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Abstract

Derivatives of equations of motion (EOM) describing the dynamics of rigid body systems
are becoming increasingly relevant for the robotics community and find many applications
in design and control of robotic systems. Controlling robots, and multibody systems com-
prising elastic components in particular, not only requires smooth trajectories but also the
time derivatives of the control forces/torques, hence of the EOM. This paper presents the
time derivatives of the EOM in closed form up to second-order as an alternative formulation
to the existing recursive algorithms for this purpose, which provides a direct insight into the
structure of the derivatives. The Lie group formulation for rigid body systems is used giving
rise to very compact and easily parameterized equations.

Keywords Rigid body dynamics - Derivatives of equations of motion - Inverse dynamics -
Closed form - Screws - Lie group - Higher-order inverse dynamics

1 Introduction

Rigid body dynamics algorithms for evaluating the equations of motion (EOM) and their
derivatives find numerous applications in the design optimization and control of modern
robotic systems. The equations of motion can be differentiated with respect to state vari-
ables, control output (generalized forces), time and physical parameters of the robot (see [8]
for an overview). These derivatives can be computed with several methods: 1) approxima-
tion by finite differences, 2) automatic differentiation [31], i.e. by applying the chain rule
formula in an automatic way knowing the derivatives of basic functions (cos, sin or exp), 3)
closed-form derivatives of the EOM and 4) recursive and analytical formulations exploiting
the structure of the closed-form equations of motion. While the first two methods are generic
and numerical in nature, the latter two are analytical in nature and exploit the structure of the
EOM. Analytical and recursive partial derivatives of the EOM of rigid body systems with
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respect to state variables and generalized forces have been reported in the literature [3, 17].
These are useful in optimal control of legged robots (e.g. differential dynamic program-
ming [19]) and their computational design and optimization [12]. Time derivatives of EOM
are required for the model-based control and motion planning of robots with higher-order
continuity [27], since for highly dynamic applications not only the actuation forces but also
their derivatives must be bounded in order to ensure feasibility. Flatness-based control of
robots with flexible joints, and of robots equipped with series elastic actuators (SEA) or
variable stiffness actuators (VSA), necessitate the first and second time derivatives of the
EOM of the robot [6, 9, 26]. Therefore, recursive O (n)-algorithms for the evaluation of the
time derivatives were developed [1, 2, 10, 11, 21, 24] extending existing O (n)-formulations
for the evaluation of EOM. While O (n)-formulations are deemed computationally advanta-
geous when dealing with large systems, formulating and evaluating the EOM in closed form
remains an efficient alternative for many robotic systems and provides insights into the struc-
ture of the problem. Yet, such closed-form formulations were not reported in the literature,
with the exception of [13] where first-order time derivatives of the EOM were presented
within the so-called spatial operator framework. A relatively recent research topic, where
higher-order derivatives of the EOM are required, is the dynamic balancing of articulated
mechanisms [4, 30, 32]. In [5], the time derivatives of the spatial momentum were used to
derive global balancing conditions. Recently, we also proposed nth order time derivatives of
EOM in both recursive and closed forms [15].

In this paper, the first and second time derivatives of the EOM are presented. For the sub-
sequent treatment, the EOM are written in the form suitable for solving the inverse dynamics
problem

Q=M(@ 4+ C(q. 9 q+ Qua (@) + Qex (q. 1) ey

where the vector of generalized coordinates q = (g1, ..., ¢,)" comprises the n joint vari-
ables, M and C is the generalized mass and Coriolis matrix, respectively, and Qg rep-
resents generalized gravity forces. The generalized forces due to external loads (e.g. inter-
action/contact forces and torques) are summarized in Q.. Finally, Q are the generalized
forces (drive forces/torques) required for a prescribed motion q (¢).

In the following, the derivatives of (1) are derived using the Lie group formalism reported
in [23], which is equivalent to those presented in [18] and [25]. A salient feature of the Lie
group formulation is that it admits model description in terms of readily available data with-
out compromising computational efficiency (of closed-form expressions as well as O (n)
algorithms). As a side contribution, we also prove the structural properties of EOM from a
closed-form perspective. For the sake of simplicity, and without loss of generality a single
serial kinematic chain, comprising 1-DOF joints, mounted at the ground is considered. The
generalizations to systems with arbitrary tree-topologies is straightforward, but will not be
considered here in order to simplify notation and make the paper easily accessible.

Organization: Section 2 presents the equations of motion of serial kinematic chain in closed
form using the body—fixed representation of the twists. Section 3 and Sect. 4 presents the
first- and second-order time derivatives of the equations of motion in closed form, respec-
tively. Section 5 proves the structural properties of the EOM using the closed-form formu-
lations. Section 6 presents the application of the proposed derivatives in evaluating second-
order inverse dynamics of two exemplary robot manipulators and a discussion on its com-
putational performance. Section 7 concludes the paper.
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Closed-form time derivatives of the equations of motion of rigid body...

2 Equations of motion in closed form
2.1 Kinematics in terms of joint screws

In the following, the notation and formulation of the EOM are adopted from [23]. The con-
figuration (pose, posture) of body i =1, ..., n is denoted C; € SE (3), which describes the
frame transformation from a body-fixed frame (arbitrarily located at the body) to the inertial
frame. Bodies and joints are numbered increasing order starting from the ground, so that
joint i links body i to its predecessor i — 1, while the ground is indexed with 0, and by
convention Cy = I. The relative configuration of body j with respect to body i is then

Ci;=C'C

R," il'l‘"
:< b 1,) @

where R;; € SO (3) is the rotation matrix transforming coordinates expressed in the refer-
ence frame on body j to their expression in the reference frame on body i, and ‘r; ; € R? is
the position vector from the origin of frame i to the origin of frame j expressed in frame i.
Without loss of generality, all joints are assumed to have 1-DOF. Denote with ¢; the joint
variable (rotation angle, translation) of joint i. The configuration of body i is determined by
the product of exponential (POE) as

Ci (q) =B exp('X1¢1)Brexp(*Xoq2) - ... - B exp(‘Xiq;) A3)

where B; := C;_;; (0) € SE (3) is the configuration of body i relative to its predecessor
i — 1, in the reference configuration q = 0, and ‘X is the screw coordinate vector associated
to joint i represented in the body-frame of body i [22]. The vectors ‘X; are constant due to
the body-fixed representation. For 1-DOF lower-pair joints they are given as

i, _ ‘e; . ”S',‘
X; = < ix; Xiei-l-ieihi)_. <i77i> @

where ‘e; € R? is a unit vector along the joint axis, ‘x; € R? is the vector to a point on this
axis, and h; € R is the pitch of the joint. In particular, for a revolute and prismatic joint, the
screw coordinate vector is, respectively,

Revolute : 'X; = ( ix. i" ie-) , Prismatic : 'X; = (,-2) . 5)

In terms of these screw coordinates X, the exponential map attains the explicit form [18, 20]

exp(¢X) = <exp(()g0§') U exp((,loa)x + whe) , for h # o0 6)

_(L e _
_<0 1),forh—oo

where the rotation matrix is determined by the Euler—Rodrigues formula

exp(¢€) = I+ sin g€ + (1 — cos @) €. )
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Denote with V? = (?, v?)” the twist of body i represented in the body-fixed frame.
The superscript b is used to indicate the body-fixed representation [23, 25]. An alternative
representation is so-called spatial representation of twist, which would be indicated by a
superscript s. A recursive O (n)-algorithm for evaluating the EOM and their higher-order
derivatives using the spatial representation was reported in [24]. In [14] the EOM were
presented in closed form in terms of the spatial representation of twists. The potential ad-
vantage of using the spatial representation to express the EOM in closed form remains to be
explored, however. In this paper the (classical) body-fixed representation is used.

The individual twists of all bodies are summarized in the vector V € R%, which is re-
ferred to as the system twist in body-fixed representation. It is determined as

V=Jq (®)
with the system Jacobian J (q). The latter admits the factorization
J=AX (C))

in terms of the block-triangular and block-diagonal matrices

I 0 0 0 X; 0 0 0
Adc,, I 0 e 0 0 X, 0 0
A(q) = AdC3,1 AdCa,z I 0 X = 0 0 °X; 0
Adcml 1\(1(;”’2 ce 1\(1C'“171 1 0 0 e 0 "X,
(10)

The matrix Adc, ; transforms screw coordinates represented in the reference frame at body
J to those represented in the frame on body i [18, 25, 28]. With the relative configuration
(2) this matrix is

_( Ry 0
Adci,j_<,-fi,jRij Rl_j) (1)

where X € so (3) is the skew-symmetric matrix associated to vector x € R3 so that Xy =
X X y. A central relation for deriving the EOM in closed form is the following expression
for the time derivative of the matrix A and thus of the system Jacobian [23]:

J(@.4)=-A@a(@J(q (12)
where
a(q) :=diag (q1adix,, . .., gpadnx,). (13)

Therein, the matrix ad:y, (also called as spatial cross product by Featherstone [7]) is given
in terms of the joint screw coordinate vector (4) as

adix_=<f'§f ") (14)
' n; ”‘;:i

This gives rise to the closed-form expressions for the system acceleration

V =J{ — AaJq = Jg — AaV. (15)
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For calculating the derivatives, the time derivative of matrix A will be needed. To this end,
the expression

A=1-D)! (16)
is used [23], with the matrix
0 0 0 0
Adc,, 0 0 S 0
D(q) = 0 Adc,, 0 0 (17)
6 0 . Adcnln,, 0
With (16), the derivative of A is then
A=1-D)"'DI-D)"! =ADA. (18)
Using the relation A'dc,,, = —g;adix, Adc; _, [23], the derivative of D attains the closed form

D = —aD. Finally, with D=1 — A~ it follows

A9 =A@a—A@a@A(Q. (19)
Clearly, the derivative (12) of the system Jacobian is recovered as J = AX noting that aX = 0.
2.2 Equations of motion
The generalized mass and Coriolis matrix in the EOM (1) of a simple kinematic chain

mounted at the ground are found via Jourdain’s principle of virtual power as (or likewise
as the Lagrange equations) [23]

M(q) =J"MJ, C(q.q) =J"Cy, (20)
where
M:=diag(M;,...,M,), 21
C(q, 4,V (q)) : = —MAa — b’ M, (22)
and
b (V) :=diag (ady,, ..., ady,). (23)

Therein, the (constant) 6 x 6 inertia matrix of body i expressed in the body-frame is defined
as

—‘”c’,-m,- m,-I

b IS,
M,-=( 9; C""’> 24)

where m; is the body mass, ‘¢; is the position vector to the COM of body i measured in the
reference frame at body i, and @5’ is the inertia tensor with respect to the body-fixed frame.
The latter is related to the inertia tensor with respect to the COM, denoted @f, via Steiner’s
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(parallel axis) theorem @° = R, OFR] . — m;¢;'¢; where Ry ¢ denotes the rotation matrix
of the COM frame to the body frame.

A closed form of the EOM is obtained after replacing the system twist by (8). Alterna-
tively, first the kinematic relation (8) and then the coefficient matrices in (22) are evaluated
for a given state q, q. The generalized gravity forces are given as

Qurav (@) = J"MUG (25)
with
Adgl\ [ Adg
G.=- (fg) , U(q):=A 0 = A(?Ezl . (26)
0 Adg)

Here, %g is the vector of gravitational acceleration expressed in the inertial frame, which is
transformed to the individual bodies by U. The effect of contact or external wrenches acting
on the bodies is given by the generalized forces

Wext.l (t)

o B Weyi2 (1)
Qxi (q,1) =J" (@) Wgg (r) where Wey (f) = : 27
Weren (1)

The vector Wex; accounts for applied load at body i. For instance, Wy, can be used to
describe the wrench at the end-effector of a robotic arm. More generally, Wy, and thus Qey,
may account for arbitrary (time and velocity dependent) loads at the system.

3 First time derivative of the equations of motion
The first time derivative of the generalized forces is
Q=M{ + M+ C)i + Cq + Qguuy + Qexe- (28)
The time derivative of the generalized mass matrix M in (20) follows with Jin (12) as
M(q,q) =J"MI+JI"MJ
=J"My (29)
with
MY (q, §) := —MAa — (MAa)T (30)

where A =A(q) and a = a(q). By the same token, the time derivative of the generalized
Coriolis matrix C is

C(q,q,§=J"CI+JI"cI+J"Cy
=J'chy (31)
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where now
cV:=C—-CcAa—a’A’C. (32)
The expression for C in (22) together with (12) yields
C(q. 4. G, V) = C(q. §, V) + MAaAa — MAaa = MAaAa — MAaa — MAa —b'M,  (33)
with 8 =a(q), b=b(V), and thus
cV =cC(q, §, V) + MAaAa — MAaa — CAa —a’ A’C (34)

— _MA& —b' M+ b MAa +a’ ATb” M + a” AT MAa + 2MAaAa —
MAaa. 35)

The form (34) allows for reusing expression (22) for the matrix C, where (22) is evaluated
with ¢, V instead with the velocities. Also in the second form (35), terms like Aa, MAa, and
b”M can be reused. A direct calculation yields

Quav (q. @) =J"MPVUG (36)

where the relation U = —AaU (obtained by time differentiation of (26) and using the identity
in (19)) and the fact that G is constant has been used. The time derivative of (27) along with
(12) yields the expression for calculating first-order derivative of generalized forces due to
external wrenches

Qexi (@, @) = J7 (Wgg — (Aa)” Wep). 37)

4 Second time derivative of the equations of motion

The second time derivative of the generalized motor forces (1) is determined by
Q=M+ M+ C)d + M +20)§ + Cq + Qurav + Qext- (38)
The second time derivative of the generalized mass matrix is
M(q. 4. §) =J"MP —MPAa —a" ATMD)J (39)
=J"MPy (40)

with M® :=M®D — MDAa —aT ATMD . Inserting relation (19) in the differentiation of (30)
yields

MD (q, ¢, §) =MD (q, §) + M(AaA — Aa)a + (M(AaA — Aa)a)” 41)
=MD (q, §) — MAaa + MAaAa — (MAaa)” + (MAaAa)” (42)

which leads immediately to the explicit form
M@ =MD (q, §) + M(AaA — Aa)a + (M(AaA — Aa)a)”

-M® (q, §) Aa — (M? (q, q) Aa)” (43)
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= —MAa — (MA3)” + 2MAaAa + 2 (MAaAa)” + 2a’ A”MAa (44)
—MAaa — (MAaa)” .
Equation (43) allows for reusing MV (q, ¢). It should be observed that the term M (q, §)

is the relation (30) evaluated with ¢ instead of q.
Repeated time derivative of the generalized Coriolis matrix yields

C(q.4.4, 4) =J"c?y (45)
with
Cc?(q,4.4,4) =C" —cPAa—a’A"c. (46)
Taking the derivative of (32) yields C")(q, 4, 4, 4, V, V) in closed form as
CV =C—CAa—alATC —CcAa—a’ATC + CAaAa+a’ATa’ATC
—CAaa—a’a’ATC
=C— (€Y +a'ATC)Aa—alAT(CV + CAa) —CAa—aTATC (47)
—CAaa—a’aTA’cC.

This requires the derivative of (33), which are found to be

C=C(q, 4, V) + MAaAa + 2MAaAa — 2MAaAaAa + 2MAaAaa — 3MAaa  (48)
—MAaaa 4+ MAaaAa
— _MAi—b'M + MAaAa + 2MAaAa — 2MAaAaAa + 2MAaAaa (49)
—3MAaa — MAaaa + MAaaAa.

Also here it should be observed that the matrix C(q, q, V) is the expression for C in (22)

evaluated with q, V. Inserting (48) along with (49) into (46) yields C? (9, 4. 4. q) in the
explicit form

Cc? =cC(q, q,V) —2CPAa—2a" ATC —cAa —a’A"Cc —2a’A”CAa
—CAaa — a’a’ ATC + MA3Aa + 2MAaAa — 2MAaAaAa (50)
+2MAaAaa — 3MAaa — MAaaa + MAaaAa
= —MA& — b"M 4 2b” MAa + 2a” ATb" M
+3MA4&Aa + 2MAaAa + 2a” ATMAa — CAa — a"ATC
+2CAaAa +2a” ATCAa + 2a” ATaT ATC — 4MAaAaAa
—2a” ATMAaAa + 2MAaaAa + 2a” ATMAaa (51)
+2MAaAaa — 3MAaa — MAaaa + MAaaAa — CAaa —a’a’A’C

withda =42 (q) and b = b(V) in (13) and (23) evaluated with q and V, respectively. The first
form (51) may be beneficial since it involves C and C'V, which are already available from
(22) and (34).
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Taking the derivative of (36) yields the second time derivative of the generalized gravity
forces

Qua (g, 4, §) = I"MPUG. (52)

The second time derivative of the generalized forces (27) due to end-effector loads is readily
found to be
Qeu (4. 4, @) = " (Weg — 2(Aa)" Wee + (2(AaAa)” — (Ad)” (53)
— (Aaa)")We).

5 Structural properties of the EOM

There are two important and well-known structural properties of EOM:

1. The generalized mass matrix M is symmetric and positive definite.
2. 4" (M(q,q) —2C(q,4) q=0forany g

Positive definiteness and the symmetric properties of the generalized mass matrix fol-
lows directly from its definition in (20). The symmetry property indeed applies to all higher
derivatives, which is also evident from (29) and (40). An important property of the EOM (1),
which is crucial for proving stability of passivity-based control schemes, is that the Coriolis
matrix can be formulated as

C:=—J"(MAa +b"M — Mb)J (54)
so that M — 2C is skew symmetric. To show this property, notice that bJq = bV =
diag (advl Vi,...,ady, Vn) =0, so that Cq can be rewritten as

Cq = —J"(MAa+b"M)Jq = —J7 (MAa + b"M — Mb)Jq = Cq. (55)

In view of the time derivative (29) of M, the so defined Coriolis matrix C satisfies the
relation

C+CT=—-J"MAa+a’ATM)J =M. (56)
With (54), it hence follows
M-2C=CT-C=-(C"-C)T=-M-20)". (57)

It should be remarked that the Coriolis matrix is not unique, and the property 2) holds true
for the particular arrangement as in (22). It may not hold if the equations are arranged
differently. The skew symmetry of M — 2C is indeed carried over to its derivatives.

6 Examples

The higher-order closed-form inverse dynamics formulation presented in Sect. 3 and Sect. 4
were implemented in MATLAB.! This MATLAB implementation can also be used for ef-
ficient symbolic code generation in MATLAB and C languages. This section presents the

IThe source code as well as robot data are openly available at https://github.com/shivesh1210/2nd_order_
closed_form_time_derivatives_eom.

@ Springer


https://github.com/shivesh1210/2nd_order_closed_form_time_derivatives_eom
https://github.com/shivesh1210/2nd_order_closed_form_time_derivatives_eom

A. Miiller, S. Kumar

8:0 31 Sz &e

Fig.1 Planar 2R robot schematic

application of this work to the computation of higher-order inverse dynamics of two robot
manipulators and presents a discussion on its computational efficiency.

6.1 Planar 2R robot

A 2R serial chain consists of a base, two links, and two revolute joints. A simple 2R chain is
shown in Fig. 1. First link of length L, is connected to the base or ground through a revolute
joint. The second link of length L, is connected to first link through a revolute joint. The
center of mass is shown with a red circle on the links and lies at the end of each link. The
mass of first and second links are m and m, respectively. The gravity acting on the system
is shown as g in the figure.

Kinematic model The z-axes represent the joint axes, and thus the joint screw coordinates
in body-fixed representation for the two revolute joints are

X, =(0,0,1,0,0,0)"
X, =(0,0,1,0,0,0)7 .

The relative reference configurations for the two bodies are

B,

0
0
1
0

— o oo
co o~
co~o
co~oc o
- oo~

0
1
0
0

S O o=

The mass matrices of the two bodies in the body-fixed configuration according to (24) are

Li>m, 0 0 0 0 0
0 L>m, 0 0 0 —L;m
0 O L12m1 0 lel O
M, = ,
0 0 0 mi 0 0
0 0 Lym, 0 mi 0
0 —L1m1 0 0 0 nm;i
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Ly’ m; 0 0 0 0 0
0 L22 nyp 0 0 0 —Lz nyp
0 0 L22 nmyp 0 L2 nyp 0
M, =
0 0 0 my 0 0
0 0 Lom, 0 my 0
0 —Lz nmy 0 0 0 my

Second-order inverse dynamics With the above information about the robot, using the
closed-form expressions of M(q), C(q, q) and Qg (q) provided in Sect. 2.2 in (1), one
can arrive at the analytical expression for generalized forces (t;, t;) which solves inverse
dynamics problem as follows:
T =L’ §imy + Li* §imay + Lo* Gyma + Lo* Gomy + Ly gmy cos (g1 + q2)
+Ly gmy cos(q1) + Ly gmy cos (q1) — Ly Lo g3 my sin(g2)
+2 Ly Ly Gimy cos(q2) + L1 Lagama cos(q2) — 2 Ly La g g2 ma sin(qa)

T, =Lomy (Ly sin(g2) 7 + LaGi + LaGa + g cos (q1 + g2) + Ly Gy cos (q2)) -

These expressions are indeed identical to those reported in [18] for instance.

Using the closed-form expressions of M(q, q), C(q, q, ) and Qg (q, q) provided in
Sect. 3 in (28), one obtains the analytical expression for first-order time derivatives (7;, t,)
of the generalized forces, which solves the first-order inverse dynamics problem, as fol-
lows:

t=L2G m 4+ Li* G ymy+ L2 §yma+ Ly> @amy — Ly gy gmy sin(qy + q2)
—Ly gy gmy sin(qi +¢2) +2 Ly Ly 4y my cos (g2) + Ly Ly 42 my cos (g2)
—Ly Gy gm; sin(qi) — Ly g1 gma sin(q1) — Ly L¢3 ma cos (¢a)
—4 Ly Lygygamy sin(gy) —2 Ly Ly Go gy my sin(ga)
—3 Ly LygaGgamy sin(qa) —2 Ly Ly g1 g5 ma cos (qa)
ty=Lymy(La§1+L>q>— g1 g sin(q1 + ¢2) — 42 g sin(q1 + g2)
+L1 Gy cos(g2) + 2Ly G g1 sin(g2) — Ly i ¢ sin(g2) + L1 §7 G2 cos (¢2)).

The correctness can be easily checked taking the analytical time derivative of (ty, 12)
above.

Using the closed-form expressions of M(q, ¢, 4), C(q, 4, §, 4) and Qgrav(q, q, §) pro-
vided in Sect. 4 in (38), one obtains the analytical expression for second-order time
derivatives of generalized forces (7}, 7»), solving the second-order inverse dynamics prob-
lem:

T1=Li*Gimy + Li*§imy + Lo Gyma + Ly> §omy — 3Ly Ly 3 m» sin (o)
+L1 Ly gy my sin(ga) — L1 gi gmy cos (q1) — L1 g7 g ma cos (q1)
—Ly gy gma sin(q1 +q2) — La Gz gma sin (g1 + 2) +2 Ly Ly G m cos (2)
+Lyi Lygomy cos (q2) — Ly Gy gmy sin(q1) — Ly i g ms sin(q1)
—L2gi gma cos (g1 + q2) — L2 g3 gma cos (g1 + ¢2) — 6 Ly La i Gam sin(g2)
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Fig.2 Link frames of the KUKA
LBR iiwa 14 R820 robot [29] 20 z1 y2 23 75 y6 27

s

rs

—6L1 Ly q 1 gamy sin(q2) —2Ly Ly 5 Gymy sin(qz) —4 Ly Ly §2Gom; sin(g2)
—6 L1 Ly G3my cos(qa) — 6 Ly Ly o g3 my cos(q2) +2 Ly Ly Gy g3 ma sin (q2)
—2Lyq1g28my cos(q1 +q2) —6 L1 LaGaGi gama cos (qa)

Ty =—Lym, (4 g cos(q1 +q2) — L2 — Lo i +G3 g cos (g1 + ¢2)
—2Ly i sin(g2) + 1 g sin (g1 + q2) + G2 g sin(q1 + q2) — Ly 1 cos (q2)
+L147 ¢ sin(q2) + 241428 €08 (q1 +2) + L1 G1 G2 sin(g2) =2 L1 §1 41 sin (g2)
+2 L1 41 G2 sin(q2) + L1 G143 c0s(q2) — L1 G2 g7 cos (q2) —4 Ly Gi G1 G2 c0s (q2)).

They can again be verified by taking analytic derivatives of the above (y, 75).
6.2 KUKA LBR iiwa manipulator

The closed-form formulation presented in this paper are used to compute the second-order
inverse dynamics of the 7 degrees of freedom KUKA LBR iiwa robot.

Kinematic model The body-fixed frames are introduced according to [29], which follow
the modified Denavit—Hartenberg (DH) convention. As the z-axis represents the joint axis
in this convention, the joint screw coordinates in body-fixed representation are

X; =(0,0,1,0,0,0)",i=1,...,7. (58)
The relative reference configurations B; in (3) have the form (2), with the relative rotation

matrix R;_; ; and the position vector ~'r;_; ; from the origin of the reference of body i — 1
to that of its successor body i. According to the zero reference configuration shown in Fig. 2
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Table 1 Inertia data of different bodies in the KUKA robot as identified in [29]

i m' Yeix ! Ciz eF O ef e° oK

c
i,xx i,xy i,yx @i,yy 1,yz 1,22

3.94781 —0.00351 0.00160 —0.03139 0.00455 0.00000 —0.00000 0.00454  0.00001 0.00029
4.50275 —0.00767 0.16669 —0.00355 0.00032 0.00000 0.00000 0.00010 —0.00000 0.00042
2.45520 —0.00225 —0.03492 —0.02652 0.00223 —0.00005 0.00007 0.00219 0.00007 0.00073
2.61155 0.00020 —0.05268 0.03818 0.03844 0.00088 —0.00112 0.01144 —0.00111 0.04988
3.41000 0.00005 —0.00237 —0.21134 0.00277 —0.00001 0.00001 0.00284 —0.00000 0.00012
3.38795 0.00049 0.02019 —0.02750 0.00050 —0.00005 —0.00003 0.00281 —0.00004 0.00232
0.35432 —0.03466 —0.02324 0.07138 0.00795 0.00022 —0.00029 0.01089 —0.00029 0.00294

N O R W N =

in [29], the body-fixed displacement vectors are

iy =0, i=1,246,7

3= (0,73,0)" , *rss = (0, —r5,0)"

and the relative rotation matrices are

Roi =1,
1 0 O
Ri—l,i = 0 0 -1 B i =2, 5, 67
01 0

—
(e}

0
R_,=[0 o 1], i=347
-1 0

Dynamic model parameters The mass and inertia data used in this example is taken from
the identified model of KUKA LBR iiwa robot reported in [29] as listed in Table 1. The
COM position vector ‘¢; = (‘c; v, 'ciy, 'ci ;)T € R? of link i is measured with respect to the
link i frame. The parameters in the symmetric inertia tensor of link i are defined relative to
the COM of link i in the ith link frame.

Second-order inverse dynamics The joint trajectory is described by means of cos-function
as shown in Fig. 3a, and used for the inverse dynamics computation of the robotic manipu-
lator (see Fig. 3b). Figure 4a and Fig. 4b show first- and second-order time derivatives of the
generalized forces. The results computed from the closed-form expressions are compared
against the numerical differentiation. As apparent from Fig. 4, the closed-form derivatives
match the numerical time differentiation of generalized forces in both cases which attests
the correctness of the formulation presented in this paper.

Computational performance The computational performance of the closed-form algo-
rithm was evaluated by measuring the total CPU time spent in 10000 evaluations of second-
order inverse dynamics on a standard laptop with Intel Core i9-7960X CPU clocked at 2.80
GHz and 128 GB RAM. It was found that the closed-form implementation takes 16.34 sec-
onds leading to the average computational time of 1.6 milliseconds per evaluation, which is
sufficient for many real-time control applications.
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Fig.3 Joint trajectories and 2r
corresponding joint torques of the
KUKA LBR iiwa 14 R820 robot

«

Joint Position, q(t) (rad)

Time, t (s)

(a) Joint motion trajectories q(t)

150

50 - /

Generalized Forces, Q(t) (Nm)

Time, ¢ (s)

(b) Inverse dynamics output Q(t)

7 Conclusion and outlook

This paper presents closed-form expressions for the first and second time derivative of the
EOM of a kinematic chain. Building upon the Lie group formulation of the EOM, the for-
mulations are advantageous as they are expressed in terms of joint screw coordinates, and
thus facilitate parameterization in terms of vector quantities that can be easily obtained.
The computationally efficiency of these closed-form relations compared to recursive algo-
rithms and their efficient implementation will be a topic of further research. It is already
obvious from the presented expressions that they involve many repeated terms that can be
precomputed and reused. Future research will also address the time derivatives of general
mechanisms with kinematic loops and an efficient C++ based implementation in Hybrid
Robot Dynamics (HyRoDyn) software framework [16].
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Fig.4 Results for the 400
higher-order inverse dynamics —Q
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