims at predicting yield in vineyards using an all-terrain
AGV with a set of sensors capable of capturing and analyzing vineyard images and
3D data by means of cloud computing applications. Although the platform showed an
acceptable performance, with a better accuracy within the “Alvarinho” plot than in the
“Arinto” one, a general underestimation of actual yield for both plots was observed. This
result can be attributed to a combined effect of bunch occlusions, low accuracy of grape
detection algorithms, and empirical relationships used in final yield calculations. Thus,
further research on computer vision algorithms, especially related to hidden bunches by
vegetation, is needed to improve the reliability and accuracy of the yield estimations.

Secondly, prediction models of the phenological state for olive trees have been devel-
oped within the DEMETER project, as models simulating phenological phases are valuable
tools to plan agronomic strategies to optimize production and assess the impact of climate
change. Four different ML models have been tested and compared according to the RMSE.
The use of low base temperature resulted in better model prediction.

Finally, robotics agriculture will not only make agriculture more precise but also
a sustainable business, as it is undeniable that the average age of farmers is rising, and
younger generations are less likely to take their place causing concern about labor shortages
in the agricultural sector. The MOVEON project has demonstrated a comprehensive
breakdown of a visual SLAM system based only on a single camera combined with state-
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of-the-art multi-view stereo (MVS) algorithms and DL techniques, overcoming some of the
constraints of current autonomous vehicles or robots working on agricultural environments,
such as overly repetitive patterns, the need of very detailed reconstructions, or the abrupt
movements caused by uneven roads.

5. Future Work

A key goal of PA is to retrieve accurate information about the spatial and temporal
variability of soil and plant parameters, with the aim to reduce inputs such as fertilizers,
seeds, water or pesticides. This allows better quantitative assessment of how much of a
specific input is needed, so that agriculture has a lighter impact on the environment and
at the same time, “produces more with less” in the same area. However, current plant
sampling techniques are time-consuming and involve intensive human labor and costs,
which leads to significant limitations on the frequency and the number of samples that can
be collected to quantify the experimental error among treatment repetitions.

New concepts based on autonomous and intelligent robots for plant and soil sample
retrieval should be introduced to obtain more and better plant data in a shorter time with
less human labor. Therefore, groups of heterogeneous intelligent and autonomous agricul-
tural vehicles (UAVs) and ground robots (UGVs) capable of approaching and recognizing,
manipulating, sampling and collecting, transporting and delivering soil and plant samples
required for inspection should be developed. High-quality sampling data gathered by
robots will allow the development of novel DDS, which in turn will facilitate decisions on
exactly how, where and in which amount inputs should be used to improve production
and to use resources sustainably. The concept, once applied, will greatly increase precision
and quality in farming processes.

Furthermore, future extensions of this work will include the implementation of AI
algorithms for the smart farming concept, including effective livestock management. For
example, automated video monitoring of animal behavior to detect events like calving,
heat periods or other physiological phenomena, is of great interest to help farmers and
breeders improve efficiency in their professional activity. Advantages of an automated
solution are to provide a 24 h/7 days assistance, to allow anticipating alerts, to facilitate
reporting, to ensure traceability and all this to alleviate the burden for the farmers and
attend to the health of the animals. The livestock monitoring will be progressively enriched
with advanced functionalities based on IA and sensing that will be kept noninvasive
for animals.
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