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In this paper, we analyze a wide range of physiological, behavioral, performance,
and subjective measures to estimate cognitive load (CL) during post-editing (PE) of
machine translated (MT) text. To the best of our knowledge, the analyzed feature
set comprises the most diverse set of features from a variety of modalities that has
been investigated in the translation domain to date. Our focus lies on predicting the
subjectively reported perceived CL based on the other measures, which could for
example be used to better capture the usefulness of MT proposals for PE, including
themental effort required, or to develop cognition-aware translation environments
that support human translators according to their current level of CL. Based on the
data gathered from 10 professional translators, we show that feature sets from all
different modalities outperform our baseline measures in terms of predicting the
subjectively perceived level of CL, and that especially eye-, heart-, or skin-based
features yield good results in a simple “top-down” regression analysis using fea-
ture selection. When passing the participant and segment to the regression models,
other modalities like keyboard, text, body posture, or time, also perform well. An
additional correlation analysis provides insights into redundancies among the fea-
tures which may be used to further improve the currently achieved best regression
score of 0.7 mean squared error (MSE) on a 9-point scale.
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1 Introduction

Even though machine translation (MT) systems are improving rapidly, the result-
ing translations currently still require manual post-editing (PE) to capture and
correct errors and make the target texts conform to their intended objective. PE
has the potential of inducing high cognitive load (CL) on the translator: it in-
volves continuous scanning of texts, including source, the incrementally evolv-
ing final translation output and possible error-prone MT output for mistakes,
(sub-)strings that can be reused, text that has already been translated, text that
still needs to be translated, etc. When PE is required, we should therefore op-
timize for a low perceived CL during PE, and not only focus on MT quality in
terms of automatic measures or time to post-edit. Here, we see CL as “a variable
that attempts to quantify the extent of demands placed by a task on the mental
resources we have at our disposal” (Chen et al. 2016).

While CL and MT quality are interrelated, they cannot be considered equal:
for example, repeated mistakes that have been corrected by the translator again
and again in the past may impact perceived CL, while the MT quality remains
the same. Therefore, it has been argued that CL is a more decisive indicator of
the overall effort expended by post-editors (Vieira 2016).

To investigate how computer-aided translation (CAT) tools could adapt when
high cognitive loads are detected, Herbig, Pal, van Genabith, et al. (2019) inter-
viewed professional translators. The most proposed and most liked idea was to
provide alternative translations from MT, translation memories (TM), or a cor-
pus; however, other adaptations like automatic proposals to encourage the trans-
lator to take a break, reordering segments to switch between highly and less de-
manding segments, user interface adaptations, or payment based on induced CL
were also discussed.

Apart from these CAT adaptations based on CL, the automatic capture of CL
without interfering in the PE process would further enable the creation of large
datasets of CL scores for (source, MT, PE) tuples that could be used to optimize
MT systems to produce output inducing lower CL on the post-editors.

To provide some first steps towards these goals, we are concerned with the
question of how to actually estimate CL during PE. For this, (1) we present an
approach based on a wide range of physiological, behavioral, performance, and
subjective measures, yielding the so far most diverse set of features from a va-
riety of modalities that has been investigated in the translation domain. (2) We
analyze how well predictive models based on feature combinations from these
modalities can predict perceived CL, as measured by subjective ratings on a well
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established CL scale from psychology (Paas & van Merriënboer 1994). The differ-
ent modalities and their combinations are then compared in terms of regression
performance. (3) Similar to Vieira (2016), we investigate pairwise correlations
between different interesting indicators of CL and also subjectively assessed CL
and run a principal component analysis (PCA) to figure out which features cap-
ture similar or distinct underlying concepts. This step aims to help us understand
the relation between the different CL estimators.

The results of our analyses indicate that heart, eye and skin, as well as com-
bined measures perform very well, while text, keyboard, body posture, or time
features only perform well when considering the individual participant and seg-
ment s/he is editing. Overall, the best predictive model achieved a regression
score of 0.7 mean squared error (MSE) on a 9-point scale. However, the corre-
lation analysis shows that our “top-down” regression approach, which uses a
simple feature selection algorithm, sometimes chooses redundant features, sug-
gesting that it might be possible to improve results by analyzing the features in
more depth and combining them in a more sophisticated way.

2 Related work

This section discusses related studies by first giving an overview of CL measures
and then presenting studies on measuring CL during translation.

2.1 Overview of cognitive load measures

Cognitive load theory (Paas & vanMerriënboer 1994; Sweller et al. 1998) has been
developed in psychology and is concerned with an efficient use of people’s lim-
ited cognitive resources to apply acquired knowledge and skills to new situations
(Paas et al. 2003). Approaches to detect CL can be roughly divided into four cat-
egories: subjective measures, performance measures, behavioral measures, and
physiological measures.

subjective measures are based on the assumption that subjects can self-as-
sess and report their cognitive processes after performing a task (Paas & vanMer-
riënboer 1994). Several scales exist, and introspection is often used as a ground
truth to evaluate how well CL can be assessed by other means, such as physio-
logical measurements.

performance measures such as the time required or the text quality achieved
assume that when working memory capacity is overloaded, a performance drop
occurs due to the increase in overall CL (Chen et al. 2016). However, by increas-
ing their efforts, humans can compensate for the overload and maintain their
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performance over a period of time, although this can lead to additional strain
and fatigue (Hockey 1997).

behavioral measures can be extracted from user activity while performing
a task. Especially interesting in the context of PE are mouse and keyboard input-
based features, which were shown to correlate to CL (Arshad et al. 2013).

Last, a lot of research has been done on physiological measurements, which
assume that human cognitive processes can be observed in the human physiol-
ogy (Kramer 1991). Eye-tracking is frequently used for physiological CL measure-
ments: the pupil diameter increases with higher CL (Iqbal et al. 2004; O’Brien
2006a), the frequency of rapid dilations changes (Demberg & Sayeed 2016), and
the blink behavior adapts (Van Orden et al. 2001). Furthermore, Chen & Epps
(2013) as well as Stuyven et al. (2000) showed that fixations and saccades can also
be used for CL predictions. Apart from the eyes, the skin also provides informa-
tion about the user’s cognitive state: galvanic skin response (GSR) can be used
to determine whether a user feels stressed (Villarejo et al. 2012) and provides
information about the CL (Shi et al. 2007). Remote measurements of the skin
temperature have also been effective (Yamakoshi et al. 2008). Further commonly
used indicators rely on the cardiovascular system: blood pressure (Yamakoshi
et al. 2008), heart rate (Mulder 1992), and especially heart rate variability (HRV;
Rowe et al. 1998) have been shown to correlate with CL. In addition, features
such as the head pose also correlate to CL when learning (Asteriadis et al. 2009).

2.2 Cognitive load estimation in the translation domain

Due to the parallel activation of two languages, reading for translation imposes
more demand on the working memory than reading within a single language
(Macizo & Bajo 2006), thus, making CL estimation particularly interesting in the
translation domain. Therefore, a few, albeit seminal, publications relevant to the
cognitive dimension of modeling PE have been presented:

Krings (2001) utilized think-aloud protocols to capture cognitive effort; how-
ever, as pointed out by O’Brien (2005), post-editors constantly reporting what
they are doing (a) slows down the process and (b) changes the process itself.

O’Brien (2005) explored correlating pauses in typing behavior to potentially
difficult source text features. In a follow-up analysis (O’Brien 2006b), she con-
cluded that “while pauses provide some indication of cognitive processing, sup-
plementarymethods are required”. Lacruz et al. (2012) and Lacruz& Shreve (2014)
built upon this work, but instead of examining long pauses, they analyzed clus-
ters of shorter pauses. Their metrics called average pause ratio (APR) and pause
to word ratio (PWR) could be correlated to technical effort (the required mouse

4



1 Multi-modal estimation of cognitive load in post-editing of MT

and keyboard actions), arguing that “it is likely that in many situations tech-
nical effort and cognitive effort will be related”. Pause ratios were also shown
to be more sensitive to grammatical, word order, or structure errors. For TMs,
Mellinger (2014) was able to correlate keystroke logs and pausemetrics to transla-
tion quality ratings. Last, the total pause duration was found to be smaller when
post-editing than during manual translation of metaphors (Koglin 2015); how-
ever, this could be explained by the large time savings achieved through PE.

While pauses and technical effort relate to these MT quality measures, which
are in turn related to perceived CL, CL and MT quality cannot be considered
equal: consider very badMTproposals that are still very easy to PE due to the sim-
plicity of the segments or the contrary situation, a very high MT quality where
spotting the error can remain difficult and induce a high CL. We will neverthe-
less integrate pause measures, as they are very easily applicable in TPR studies,
but compare them to physiological and subjective measures of CL.

Among the physiological measures, eye-tracking has frequently been used as
a means to capture CL during PE: O’Brien (2006a) proposed pupil dilation as a
measure of CL and focused on correlations with different match types retrieved
from a TM. Doherty et al. (2010) also explored eye-tracking by measuring differ-
ent features while reading MT output. They found that gaze time and fixation
count correlate with MT quality; however, fixation duration and pupil dilation
were less reliable. Carl et al. (2011) found more fixations and longer gaze times
on the target text when comparing PE to manual translation. Therefore, the au-
thors argue that there is more effort in correcting MT outputs, whereas manual
translation requires more effort for reading and understanding the source. This
finding was also replicated by Koglin (2015). Moorkens et al. (2015) correlated
ratings of expected PE effort with temporal, technical and cognitive effort, in
terms of time, translation error rate (TER; Snover et al. 2006; 2009), and fixation
counts and durations, respectively. Interestingly, the correlations between eye-
tracking data and predicted effort were either veryweak or weak, suggesting that
human predictions of PE effort cannot be considered completely reliable. Fur-
thermore, Daems (2016) found that fixations are mostly impacted by coherence
and other meaning shifts. In contrast to these quality-, time-, and expectation-
based measures, Vieira (2014) uses a psychology-motivated definition of CL. He
linked average fixation duration, fixation counts, and a self-report scale measur-
ing CL, which is frequently used in psychology (Paas & van Merriënboer 1994)
to segments expected to pose different levels of translation difficulty and their
corresponding Meteor (Lavie & Agarwal 2007) ratings.

As can be seen, a variety of approaches already exists linking different eye
features to effort metrics, ranging from simply counting fixations on the source
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and target to pupil diameter measures. However, the focus was again mostly
on a link to translation quality, sentence features, or expected effort, with only
one consideration of CL in the psychological sense. Furthermore, the works only
investigated eye tracking, without considering other physiological or behavioral
measures.

In contrast, the follow-up work by Vieira (2016) analyzes how all of the above
measures, as well as pause metrics and editing time, relate to each other in a mul-
tivariate analysis. He found correlations between all measures; however, a PCA
showed that they cluster in different ways. The work most related to this study
is our previous study – Herbig, Pal, Vela, et al. (2019) – with translation master’s
students, where we explored a vast variety of CL measures, including eye, skin,
heart, and typing features that were previously unexplored in the translation
domain, analyzed correlations, and investigated how well these can be used to
predict the subjective CL ratings.

In this work, we built upon our previous findings (1) by conducting a similar
studywith professional translators instead of translationmaster’s students, (2) by
incorporating even more sensors and features in the system, and (3) by not only
analyzing predictive models of subjective CL or correlations to this subjective
measure, but further by performing the multivariate analysis of Vieira (2016) to
understand how the different measures relate to each other and how the features
cluster together.

3 Method

As stated earlier, we believe that the CL perceived by translators during PE should
be considered more closely, since MT output often requires PE, and considering
only the number of changes needed may not provide an accurate measure of the
effort involved (Koponen 2016). Adding this CL-based perspective on PE ofMT to
the commonly used but oversimplifying BLEU (Papineni et al. 2002) perspective
on MT quality should lead to a better approximation of actual PE cost.

To test which measuring approaches can actually reflect different levels of CL
in PE, we perform a user study1 to gather data from a variety of sensors, which
can be combined in a multi-modal fashion. For the analysis, we conduct a hybrid
of the approaches by Herbig, Pal, Vela, et al. (2019) and Vieira (2016). That is,
we aim to predict subjectively assessed CL based on the captured multi-modal
sensor data by training regression models and we further perform a multivariate
analysis and a PCA to find pairwise correlations and clusters of different features.

1The study was approved by the university’s ethical review board.
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The goal of the regression analysis is to automatically infer the CL from the raw
sensor data, ideally using as few and as commonly used sensors as possible. The
multivariate analysis should then provide more detailed insights into why some
measuring approaches perform well while others contribute little.

3.1 Analyzed measures of cognitive load

Compared to Vieira (2016), Herbig, Pal, Vela, et al. (2019) already increased the
amount of analyzed features significantly by adding heart-, skin-, and camera-
based features. In this work, we add even more and higher quality sensors and
add further high-level features.

3.1.1 Subjective measures

Subjective measures are based on the assumption that subjects can self-assess
and report their cognitive processes after performing a task. For this, we adapted
a CAT tool to ask for a subjective CL rating (SubjCL) using the scale proposed
by Paas & van Merriënboer (1994) after every single segment. This scale was
chosen because it focuses on CL and not on quality, and further since it was used
in the two most related studies by Vieira (2016) and Herbig, Pal, Vela, et al. (2019).
The single 9-point question is “In solving or studying the preceding problem I
invested” with a choice of answers ranging from “very, very low mental effort”
to “very, very high mental effort”.

3.1.2 Performance measures: Text and time

The usual performance measures based on the required time or achieved quality
are not as easily accessible in PE as in other cognitive tasks, since it is possible
to trade of quality for time and because translation quality is a partly subjective
measure. Nevertheless, we integrate the following simple time and text measures:

For the time features we integrate PE time (PeTime) and length-normalized
PE time which also considers the segment length (LNPeTime).

The text features consist of smoothed BLEU, HBLEU (Lin &Och 2004), TER,
HTER (Snover et al. 2009), and sentence length (SL). Note that the difference
between the non-H- and H-based measures lies in the choice of the reference
translation and hypothesis: BLEU and TER take the MT output as hypothesis
and the independently provided human translation as reference and calculate 𝑛-
gram overlap (BLEU) or the amount of necessary edits (TER) to transform the
hypothesis into the reference, while HBLEU and HTER perform the same calcu-
lations, but this time between the MT output and the post-edited translation.
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3.1.3 Behavioral measures: Keyboard typing and body posture

Behavioral measures can be extracted from user activity while performing a task.
Especially interesting in the context of PE, where the translator does not move
a lot, is focused on the screen, does not speak, etc., are mouse and keyboard
input-based features. Therefore, our most basic sensor is a key logger storing
all keyboard and mouse input during PE. The higher-level pause features APR
and PWR by Lacruz et al. (2012), which were shown to correlate with PE effort,
are automatically calculated from the keyboard events.

Furthermore, the body posture is captured by a Microsoft Kinect v2. We hy-
pothesize that post-editors come closer to the screen for hard-to-edit transla-
tions, so we calculate the distance to the head and normalize it per participant
(HeadDist).

3.1.4 Physiological measures: Eyes, heart, and skin

As physiological measurements, we integrate eye-, heart-, and skin-based mea-
sures in our experiment.

For eye-based features, we use a web-cam and an eye tracker. The web-
cam, which is naturally not as precise as the eye tracker but easily accessible
on most modern devices, is used to calculate the eye aspect ratio (EAR), which
indicates the openness of the lids (Soukupova & Cech 2016). The remote Tobii
eye tracker 4C with the Pro SDK records the raw gaze data. Based on this raw
data, we calculate the amount of blinking (of less than 2 s length; BlinkAmount)
and also normalize this by the PE time (NormBlinkAmount) (Van Orden et al.
2001). Similarly, we calculate the number of fixations (FixAmount) and normal-
ize it by PE time (NormFixAmount). We further compute the fixation durations
(FixDur) and saccade durations (SaccDur) (Doherty et al. 2010; Moorkens et al.
2015), all of which have been shown to be indicators of CL. Furthermore, we reim-
plemented the work by Goldberg & Kotval (1999) to calculate the probability of
visual search based on the eye movements (SearchProb), which was proposed to
determine whether a user is searching within a user interface and could there-
fore also be an indication of a user feeling “lost” while PE. Last, and as the main
distinction fromHerbig, Pal, Vela, et al. (2019), we also capture the pupil diameter
(PupilDiameter, O’Brien 2006a). For calculating higher-level features on the sen-
sor output, we first replace blinks from the signal by linear interpolation. Then,
the index of cognitive activity (ICA), which is the frequency of small rapid dila-
tions of the pupil (Demberg & Sayeed 2016) that was shown to be more robust to
changes in illumination, is calculated based on this signal. Two approaches are
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implemented: one uses a wavelet transformation to calculate the number of rapid
dilations (ICAwave), while the other simply counts how often a sample deviates
by more than 5 times the rolling standard deviation from the rolling mean of
the signal (ICAcount). Last, we also implemented the work of Hossain & Yeasin
(2014), which checks for sharp changes and continuations of the ramp in the
Hilbert unwrapped phase of the pupil diameter signal (Hilbert).

For heart measures, we integrate three devices: a Polar H7 heart belt, a
Garmin Forerunner 935 sports watch, and the Empatica E4 wristband. That way,
we have two sports devices (Polar and Garmin) and one CE certified medical de-
vice (type 2a) offering an early glimpse of the data quality achieved by future
consumer devices. From both the Polar belt and the Garmin watch, we capture
the heart rate (HR).

The Polar belt, as well as the Empatica wristband, further capture the RR in-
terval (RR), which is the length between two successive Rs (basically the peaks)
in the ECG signal. Based on this, we calculate the often-used CL measures of
heart rate variability (HRV, Rowe et al. 1998), in particular the root mean square
of successive RR interval differences (RMSSD) and the standard deviation of NN
intervals (SDNN). Here, the SDNN uses NN intervals, which normalize across
the RR intervals and thereby smooth abnormal values. Furthermore, we add the
HRV features NN50 and pNN50, which are the number and percentage of suc-
cessive NN intervals that differ by more than 50ms (Shaffer & Ginsberg 2017),
for both the Empatica and the Polar to the analysis.

Furthermore, the Empatica measures the blood volume pulse (BVP), which is
the change in volume of blood measured over time. Based on it, we calculate
the BVP amplitude (BVPAmp, Iani et al. 2004), which contains the amplitude
between the lowest (diastolic point) and highest (systolic point) peak in a one
second interval. Last, we also calculate the median absolute deviation (BVPMed-
AbsDev) and the mean absolute difference (BVPMeanAbsDiff) among the BVP
values (Haapalainen et al. 2010). Here, BVPMedAbsDev is the median of the ab-
solute differences between individual measurements and the median of all mea-
surements. BVPMeanAbsDiff is simply the mean of absolute differences of each
pair of measurements. Both these features are calculated per interval of 125ms.

The main difference compared to Herbig, Pal, Vela, et al. (2019) regarding heart
features is that we additionally included the Garmin and Empatica devices, which
allowed us to also integrate BVP-relatedmeasures. Furthermore, we extended the
set of considered HRV measures to also include NN50 and pNN50.

For skin-based features, we integrate the Microsoft Band v2 and again use
the Empatica and the Garmin devices. The MSBand and Empatica both measure
the commonly used galvanic skin response (GSR) which is an indicator of CL.
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We also transform this signal to the frequency domain (FreqGSR) as described
in Chen et al. (2016). In accord with their work, we also calculate data frames of
length 16, 32, and 64 samples, which are similarly transformed to the frequency
domain and normalized by the participant average (FreqFrameGSR).

Furthermore, we use the Ledalab software2 to calculate higher level skin con-
ductance features on the Empatica raw data. It provides us with “global” fea-
tures, namely the mean value (Ledaavg) and the maximum positive deflection
(LedaMaxDefl), and “through-to-peak (TTP)/min-max” analysis, namely the num-
ber of significant (i.e. above-threshold) skin conductance responses (SCRs)
(LedaTTP.nSCR), the sum of SCR amplitudes (LedaTTP.AmpSum) of significant SCRs,
and the response latency (LedaTTP.Lat) of the first significant SCR. Furthermore,
and most interestingly, we use Ledalab to perform a continuous decomposition
analysis (CDA, Benedek & Kaernbach 2010), which separates skin conductance
data into continuous signals of tonic (background) and phasic (rapid) activity.
The features based on this CDA analysis again include the number of significant
SCRs, the SCR amplitudes of significant SCRs, and the latency of the first SCR
(LedaCDA.nSCR, LedaCDA.AmpSum, LedaCDA.Lat). Furthermore, the average phasic
driver (LedaCDA.SCR), the area of phasic driver (LedaCDA.ISCR), as well as the
maximum value of phasic activity (LedaCDA.PhasMax) and the mean tonic activity
(LedaCDA.Ton) features are created by the Ledalab software.

The Empatica and Garmin devices also measure the skin temperature, which
we use as a feature (SkinTemp).

The differences from Herbig, Pal, Vela, et al. (2019) for the skin features are as
follows: we further use the skin resistance data delivered by the Empatica E4, on
which we calculate the same features as in their work, but additionally add the
Ledalab features. Furthermore, we integrate the skin temperature features.

3.1.5 Data normalization and segment-wise feature calculation

The features described above can be categorized into two classes: global features
and continuous features.

By global features we mean features that yield only one value per seg-
ment: this class comprises subjective measures (SubjCL), time measures (PeTime,
LNPeTime), text measures (BLEU, HBLEU, TER, HTER, SL), keyboard measures
(APR, PWR), the amount-based eye features (BlinkAmount, FixAmount, Norm-
BlinkAmount, NormFixAmount), and all Ledalab skin features. However, one
should note that the time and text features here really only can be calculated
on the whole segment, while the amount-based eye features or the skin-based
Ledalab features could also be calculated over shorter periods of time.

2http://www.ledalab.de/
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Apart from these global features, all other features are basically just a con-
tinuous signal (of different sampling rates) that we still need to transform to
a directly usable set of values per segment: Each signal is first normalized as de-
scribed in Chen et al. (2016) by dividing it by the participant’s mean value. Then
6 very simple features are calculated from this normalized signal: the accumu-
lated, average, standard deviation, minimum, maximum, and range (max−min).
As an example, this means that GSR, actually consists of the 6 features GSRacc,
GSRavg, GSRstd, GSRmin, GSRmax, and GSRrange.

We manually inspected the data distribution per segment and participant for
outliers and overall data quality. First of all, the Empatica E4 sensor, which claims
clinical quality observations, indeed shows the fewest outliers and nicely bell
shaped data distributions. In contrast, the Polar H7 sports sensor and the Mi-
crosoft Band v2 showed much more noisy data. Therefore, we filtered values ac-
cording to visual inspection and related literature: data above 100,000 kΩ for the
raw Microsoft Band GSR was removed. Furthermore, Polar RMSSD and SDNN
values above 1000 (van den Berg et al. 2018) as well as HRPolar and RRPolar sam-
ples which fall outside the acceptable 50–120 beats per minute or 500–1200ms
ranges were ignored (Shaffer & Ginsberg 2017).

3.2 Text and apparatus used for the experiment

Apart from the sensors, we need to generate translations for our experiments that
contain realistic error types. For this, we use the same 30 sentences as Herbig,
Pal, Vela, et al. (2019), which are chosen as follows: A neural MT system (Gehring
et al. 2017) was trained on the English-German parallel data from the WMT 2017
news translation task and provided translation candidates on the respective test
data set. Then 30 sentences were chosen from this test set by (a) using sentences
of different TER intervals, (b) reducing the number of possible candidates based
on manual error analysis, and (c) further shrinking the set based on subjective
CL ratings from two translation master’s students in a pre-study. For details re-
garding the selection of sentences please refer to Herbig, Pal, Vela, et al. 2019. All
participants used these same 30 segments; however, the order is randomized to
avoid ordering effects.

For the study, the post-editor is equipped with a Microsoft Band v2 on her
right wrist, the Garmin Forerunner 935 and Empatica E4 on the left wrist (the
Garmin is further up), the heart belt on her chest, and an eye tracker, as well a
web-cam and a Microsoft Kinect v2 camera facing her. As input possibilities, a
standard keyboard and mouse are attached, and a 24-inch monitor displays the
translation environment. We chose SDL Trados Studio 2017 for this study as it is
by far the most used CAT tool in professional applications.
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3.3 Data analysis approach

First, we analyze the subjective ratings provided by our participants. Then, sim-
ilar to Herbig, Pal, Vela, et al. (2019), we estimate the subjective ratings of per-
ceived CL based on a combination of different features. Last, we use the approach
byVieira (2016) and investigate correlations between ourmeasures to understand
how they relate to each other.

For all analyses, we discuss the features in terms of the feature sets described
in Section 3.1: subjective, time, text, keyboard, body posture, heart, eye, and skin
features. Finally, we also investigate combinations of these sets.

3.3.1 Subjective ratings

We start by reporting and analyzing the subjective ratings provided by our partic-
ipants. As this is our targetmeasure, it is important to understand the distribution
of our dataset as well as inter-rater differences.

3.3.2 Multi-modal CL regression analysis

The goal of this stage is to investigate the feasibility of automatically gathering
CL values for segments through different sensors. For this, we learn a function
that fits our features to the subjective CL as reported by each participant on the
rating scale after each segment; thus, the output space is 1 to 9. We consider
each segment of each participant an individual sample with the corresponding
subjective rating as a label. Please note that neither a manual annotation of the
segments nor an average CL rating across participants is used here.

The reason why we focus on subjectively assessed CL is that it is good at cap-
turing inter-translator differences. This is important because the task difficulty
by itself is of a subjective nature, as it depends on the translator’s experience
with similar texts, vocabulary, etc. Thus, we also do not normalize our target
variable, because the lowest rating assigned by one participant is not necessar-
ily comparable to the lowest rating assigned by another participant due to prior
experience, which in turn could also result in different physiological responses.
Thus, instead of potentially biasing our data by transforming the target variable,
we keep it as is and perform a comparison between models with a random effect
for participant and those without such knowledge, as described in further detail
below. Apart from subjectively assessed CL we could also have chosen quality or
time measures as the target, however, as discussed above, quality and CL cannot
be considered equal, and time could be traded off for quality, thereby limiting
findings based solely on these measures.
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We compare the different regression models based on different feature sets
against each other, but also compare eachmodel to a very simple baseline: always
predicting the mean subjective rating (SubjCLavg).

Overall, we compare two approaches for training regression models.
The first approach uses only the above measures to predict SubjCL, and has

no knowledge about which participant the data comes from or which segment
was post-edited while recording the data. Thus, it is a very generic approach that
learns one set of parameters across all participants, thereby exploring the feasi-
bility of applying CL adaptations during PE in practice, e.g. for automatically
providing alternative proposals when loaded. Since different features and their
combinations require different types of functions to best approximate them lo-
cally, we train not only one, but several regression algorithms making different
assumptions about the underlying function space: linear models with different
regularizers, namely a stochastic gradient descent regressor (SGD), a lasso model
(Lasso), an elastic net (ENet), and a ridge regressor (Ridge), as well as a non-linear
random forest regressor (RF), all provided in the scikit-learn library using the
default parameters and feature normalization. This analysis is very similar toHer-
big, Pal, Vela, et al. (2019), except that our previous analysis additionally used a
support vector regression (SVR) model.3

As a second approach, which is an extension to the first approach, we fur-
ther integrate linear mixed-effect models (LMEMs) using R (version 3.6.0, lme4
package version 1.1-21), as these can effectively capture inter-participant as well
as segment-dependent differences by adding a random effect for subject and a
random effect for item.4 To make the comparison between LMEMs and the other
models fair, we also provide the scikitmodels with the participant and segment
ID; thus, all models can learn to act differently depending on this information.
While the normalization of the signal discussed above already normalizes the
data such that each participant’s average heart rate is at value 1, some partici-
pants might still react more strongly to CL, e.g. one participant might increase
his heart rate by 10%, while another’s might increase by 20%. By incorporating
the participant and segment as a feature into the models, we ensure that they
can learn such individual difference. This is also a major distinction from Her-
big, Pal, Vela, et al. (2019), who did not incorporate these measures. However,

3Since SVR does not support our selected feature selection approach, and since it never per-
formed best in tests without feature selection, we decided to not use it for this experiment.

4Since the R package used for LMEMs does not support our feature selection approach either,
we decided to instead perform feature selection with a normal linear regression model with
L2 regularization.
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this approach of training the models is only relevant for strictly controlled ex-
periments, because in practice no two translators will PE the same segment.

By training multiple regression models, we obtain locally optimal results be-
fore comparing them and drawing conclusions on the usefulness of the features
involved. That way, our results are not biased or distorted by the use and limita-
tions of a single classifier (and with it the class of functions that can be learned).
While we do not fine-tune hyper-parameters of the models and might therefore
miss some ideal hyper-parameter combination, our approach offers a reasonably
wide range of function spaces to choose from.

To avoid over-fitting, all regression functions use regularization or averaging,
and we perform cross-validation (CV). Before passing a feature to a regression
model, we apply a z-transformation to achieve 0 mean and unit variance. For
combining individual features within a modality or across modalities, we then
use simple vector concatenation. As a feature selection approach we use recur-
sive feature eliminationwith CV (RFECV in scikit-learn) to decide on howmany
and which features to select.

For all of these feature combinations, we train each of the above regressors us-
ing a 10-fold stratified CV, which is better suited for an imbalanced distribution of
the target variable (that we happen to have, see Section 4.1). We further perform
a 5 by 2-fold stratified CV which we use to statistically compare the different
models. This method has been suggested by Dietterich (1998) as it ensures that
each sample only occurs in the train or test dataset for each estimation of model
skill, thereby reducing inter-dependencies. Naturally, every regression model is
trained on the same folds, to make results comparable. For each regressor, the
average test MSE is computed across the 10 folds and is then compared across
regressors as it is a good measure for our actual goal: predicting the subjective
CL as well as possible. We choose the MSE as the main metric, since the error
squaring strongly penalizes large errors, which are particularly undesirable for
our goal.

3.3.3 Pairwise correlations and PCA

Vieira (2016) argues that “using a large number of different measures in the hope
that together they will provide a more accurate parameter might be an inefficient
appraoch”, especially when the measures are correlated. Our above approach
uses a well established feature selection mechanism to select a good feature sub-
set and thereby automatically reduces redundancies and removes inconclusive
features. However, this “top-down” experimental approach still does not provide
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any insight into how all the different features correlate and which features reflect
the same underlying construct.

To target these shortcomings, Vieira (2016) inspects a correlation matrix visu-
alizing pairwise feature correlations. To further investigate why some measures
seem to be more related to each other than others, suggesting that there is also a
great degree of redundancy involved, he then used a PCA. As Vieira (2016) nicely
puts it, “informally, PCA transforms a group of variables into a group of orthog-
onal principal components (PC) containing linear combinations of the original
variables”. Usually a small number of PCs is enough to explain most of the origi-
nal data, which is especially important for our data consisting of a huge amount
of features.

To keep the reporting concise, we only report PCs that together explain 95% of
the variance. Since we have many more features than Vieira (2016), a plot includ-
ing all features would become very messy and unreadable. Therefore, we create
a separate plot per modality to investigate within-modality correlations and fur-
ther report an across-modality plot. For modalities with more than 5 features,
we reduce this set based on the MSE a regressor that was trained solely on each
single feature would achieve in a 5 by 2-fold CV. While this does not give us a
full picture, it remains interpretable and provides interesting insights.

3.4 Participants and user evaluation procedure

The experiment participants were 10 professional translators (8 female), aged 28–
62 (mean = 40.4, SD = 9.7). Half of them were freelance translators, while the
other half worked for a translation company. All of them were native Germans
and had studied translation from English. Their professional experience ranged
from 3 to 30 years (mean = 12.1, SD = 3). All of them have worked with Trados
SDL Studio, which is the CAT tool we also used for our experiment. However, on
average they have used 4.4 distinct CAT tools (SD = 2.1,min = 1,max = 9). On a
5-point scale ranging from very bad to very good, they judged their knowledge of
CAT tools as good (mean = 4.2, SD = 0.9), their experience with Trados as good
(mean = 4.4, SD = 0.7), their general knowledge of translation as very good
(mean = 4.8, SD = 0.4), and their PE knowledge as good (mean = 3.8, SD = 1.0).

After signing a data protection form and filling out the above demographics
questionnaire, they were given written instructions explaining that they should
(1) post-edit the proposed translations and not translate from scratch, and (2)
focus on grammatical and semantic correctness while avoiding stylistic changes.
Concrete time limits were not stated. The reason for clear instructions was to
ensure a similar PE process across participants; other specifications would also
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have been valid for such an experiment. We further allowed but did not require
participants to look up terms in a corpus or dictionary online. Before starting
the actual PE process, they were given time to familiarize themselves with the
environment, e.g. to adjust the chair and adapt the Trados view settings. They
then each post-edited the 30 text segments described above in random order
while wearing all the sensors. For one participant the USB hub we used broke
after post-editing 9 segments, thereby reducing the gathered amount of data for
this participant.

4 Results and discussion

In this section, we present and discuss the results of each individual step of our
data analysis.

4.1 Subjective ratings

All 9 CL ratings were used during the experiment; however, 90.3% of the ratings
were within the range 3 to 7 (inclusive) while the extreme cases were only rarely
chosen (see Figure 1.1). We also observe rating differences between post-editors,
with an average standard deviation across segments of 1.2 on our 9-point scale.
In general, the rating distribution and the inter-rater differences are strongly
comparable to the results of Herbig, Pal, Vela, et al. (2019). As argued in this
work, a reason for the non-uniform, rather normal rating distribution could be
the strong wording of the used rating scale (Paas & vanMerriënboer 1994): “very,
very high/low mental effort” is something that we believe users simply do not
identify themselves with often.

1 2 3 4 5 6 7 8 9
Subjective Rating

0

20

40

60

80
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ou

nt

Figure 1.1: Rating distribution across subjective CL scale.
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Note that we use these individual CL ratings (without any aggregation on
segment level) for the remaining analyses to also capture inter-participant dif-
ferences. Inspecting the data in further detail, we find 80 out of 151 cases where
multiple participants rated the same segment as equally tough while having an
editing difference of more than 20 HTER. This supports our above argument that
strong differences in editing behavior do not necessarily impact the CL.

4.2 Multi-modal CL regression analysis

The results of the first regression analysis approach, that is without passing the
participant and segment alongside the features to the model, are reported in Ta-
ble 1.1. It shows the MSE achieved in 1 by 10- and 5 by 2-fold CV, once for the
baseline, and further for each category of features described above. For each fea-
ture category, we report the results achieved by a model trained on all features
(ALL) of that category, and the results achieved by a model trained using feature
selection (FS). The features are ordered by their regression performance (MSE)
when training a model solely on this single feature. Next to each MSE score, we
report the type of model (e.g. Ridge). Last, we also report the standard deviation
of the 10 runs within 5 by 2-fold CV.

The first thing one should note when looking at Table 1.1 is that only ridge and
random forest models were chosen, and that the results for 1 by 10-fold and 5 by
2-fold CVs are rather similar. We compare each 5 by 2-fold MSE score using a uni-
variate ANOVA with all models as conditions and calculate the contrasts to the
mean baseline as references. The ANOVAs violated the sphericity assumption
but still showed strong significance (𝑝 < 0.01) after Greenhouse-Geisser correc-
tion of the degrees of freedom. Table 1.1 shows that all models are significantly
better than the mean baseline (after Bonferroni correction).

When looking at the individual results in Table 1.1, one can see that already
this baseline is actually quite good, with a MSE of 2.045 on a 9-point scale, which
comes from the rather normally distributed ratings. Among our considered cat-
egories, text is the worst, followed by keyboard, body posture, and time, which
show similar results. Much better andmore interesting results are obtained in the
three categories skin, eye, and heart measures, which again show similar results.
When combining multiple modalities, the results improve a bit further.

Table 1.2 shows how the results change when including LMEMs and adding
the participant and segment as additional features to the other regression models.
This time only LMEMs and random forest models were chosen, and again the 1 by
10-fold and 5 by 2-fold scores are roughly comparable. We again use a univariate
ANOVA (including Greenhouse-Geisser correction) and find that all models are
significantly better than the baseline (after Bonferroni correction).
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Table 1.1: Feature evaluation results without considering LMEMs/with-
out adding participant and segment. For 10-fold and 5 by 2-fold CV with
standard deviation (SD). Asterisk (*) in the right column indicates a sig-
nificant difference (𝑝 < 0.01) from SubjCLavg after Bonferroni correc-
tion.

MSE

Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)

Baseline SubjCLavg 2.045 (-) 2.045 (0.04)

Time Features ALL: PeTime, LNPeTime 1.457 (Ridge) 1.487 (Ridge) (0.11)*
FS: PeTime 1.453 (Ridge) 1.490 (Ridge) (0.11)*

Text Features ALL: TER, HTER, HBLEU, BLEU, SL 1.756 (Ridge) 1.764 (Ridge) (0.07)*
FS: TER, HTER, SL 1.736 (Ridge) 1.747 (Ridge) (0.07)*

Keyboard ALL: PWR, APR 1.551 (Ridge) 1.577 (Ridge) (0.08)*
FS: PWR 1.554 (Ridge) 1.568 (Ridge) (0.07)*

Body Posture ALL: HeadDist 1.471 (Ridge) 1.487 (RF) (0.11)*
FS: HeadDist 1.456 (Ridge) 1.474 (RF) (0.12)*

Eyes ALL: SearchProb, FixAmount, ICA,
FixDur, SaccDur, Hilbert, EAR,
BlinkAmount, PupilDiameter,
NormFixAmount,
NormBlinkAmount

0.965 (RF) 1.086 (RF) (0.08)*

FS: FixAmount, ICA, FixDur,
SaccDur, SearchProb, Hilbert, EAR,
PupilDiameter

0.918 (RF) 1.029 (RF) (0.09)*

Heart ALL: NN50, pNN50,
BVPMedAbsDev, HR, SDNN,
RMSSD, RR, BVPMeanAbsDiff,
BVPAmp, BVP

1.073 (RF) 1.130 (RF) (0.13)*

FS: BVPMedAbsDev, NN50, SDNN,
RMSSD, HR, RR, BVPAmp, BVP

1.004 (RF) 1.117 (RF) (0.11)*

Skin ALL: SkinTemp, Ledalab,
FreqFrameGSR, GSR, FreqGSR

0.942 (RF) 1.148 (RF) (0.17)*

FS: SkinTemp, FreqFrameGSR,
Ledalab, GSR

0.858 (RF) 1.033 (RF) (0.14)*

Combined Features ALL 0.857 (RF) 0.984 (RF) (0.15)*
FS: FixAmount, ICA, SaccDur,
NN50, SDNN, FixDur, RMSSD,
FreqFrameGSR, HR, HeadDist,
Ledalab, SearchProb, Hilbert,
SkinTemp, EAR, GSR,
PupilDiameter

0.718 (RF) 0.886 (RF) (0.12)*
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When comparing the results of Table 1.2 to Table 1.1, we see that the results
with participant and segment improved substantially for the time, text, keyboard,
and body posture categories. For the other modalities – eyes, heart, skin, as well
as combinations – the results are roughly comparable. Even though the perfor-
mance improved, the text features remain the worst category, followed by the
keyboard features. All other modalities now show similar results.

We also perform pairwise comparisons between the feature selection models
of each individual category against the feature selected version of combinations,
which we report in Table 1.3. Note that these results are using the models with-
out incorporating participant and segment (Table 1.1), as we found these results
more interesting. For the pairwise comparisons we use the 5 by 2-fold CV results
in combination with a modified 𝑡-test (Dietterich 1998) followed by Bonferroni-
Holm corrections.

As expected, the combined model is indeed significantly better than time, text,
keyboard, and body posture; however, it is not significantly better compared to
eyes, heart, and skin, which are already very good by themselves.

Summarizing, Tables 1.1 and 1.3 suggest that CL measurement without special
adaptations per participant and segment work best when combining multiple
modalities; however, using skin, eye, or heart measures also works similarly well.
The often used keyboard features based on typing pauses, as well as time and
body posture measures perform worse. The text metrics, which include common
quality measures, are the worst among our explored predictors of subjective CL.

When the models can adapt to participant and segment (Table 1.2), the often
used text and keyboard features remain the worst; however, all other categories
(time, body posture, eyes, heart, skin, as well as combinations) now perform sim-
ilarly well.

4.3 Pairwise correlations and PCA

Similar to Vieira (2016), we analyze pairwise correlations between our measures
of CL. For each modality, we report a maximum of 5 best features, which we
compare to each other and to the subjective rating.

Figures 1.2, 1.3 and 1.4 depict the pairwise Pearson correlations alongside the
PCA loadings, as described above. Narrower ellipses indicate stronger correla-
tions; however, the correlation coefficient is also given numerically and encoded
through coloring. Blue and upward-oriented ellipses indicate positive correla-
tions, while red and downward-oriented ellipses indicate negative correlations.
The PCA plot shows which feature loads on which PC. Here, the line thickness
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Table 1.2: Feature evaluation results when considering LMEMs/adding
participant and segment. For 10-fold and 5 by 2-fold CV with standard
deviation (SD). Asterisk (*) in the right column indicates a significant
difference (𝑝 < 0.01) from SubjCLavg after Bonferroni correction.

MSE (L: LMEM, R: RF)

Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)

Baseline SubjCLavg 2.045 (-) 2.045 (0.04)

Time Features ALL: PeTime, LNPeTime 0.856 (L) 0.886 (L) (0.04)*
FS: PeTime 0.868 (L) 0.891 (L) (0.05)*

Text Features ALL: TER, HTER, HBLEU, BLEU, SL 1.126 (L) 1.219 (L) (0.07)*
FS: TER, HTER, SL 1.121 (L) 1.193 (L) (0.04)*

Keyboard ALL: PWR, APR 1.075 (L) 1.158 (L) (0.06)*
FS: PWR 1.055 (L) 1.136 (L) (0.06)*

Body Posture ALL: HeadDist 0.890 (L) 0.963 (L) (0.06)*
FS: HeadDist 0.872 (L) 0.896 (L) (0.05)*

Eyes ALL:SearchProb, FixAmount, ICA,
FixDur, SaccDur, Hilbert, EAR,
BlinkAmount, PupilDiameter,
NormFixAmount, NormBlinkAmount

0.924 (R) 0.968 (R) (0.07)*

FS: FixDur, SearchProb 0.882 (R) 0.938 (L) (0.09)*

Heart ALL: NN50, pNN50, BVPMedAbsDev,
HR, SDNN, RMSSD, RR,
BVPMeanAbsDiff, BVPAmp, BVP

0.921 (R) 1.057 (R) (0.11)*

FS: HR 0.820 (L) 0.859 (L) (0.06)*

Skin ALL: SkinTemp, Ledalab,
FreqFrameGSR, GSR, FreqGSR

0.860 (R) 1.018 (R) (0.16)*

FS: SkinTemp, GSR 0.816 (L) 0.919 (L) (0.16)*

Combined Features ALL 0.801 (R) 0.962 (R) (0.12)*
FixAmount, ICA, SaccDur, NN50,
SDNN, FixDur, RMSSD,
FreqFrameGSR, HR, HeadDist,
Ledalab, SearchProb, Hilbert,
SkinTemp, EAR, GSR, PupilDiameter

0.703 (R) 0.867 (R) (0.13)*
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Figure 1.2: Correlations and PCA for time, text, and keyboard modali-
ties.
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Figure 1.3: Correlations and PCA for body posture, eye, and heart
modalities.
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Table 1.3: Pairwise comparisons between the feature selected models
without LMEM/without participant and segment (Table 1.1). * shows sig-
nificance with 𝑝 < 0.05 after Bonferroni-Holm correction. ̃𝑡 is the test
statistics for the modified paired 𝑡-test (Dietterich 1998).

Features ̃𝑡
Time vs. combined −4.06 *
Text vs. combined −6.03 *
Keyboard vs. combined −5.35 *
Body posture vs. combined −6.32 *

Eyes vs. combined −0.98
Heart vs. combined −1.42
Skin vs. combined −1.34

and color shows the strength of the loading; blue continuous lines represent pos-
itive loadings, while red dashed lines indicate negative loadings. For space rea-
sons, we only summarize the most interesting results, which are all statistically
significant.

For the time features, we see that PeTime and LNPeTime correlate very strong-
ly and load on the same PC, but also that both show strong correlations to SubjCL.

For the text features, there expectedly are very strong correlations (−0.9) be-
tween TER and BLEU and betweenHTER andHBLEU, where each pair also loads
on the same PC. Furthermore, strong correlations can be observed between TER
and HTER, as well as between BLEU and HBLEU.

For the keyboard features, we see a very strong correlation between APR and
PWR, however, both load on distinct PCs. PWR correlates more strongly to
SubjCL than APR, indicating that PWR is by itself a better estimator of SubjCL
than APR.

As expected, the most relevant eye features FixAmount, SaccDuracc, and
FixDuracc correlate by almost 1, load on the same PC, and strongly relate to
SubjCL.

For the heart features, the correlations between NN50polaracc , SDNNpolar
acc , and

RMSSDpolar
acc are again very close to 1, and the PCA plot nicely visualizes that they

cluster together. BVPMedAbsDev shows the strongest correlation to SubjCL.
Inspecting the most relevant skin features, we see very strong correlations be-

tween FreqFrameGSR64,Empatica
avg and Ledaavg, as well as medium to strong corre-

lations between the frequency frame and SkinTempGarmin
acc features.
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Figure 1.4: Correlations and PCA for the skin and combined modalities.

Most interestingly, for the combined features we can again see that SDNNpolar
acc

and NN50polaracc , as well as FixAmount and SaccDuracc, correlate with almost a
value of 1. There also seems to be a strong link between the HRV measures and
the eye measures SaccDuracc and FixAmount. The PCA further shows that there
is one PC for the HRV measures, one for the ICA, and another one for the eye
features FixAmount and SaccDuracc.

4.4 Discussion

Overall, very good regression results of up to 0.7 MSE on a 9-point scale were
achieved by our regression models. This amount of error should be acceptable
for most possible applications discussed in Herbig, Pal, van Genabith, et al. 2019.
While the 5 by 2-fold CV results are often slightly worse, which might be be-
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cause less training data was seen, the results of 1 by 10-fold and 5 by 2-fold are
comparable, and the very small standard deviations indicate model robustness.

When comparing the regression results without adding participant and seg-
ment to Herbig, Pal, Vela, et al. (2019), whose approach is almost the same apart
from having fewer sensors and features, we note a few similarities and differ-
ences: first of all, we found consistently better results across all modalities; how-
ever, already the baseline yields better results on our dataset. While the time
features in Herbig, Pal, Vela, et al. (2019) were rather good, they are among the
worst modalities here. A reasonmight be that we consideredmanymore features,
that helped the other modalities improve over the time as a feature. Furthermore,
while in Herbig, Pal, Vela, et al. (2019) the eyes were by far the best among the
three main categories eye, skin, and heart, all three show similar results here.
This could be due to the numerous additional skin and heart features considered
in our analysis. Whereas in both studies the combined approach leads to the best
results, the performance gains when combining multiple modalities were much
stronger in Herbig, Pal, Vela, et al. (2019), probably again because the three main
categories are already very good by themselves.

So when we do not consider the individual participant and the segment they
are post-editing (Table 1.1 or Herbig, Pal, Vela, et al. 2019), we can achieve the best
results only with our main categories, eyes, heart, skin, or by combining features
from several modalities. This is relevant for less controlled and more practical ap-
plications, e.g. adapting the user interface to perceived CL, where it is impossible
to use participant and segment information, as ideally no two translators should
post-edit the same sentence (which would otherwise be contained in TM).

In contrast, when we do consider participant and segment (Table 1.2), modali-
ties of lesser quality, like time, text, keyboard, or body posture can also achieve
good results. So considering who is editing what seems to yield enough informa-
tion to learn fromwhen combinedwith these features, while without considering
participant and segment, the generalization is impeded. However, if the goal is
to conduct a controlled experiment, e.g. to investigate the impact of different sen-
tence features on subjectively felt CL, integrating participant and segment into
the models allows to also achieve valuable estimates with these other modali-
ties. The above experiment therefore also suggests that text quality, keyboard,
and time measures, which are frequently used in the literature to estimate effort,
only work well in controlled settings.

While we cannot compare all our correlation and PCA results to Vieira (2016),
since we considered many more features, there is still some interesting overlap:
The time features in both studies correlated strongly to SubjCL. Furthermore, the
link between the PWR and SubjCL also seems comparable, while that between
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APR and SubjCL appears weaker in our dataset. However, the correlation be-
tween these two keyboard features is similarly strong in both studies. The eye
features FixAmount and FixDur also correlate to a similar extent with SubjCL in
both studies. To summarize, we could both reproduce (except APR vs. SubjCL)
and extend the findings by Vieira (2016), which strengthens our results.

The correlation and PCA especially revealed that many highly redundant fea-
tures were selected by the feature selection approach (e.g. the HRV measures).
The reason for this probably is their strong correlation to SubjCL; however, due
to the redundancy, it is unclear whether incorporating multiple such features re-
ally helps. Therefore, we want to explore if handcrafting a set of features with
fewer redundancies, or using a more sophisticated feature selection approach
than RFECV, could boost the performance further. Since space constraints allowed
us to analyze only very few features in terms of correlations and PCA, we also
plan to investigate the link to the non-selected features, as well as a PCA includ-
ing more features from all different modalities than the few reported here.

4.5 Limitations

The results presented in this study are subject to the following limitations: The
data sample is relatively small, since only 10 subjects participated in our study.
Next, while we performed CV and only report results on segments unseen during
training, we did not completely leave out participants and then predict those
participants’ perceived CL from the data gathered by the other participants. Thus,
to achieve these results in practice one may need to fine-tune and train for new
users. Moreover, one should also note that our eye tracker only samples at 90Hz,
which could affect the peak velocity reconstruction and thereby saccades (Mack
et al. 2017). Last, while our predictive approach yields interesting first insights, it
is only an automatic “top-down” approach that might be improved by selecting
an optimal set of features and tuning the hyper-parameters.

5 Conclusions and future work

In this paper, we have focused on perceived cognitive PE effort and argued for
the need to robustly measure CL during PE. In contrast to most related work, we
investigated whether and how multiple modalities to measure CL can be com-
bined and used for the task of predicting the level of perceived CL during PE of
MT. To the best of our knowledge, our analyzed feature set comprises the most
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diverse set of features from a variety of modalities that has to date been investi-
gated in the translation domain, considering even more factors than Herbig, Pal,
Vela, et al. (2019).

Based on the data gathered from 10 professional translators, we report how
well subjective CL can be predicted depending on the various features: When
the models are unaware of which participant and segment the data belongs to,
eye, skin, and heart features, or a combination of different modalities, performed
best. In contrast, for regression models that can react differently depending on
participant and segment, the less well performing categories time, text, keyboard,
and body posture also achieved good results, probably due to overfitting on the
participant. While this finding is very interesting for controlled experiments, it
is less relevant for practical use, where no two participants should PE the same
segment. Overall, the trained models can estimate CL during PE without inter-
rupting the actual process through manual ratings with comparably low error of
at best 0.7 MSE on a 9-point scale. However, further data analysis is needed to
understand the required steps to achieve such results in practice.

We also report how strongly the different measures correlate and which fea-
tures cluster together, where we reproduce almost all the findings of Vieira (2016)
and extend them further by considering many more features.

In the future, we want to conduct more detailed investigations, e.g. in terms of
a more complex feature selection approach or hand-crafting a subset of features
based on the correlation and PCAfindings, in combinationwith hyper-parameter
tuning, to make better use of the available data than the chosen “top-down” re-
gression approach. Furthermore, we want to use the captured continuous signals
to already predict perceived CL while still editing the segment (i.e. based on a
time window of the data), to allow for more real-time applications.

The long-term goal is to be able to decrease the perceived CL, and thereby
stress and exhaustion, during PE. As discussed in Herbig, Pal, van Genabith, et
al. (2019), this could be achieved by fine-tuningMT systems on the user’s CLmea-
surements to produce less demanding outputs, or by automatically showing al-
ternative translations or other forms of assistance. The measurement techniques
explored within this paper form the basis for future research towards this goal.
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