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Previous research has shown the value of the sense of embodiment, i.e., being

able to integrate objects into one’s bodily self-representation, and its connection to

(assistive) robotics. Especially, tactile interfaces seem essential to integrate assistive

robots into one’s body model. Beyond functional feedback, such as tactile force sensing,

the human sense of touch comprises specialized nerves for affective signals, which

transmit positive sensations during slow and low-force tactile stimulations. Since these

signals are extremely relevant for body experience as well as social and emotional

contacts but scarcely considered in recent assistive devices, this review provides a

requirement analysis to consider affective touch in engineering design. By analyzing

quantitative and qualitative information from engineering, cognitive psychology, and

neuroscienctific research, requirements are gathered and structured. The resulting

requirements comprise technical data such as desired motion or force/torque patterns

and an evaluation of potential stimulation modalities as well as their relations to

overall user experience, e.g., pleasantness and realism of the sensations. This review

systematically considers the very specific characteristics of affective touch and the

corresponding parts of the neural system to define design goals and criteria. Based

on the analysis, design recommendations for interfaces mediating affective touch are

derived. This includes a consideration of biological principles and human perception

thresholds which are complemented by an analysis of technical possibilities. Finally, we

outline which psychological factors can be satisfied by the mediation of affective touch

to increase acceptance of assistive devices and outline demands for further research

and development.
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1. INTRODUCTION

Human-machine-interfaces and robots used for assistance,
service or rehabilitation purposes currently exhibit very limited
abilities to mediate subtle affective touch, i.e., tactile processing
with a hedonic or motivational component (Morrison, 2016a),
in humans (Beckerle et al., 2018). Conversely, they are not
able to sense, process and understand such touch. In current
robotics, tactile information is mostly used for precision grasps,
which are mainly realized by intrinsic tactile sensing (Bicchi,
1990) with sensors placed within the structure of an end
effector. Affective touch would require extrinsic tactile sensing
via sensor arrays at the point of contact. In every application
area where robots interact closely with humans, the ability to
understand and use this level of tactile information can be
advantageous (Beckerle et al., 2018). Interfaces mediating touch
can profit from the ability to elicit affective feelings in their users,
e.g., vivid haptic feedback can increase immersion in virtual
or augmented reality applications (Hoffman, 1998; Ku et al.,
2003). Moreover, psychological effects such as bodily illusions,
where users get the impression that an artificial limb is their
own one, benefit from such technologies (Crucianelli et al.,
2013, 2018). It has been shown that affective information can
enhance the rubber hand illusion and thus has the potential
to create a more realistic experience of prostheses and other
assistive devices (Crucianelli et al., 2013; van Stralen et al.,
2014). Nevertheless, interfaces mediating affective information
are scarcely researched and only few prototypic implementations
exist (Bonanni et al., 2006; Huisman et al., 2013, 2016; Raisamo
et al., 2013; Culbertson et al., 2018). Accordingly, further research
is needed in order to improve and extend the capabilities of
human-machine-interfaces and assistive robots with regard to
affective tactile interactions.

For the purpose of designing appropriate technical devices, an
understanding of the relevant neurobiological and psychological
mechanisms in humans is required. Although current
fundamental research of affective touch has not yet answered all
open questions in those areas (Olausson et al., 2010), important
progress has been made, which enables future technical
development. This review summarizes key findings from
neurobiological and psychological research to provide guidance
for the design of future technical implementations. In section 2,
we begin with a brief overview of known mechanoreceptors
relevant to active touch, and then introduce the biological
background of affective touch and its effects on psychological
factors during human-machine interaction in section 3. Section 4
examines the previous implementations that aim for mediating
affective sensations to offer design recommendations as section 5
concludes the review with a brief overview and discussion.

2. NEUROBIOLOGICAL BACKGROUND

In human glabrous and hairy skin, a large number of different
sensory receptors are found in the dermis or epidermis. For
example, nociceptors measure noxious mechanical or thermal
events, and mechanoreceptors to measure tactile sensations.
Different receptors and types of tactile fibers are known for the

tactile innervation of glabrous and hairy skin. Some of them
are common in both skin types, others differ and especially in
hairy skin additional variations with respect to different parts
of body were found (Vallbo et al., 1995). This goes along with
differences in the function of glabrous and hairy skin.While hairy
skin is more relevant for affective touch, which is the topic of this
review, glabrous skin is more involved in discriminative touch,
although, both types of skin are able to receive mediated touch
as for example recently discussed in Corniani and Saal (2020). In
order to transfer physiological findings to technical systems such
as robots, sensing and feeling of the environment by receptors
in the skin has been studied and characterized primarily with
respect to the manipulation of objects (Johansson and Flanagan,
2009; Dahiya et al., 2010), i.e., active touch (Gibson, 1962). Hence,
for defining design criteria for technical systems, myelinated Aβ

afferents for discriminative touch, which are of higher density
in glabrous skin, were in most cases considered (Corniani and
Saal, 2020). In this review, we want to focus on affective or
mediated touch and unmyelinated mechanoreceptors, which
are highly related to affective touch, although it was recently
suggested that both myelinated as well as unmyelinated fibers
should be considered as rather interleaved than separated sources
for different facets of tactile information (Marshall et al., 2019).
For reasons of overview and differentiation, we first provide a
brief overview of the sensory receptors in the human glabrous
skin that are most relevant for tactile perception during object
manipulation, i.e., that sense information for discriminative
touch to be transferred by myelinated Aβ afferents, while briefly
referring to differences between glabrous and hairy skin. Then,
we focus on unmyelinated mechanoreceptors. Recently studied
receptors which are hypothesized to play an important role in
affective touch, i.e., C-tactile afferents, as well as brain processing
of CT afferent signals are presented in more detail, to address the
need for systematic reviews in this area (Corniani and Saal, 2020).

2.1. Mechanoreceptors for Discriminative
Touch
For discriminative touch, four different types of myelinated Aβ

afferents in different layers of the glabrous skin and with different
distribution, morphology, and function (Vallbo and Johansson,
1984; Lederman and Browse, 1988) responding to mechanical
pressure or distortion of the skin (Vallbo and Johansson, 1984)
are mainly considered in design criteria for technical systems. In
the following we give a brief overview onmyelinated Aβ afferents
of glabrous skin concentrating on their response characteristic
and point out differences to hairy skin.

In glabrous skin, which is most relevant for the manipulation
of objects, fast adapting (FA) tactile units responding to
the transient phases of stimulation, i.e., responding only to
changes in the signal, and slowly adapting (SA) units that
are sensitive to static forces and show a sustained discharge
can be differentiated (Vallbo and Johansson, 1984). These two
main groups can further be differentiated, e.g., with respect to
differences in responses to the stimulus pattern. For example,
the SA sub-type SA1 units (Merkel corpuscle end-organs) are
particularly sensitive to edge contours of objects (Johansson et al.,
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1982; Johansson and Vallbo, 1983). They show a higher response
frequency during the beginning of contact and decreasing
feedback over time (Johansson and Vallbo, 1983) while SA2 units
(Ruffini corpuscle end-organ) are responding with a constant
frequency during the contact phase (Vallbo and Johansson, 1984).
Interestingly, SA2 units do not only respond to indentation
but also to skin stretch with a directional property (Knibestöl
and Vallbo, 1970; Johansson, 1976, 1978) and might therefore
contribute to measure shearing forces (Vallbo and Johansson,
1984), e.g., caused by a tool slipping out of the hand. FA2
receptors (Pacinian corpuscle end-organs) respond particularly
to rapid onset and offset of those (Johansson and Vallbo,
1983) and to high frequency vibrations (Johansson et al., 1982;
Dahiya et al., 2010). In contrast, FA1 (Meissner corpuscle end-
organ, Iggo and Muir, 1969) responds to rapidly occurring
small changes in the indentation of the skin (Johansson and
Vallbo, 1983), i.e., they respond as long as the stimulus is
changing. FA1 receptors can only be found on glabrous skin
unlike other aforementioned receptors that are also located on
hairy skin (Vallbo et al., 1995). Rapidly adapting hair and field
afferents replace F1 receptors in hairy skin (Vallbo et al., 1995)
and might be more sensitive to higher frequencies (Corniani and
Saal, 2020).

Aβ afferents in the glabrous skin can be differentiated
with respect to the size of their receptive fields and
location (Johansson, 1978; Vallbo and Johansson, 1984;
Johansson and Flanagan, 2009; Dahiya et al., 2010). In Vallbo
and Johansson (1984) a comprehensive overview is given:
corresponding to the small, accurate receptive fields, FA1 and
SA1 receptors are responsible for localizing contact stimuli on
the skin surface and to detect details of the surface structure
at the site of contact. FA1 and SA1 units show a non-uniform
distribution. They accumulate in the skin of body parts that show
high tactile resolution, such as finger tips. While FA1 units are
located in the papillary (close to the skin surface) SA1 units can
be found at the tip of the intermediate epidermal ridges. Hence,
both units are located in the very upper part of the dermis. FA2
and SA2 units have large receptive field with obscure borders.
While FA2 units are found in the subcutaneous tissue SA2 units
are located in the dermis but lower than FA1 and SA1 units.
Vallbo et al. (1995) shows that receptive fields of hair and field
afferents in hairy skin are oval or irregular in shape without
orientation and larger than those of SA1 and SA2 receptors.

2.2. C-Tactile Afferents
C-tactile (CT) afferents are unmyelinated, low-threshold, i.e.,
responding strongly to light stimuli (<5mN), mechanoreceptive
nerve fibers found in the hairy skin of humans (Vallbo et al., 1999;
Ackerley and Watkins, 2018). They strongly respond to slow and
light tactile stimuli (Nordin, 1990; Vallbo et al., 1999; Löken et al.,
2009; Morrison et al., 2011). Such stimulation characteristics are
typical for caressing or stroking with a soft material, which is why
it was hypothesized that CT afferents play a major role in affective
touch and its social components (Löken et al., 2009; Ackerley
et al., 2014; Huisman et al., 2016). This is grounded on two
main observations: activations in the insular cortex of the human
brain for stimulation of CT afferents (Olausson et al., 2002)

and reports on maximized pleasantness when stimuli match
CT-optimal characteristics.

The first observation is established by findings of neurological
investigations, which have revealed that especially the
contralateral posterior insula was found to respond to stroking
with a soft brush (Olausson et al., 2002; McGlone et al., 2012). As
the insular cortex is involved in emotional processing (Olausson
et al., 2002; Leibenluft et al., 2004; Craig, 2008, 2009; McGlone
et al., 2012), a social function of these nerve fibers appears
obvious. This is further supported by the findings of Morrison
et al. (2011), where participants watched other persons’ arms
being stroked and similar reactions to these purely visual stimuli
were measured in the posterior insula.

The other observation, reported bymultiple studies (Morrison
et al., 2011; Crucianelli et al., 2013, 2018; van Stralen et al.,
2014; Culbertson et al., 2018), is the stimulation being rated
most pleasant by the participants when characteristics of the
stimulation, e.g., stroking speed, complied with CT-optimal
values. Therefore, it seems evident that CT afferents play a
significant role in affective and social touch.

2.2.1. Response Characteristic
The signal propagation speed of CT impulses was found to
be around 0.9m/s (Vallbo et al., 1999). With a sustained
indentation, the firing rate with high-frequency impulses at initial
contact attenuates within 4–5 s (Vallbo et al., 1999; Ackerley
and Watkins, 2018), which indicates intermediate adaptation
characteristics compared to the slowly and rapidly adapting
myelinated mechanoreceptors (Olausson et al., 2010). In some
CT afferents, the firing rate remain increased with irregular
recurring short interspike intervals separated by much longer
intervals for 30 s after an initial adaptation phase of 12 s,
and then, peaked and gradually decreased with more regular
firing for 40 s until cessation, which is known as delayed
acceleration (Vallbo et al., 1999). Furthermore, CT fibers are
prone to fatigue, i.e., the first response to a stimulus is much
stronger than to a following and identical one, which can
even lead to unexcitability (Nordin, 1990). After releasing skin
contact, after-discharges were observed, which can last several
seconds (Nordin, 1990).

2.2.2. Morphology and Location
In the human body, C-tactile fibers can be found in hairy skin
areas (Vallbo et al., 1999; Liu et al., 2007; Löken et al., 2009) as well
as the facial area (Nordin, 1990) and glabrous hand skin (Watkins
et al., 2021). Besides, forearm has often been the focus area of
research conducted with regard to CT afferents due to ease of
access (Vallbo et al., 1999; Wessberg et al., 2003; Löken et al.,
2009; Morrison et al., 2011; Crucianelli et al., 2018; Culbertson
et al., 2018).

Although there is a lack of an accurate method to estimate
the distribution density of CT afferents, they were encountered
as often as Aβ-afferents in previous microneurography
experiences (Olausson et al., 2010). Recently, Watkins et al.
(2021) suggested that CT innervation of hairy arm skin
is approximately 7 times higher than that of the glabrous
hand skin.
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The receptive field of CT afferents was found to be circular
to oval in shape without a preferred orientation (Wessberg
et al., 2003). There are 1–9 responsive hot-spots distributed non-
uniformly over an area from 1 to 35mm2 (Wessberg et al.,
2003).

We believe that considering only biological background
in design of robotic devices would lead to deficient
products. Therefore, these findings should be blended with
the psychological requirements of humans experiencing
affective touch.

3. REQUIREMENT ANALYSIS

Prioritizing design requirements should depend on the
application field of human-machine interfaces. Since assistive
devices and prosthetics have to operate in close contact with
a human, aspects of physical and cognitive human-robot
interaction, and especially, psychological factors have attracted
the attention of researchers (Beckerle et al., 2018). Although
modalities, applications, and benefits of tactile information as a
channel of communication have been a hot topic in the haptics
community (Che et al., 2018; Reed et al., 2019; Ozioko et al.,
2020), here we focus on the social aspects of touch as they can
improve the experience of humans while interacting with devices.
For the design and implementation of human-machine interfaces
aiming at eliciting affective sensations, it appears promising to
optimize them with regard to the particular characteristics of
human C-tactile mechanoreception. As explained in the previous
section, in addition to myelinated fibers, CT fibers allow humans
to perceive soft and gentle stroking usually as a positive affective
experience (Olausson et al., 2002). The relaxing and pleasant
effects of affective touch in human-human interactions (Ditzen
et al., 2008) and even human-animal interactions (Vormbrock
and Grossberg, 1988) inspires the research in human-machine
interaction (Eckstein et al., 2020). The technical requirements
of affective touch with its effects on psychological factors are
investigated in this section by extending the previous study
presented by Beckerle et al. (2018).

3.1. Psychological Factors
Although various psychological factors affect the quality of
haptic interaction, we focus on embodiment, pleasantness, and
continuity as previous studies frequently related these factors to
affective and social touch.

3.1.1. Embodiment
Many assistive devices and systems that serve the functional
substitution, such as exoskeletons and prosthetics, are designed
to either support users in toilsome tasks or overcome
dysfunctionalities. In either case, ensuring the harmony between
acts of devices, and intentions or demands of users should
be a primary goal for designers (Beckerle et al., 2017a,b).
Therefore, the feeling of embodiment is a crucial psychological
factor that can benefit from affective and social touch
during interaction (Beckerle et al., 2018). To enable full-scale
embodiment of robotic devices, bidirectional human-machine

interfaces are expected to intensify dexterous control and
thereby, improve user acceptance (Beckerle et al., 2019).

The potential of embodiment in robotics has led several
researchers to conduct human-in-the-loop tests to evaluate
embodiment (Caspar et al., 2014; Romano et al., 2015; Fröhner
et al., 2018; Huynh et al., 2019; Penner et al., 2019). Motivated
by the rubber hand illusion paradigm, recent studies investigate
bodily self-experience and device embodiment in human-in-the-
loop experiments by using either robotic hand (Caspar et al.,
2014; Romano et al., 2015; Huynh et al., 2019) or robotic
leg (Penner et al., 2019) as the artificial limb. Moreover, Fröhner
et al. (2018) investigated how virtual limbs affect embodiment in
a virtual reality environment.

Unlike the aforementioned and many other works with a
psychological point of view, Crucianelli et al. (2013, 2018)
incorporated the concept of affective touch to the rubber hand
illusion experiment by designing an interface which is one
of the few technically oriented studies considering affective
aspects. They showed that slow, gentle stimuli enhance not only
embodiment, but also its subfactors ownership, agency, and
location. Yet, Carey et al. (2021) claimed that affective touch
does not enhance subjective embodiment within the whole-body
illusion but is rather body-part specific.

3.1.2. Pleasantness
Pleasantness of touch can be regarded as another important
modulator during social interactions (Morrison et al., 2009)
and stress management (Ditzen et al., 2007; Morrison, 2016b).
Therefore, psychological research puts increased emphasis on
pleasant touch (Löken et al., 2009; van Stralen et al., 2014;
Huisman et al., 2016; Culbertson et al., 2018). Accordingly,
considering pleasantness in interface design eliciting affection
appears very promising to improve user experience (van Stralen
et al., 2014). Affective touch should not be confused with pleasant
touch as affective touch can result in unpleasantness when
stimulation characteristics are ill-adjusted. Besides stimulation
characteristics, perception of (affective) touch is influenced
by external factors, such as emotional expressions (Ravaja
et al., 2017), olfactory environment (Croy et al., 2016) and
even emotional state (Kelley and Schmeichel, 2014) and
personality (Koole et al., 2014) of subjects.

3.1.3. Continuity
Continuity of stimuli is an additional and relatively simple factor
regarding technical implementation. While continuity is self-
fulfilling in the case of continuous stimuli, such as brushing with
sinusoidal motion, it can still be characterized by delay and pulse
width in the case of discrete stimulation. Nevertheless, continuity
should not be considered as a physical but a psychological
factor since it affects the realism and pleasantness of the
stimulation (Culbertson et al., 2018). Culbertson et al. (2018)
stated delay and pulse width can be adjusted to maximize
continuity and pleasantness.

3.2. Stimulation Parameters
After discussing psychological effects of affective touch, we
review specific stimulation parameters which are required to
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mediate affective touch through human-machine interfaces from
both neurophysiological and psychological perspective.

3.2.1. Neurophysiological Requirements
C-tactile afferents respond highly to slow, low-pressure and soft
tactile stimuli, which are similar to caressing motions (Nordin,
1990; Morrison et al., 2011; Crucianelli et al., 2018) with impulse
rates in 50–100 imp/s (Vallbo et al., 1999). Since high impulse
rates of CT afferents correlate positively to pleasantness (Löken
et al., 2009; Ackerley et al., 2014), a range of 1–10 cm/s,
with peaks at 1, 3, and 10 cm/s, is considered to be CT-
optimal as the neuronal firing rate is the highest within
this range (Löken et al., 2009). The relationship between the
neuronal firing rate and stimulation velocity resembles an
inverted parabola (Löken et al., 2009; Ackerley et al., 2014). A
preference of 3 cm/s over 30 cm/s of the posterior insula was also
verified using functional magnetic resonance imaging (Morrison
et al., 2011). Furthermore, CT afferents are not activated by
tactile stimulation at high velocities (Crucianelli et al., 2018).
However, recent results indicate that they respond to vibratory
stimuli in a restricted frequency range with different stimulation
patterns (Wiklund Fernström et al., 2002).While CT afferents are
defined as low-threshold mechanoreceptors by their activation
to touch at 5mN or less (Vallbo et al., 1999), they respond to
stronger indentation forces as 0.1–0.5 N (Nordin, 1990) and
0.2–0.4 N (Löken et al., 2009). Moreover, a range of 1N–2N
was reported to be both perceptible and comfortable on the
arm (Culbertson et al., 2018). Air puffs evoke no response in
CT fibers (Ackerley et al., 2014). CT fibers are not able to
discriminate between pin-prick and smooth-probe stimuli as
they have similar responses to both (Vallbo et al., 1999). In
terms of thermal sensitivity, CT fibers show weak responses for
innocuous cooling unlike heating or even noxious heat (Nordin,
1990). However, it is noteworthy that only a small subset of high-
threshold CT fibers react vigorously to noxious heating (Nordin,
1990). The highest firing frequencies of C-tactile nerves occur
at temperatures near skin-temperature (Ackerley et al., 2014).
Besides, Ackerley et al. (2018) showed that warm touch decreases
firing of CT afferents while cool touch results in lower firing rates
but afterdischarge spiking.

3.2.2. Psychological Requirements
Table 1 can be inspected to design human-machine interfaces
considering affective touch. The table presents extracted
parameters to guide interface design aiming at eliciting
embodiment, pleasantness, and continuity with affective
touch. The firing rate correlates positively to the perceived
pleasantness ratings of the participants and, thus, a more
pleasant experience (Löken et al., 2009). Apparently, 3 cm/s
was tested and verified to be the most pleasant (Löken et al.,
2009; Crucianelli et al., 2013, 2018; Ackerley et al., 2014; van
Stralen et al., 2014). Beyond the previously mentioned velocity
range of 1–10 cm/s, Culbertson et al. (2018) reported that
a velocity of 13.5 cm/s was “interestingly” the slowest speed
that was perceived as pleasant. It should be kept in mind that
Culbertson et al. (2018) designed their interface to evaluate
linear lateral motion on an arm by applying only normal forces

TABLE 1 | Optimal parameters of stimulation to maximize psychological factors

mentioned in section 3.1.

Embodiment Pleasantness Continuity

Essick et al.

(1999)

- Velocity: 5 cm/s

Material hardness: soft

(velvet, cotton)

-

Löken et al.

(2009)

- Velocity: 1, 3, 10 cm/s -

Crucianelli

et al. (2013)

Velocity: 3 cm/s

Synchronicity:

synchronous

Velocity: 3 cm/s -

van Stralen

et al. (2014)

Velocity: 9 cm/s Velocity: 3 cm/s

Synchronicity:

synchronous

Material hardness: soft

(brush)

-

Huisman

et al. (2016)

- Velocity: 6.41 cm/s

Vibration: low intensity

(Amplitude: 0.9 g,

Frequency: 140Hz)

-

Crucianelli

et al. (2018)

Velocity: 9 cm/s Velocity: 3 cm/s

Synchronicity:

synchronous

-

Culbertson

et al. (2018)

- Velocity: 13.5 cm/s

Vibration: low

amplitude

Delay: low (12.5%)

Pulse width: long

(800ms)

Vibration: low

amplitude

Delay: low (12.5%)

Pulse width: long

(800ms)

The table presents the key findings of related research with a focus on psychological

factors.

for sequential indentation with an array of voice coils. They
stated that slower speed stroking causes unpleasant and creepy
feelings, which explains this “interesting” result by Culbertson
et al. (2018). The discrete nature of the work also explains why
researchers did not consider continuity as a factor, and pulse
width and delay as parameters since they applied stimuli with
continuous motion of a stimulator, except Culbertson et al.
(2018). Embodiment and pleasantness are maximized during the
rubber hand illusion when the stimulus is synchronous rather
than asynchronous (Crucianelli et al., 2013, 2018; van Stralen
et al., 2014). Additionally, pleasantness and continuity feelings
are improved with vibration as long as vibration applied has low
intensity (Huisman et al., 2016; Culbertson et al., 2018). Finally,
softer materials make the touch more pleasant according to van
Stralen et al. (2014).

4. DESIGN RECOMMENDATIONS

From the detailed requirement analysis provided above,
design specifications can be inferred to select and dimension
components, e.g., actuators and sensors to meet the
neurophysiological and psychological requirements. Besides
the stimulation parameters mentioned there, a design
should also align the haptic resolution of actuators and
sensors with the physiological features of human sense of
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touch (Kern and Hatzfeld, 2014). Since haptic devices can be
based on tactile stimulation, tactile sensing, or a combination
of both principles as in telemanipulation, resolution of both
actuators and sensors is expected to match physiological
features of humans. While actuators should be as accurate as
human perception can resolve, sensors should be as sensitive
as human skin so that bidirectional haptic information can be
transmitted (Kern and Hatzfeld, 2014).

While resolution requirements apply to any haptic system,
they strongly depend on the location of stimulation on the
human body and, thus, vary with the respective mechanoreceptor
population, skin properties, and spatial acuity (Dahiya et al.,
2010). So far, there is limited knowledge and research about
interfaces to excite CT afferents. One of the first attempts of
a haptic interface directly addressing social touch was “Tactile
Sleeve for Social Touch” by Huisman et al. (2013). They
designed a sleeve consisting of an input layer with force-
sensing resistors and an output layer with vibration motors
in the shape of a 4 by 3 grid. Sensors were designed to
detect forces around 0.4 N, while vibration stimulation was
controlled to proportionally code the applied force. A similar
interface with cylindrical vibration motors instead of coin-type
ones was used to investigate how velocity and intensity of
vibrotactile stimuli affect pleasantness (Huisman et al., 2016).
Another example of vibrotactile stimulation is presented by
Raisamo et al. (2013) as they tested three stimulation patterns to
determine their effect on pleasantness and continuity: saltation,
modulation, and hybrid. Saltation provides separate pulses,
modulation uses dynamic transition of amplitude between the
actuators, and hybrid combines separate pulses of saltation to
modulation. The modulationmethod was rated more continuous
and pleasant, and stimuli rated as more continuous were also
ratedmore pleasant andmore relaxing (Raisamo et al., 2013). The
aforementioned studies showed positive effects of low intensity
vibrotactile stimuli as we stated in Table 1. Essick et al. (2010)
implemented a rotary tactile stimulator to investigate textured-
surface stimuli along different body site with controlled force and
velocity. Instead of designing an interface based on continuous
stimuli, Culbertson et al. (2018) presented a novel approach by
lining up an array of voice coil actuators in a sleeve to mimic
linear lateral motion like a caress. Actuators consistently applied
1–2 N of normal force while effects of delay and pulse width
during sequential excitation on pleasantness and continuity were
evaluated positively.

Although vibrotactile stimulation is not the only way to elicit
pleasant sensations, it is frequently preferred in previous designs
possibly due to ease of use and control of vibration motors.
We believe that there is a lack of sophisticated designs that
aim CT fiber excitation based upon requirements explained in
this review, especially velocity and force requirements. Although
the aforementioned designs apply, in addition to normal forces,
lateral forces via vibration motors or voice coil arrays, we think
that measuring and controlling shear forces can significantly
improve performance of interfaces as highlighted by Beckerle
et al. (2018). An array or even a matrix of linear actuators
with position control of indentation can also be composed to
investigate effects of stimulation patterns and indentation length

on affective touch. A similar approach has been validated for
a haptic interface using shape memory alloys (Hamdan et al.,
2019; Muthukumarana et al., 2020) and can be adapted for
affective touch. The research can be extended by modeling
the impedance characteristics of human skin. Variable stiffness
actuators can be investigated to implement an interface based on
stiffness or impedance measurement rather than normal forces if
current designs can be dimensionally minimized. Alternatively,
twisted and coiled polymer actuators on a silicon skin present
promising results for soft haptic interaction (Chossat et al.,
2019). Along with mechanical enhancements, the response of CT
fibers to thermal stimulation is still undiscovered as experiments
to date have been performed at ambient temperature. Based
on findings regarding responses of C-tactile afferents to thermal
stimuli (Nordin, 1990; Ackerley et al., 2014, 2018), it would be
benign to consider effects of different temperatures of touch in
interface design by adaptingmechanical and thermal stimulators,
such as pneumatic haptic display (Lee et al., 2021).

5. CONCLUSION

Slow and gentle stimulation of human skin with high CT
fiber population, such as hairy areas of the forearm, results in
affective experiences going beyond tactile information transfer.
Human-machine interfaces exciting CT afferents can be used
to elicit affective reactions and thereby enhance embodiment of
assistive devices. Beyond embodiment, increasing pleasantness
and realism of interactions by mediating social touch can boost
the acceptance levels and performance of assistive devices. Yet,
this requires designers to optimize actuators and sensors with
respect to the specific stimulation parameters of CT afferents
which are compiled and structured in this review. In addition,
one should note that different understandings of affective
touch, i.e., pleasant touch and social touch, might change the
design perspective.

Current shortcomings and possible improvements comprise
the inclusion of lateral forces since affective touch is usually
achieved by caressing or stroking hairy skin. However, there is
not enough data from measurements for numerical analysis of
lateral force requirements of affective touch: measuring shear
forces can change the perspective of designers during actuator
selection to create stronger emotional responses. Moreover, all
interfaces designed so far are only suitable for laboratory use.
Wearable interfaces for tests in daily life application appear
commercially interesting, but also bear an exceptional potential
to fundamentally investigate the effectuality of multisensory
affective touch effects and interfaces in the field where
multisensory stimuli exist unlike the laboratory environment.
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