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Figure 1: Overview of our proposed method to generate motion from complex natural language sentences. Our model learns a
joint embedding for both pose and language, using separate representations for the upper body and the lower body movements.

ABSTRACT

We present a learning-based method for generating animated 3D
pose sequences depicting multiple sequential or superimposed ac-
tions provided in long, compositional sentences. We propose a hier-
archical two-stream sequential model to explore a finer joint-level
mapping between natural language sentences and the correspond-
ing 3D pose sequences of the motions. We learn two manifold
representations of the motion — one each for the upper body and
the lower body movements. We evaluate our proposed model on
the publicly available KIT Motion-Language Dataset containing 3D
pose data with human-annotated sentences. Experimental results
show that our model advances the state-of-the-art on text-based
motion synthesis in objective evaluations by a margin of 50%.

CCS CONCEPTS

« Computing methodologies — Procedural animation; Mo-
tion capture; Natural language processing.
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INTRODUCTION

Motion synthesis based on textual descriptions substantially simpli-
fies the task of manually creating realistic animations. It has a rich
variety of applications, including language-based task planning for
robotics and virtual assistants, designing instructional videos, and
visualizing movie scripts [Hanser et al. 2009]. However, mapping
natural language text descriptions to 3D pose sequences for hu-
man motions is non-trivial. The input sentences, while describing
multiple sequential or simultaneous actions, do not correspond
to the discrete time steps of the pose sequences to be generated.
For example, the input sentence “a person is stretching his arms,
taking them down, walking forwards for four steps and raising
them again” describes multiple sequential actions, or the sentence
“a person s spinning around while walking” describes simultaneous
actions, but they do not provide any information on how the pose
should look at individual time steps. This necessitates a machine-
level understanding of the syntax and the semantics of the text
descriptions to generate the desired motions plausibly. Moreover,
we need to identify how the different modifiers, such as adverbs
and prepositions, impact the output motion. Existing methods for
text-to-motion mapping either generate motions that stay in one
place [Plappert et al. 2016] or generates simple actions on global
trajectories (e.g., walking) [Ahuja and Morency 2019; Lin et al. 2018].
However, these methods fail to translate long-range dependencies
and correlations in complex sentences and do not generalize well
to complex actions involving synchronized limb movements (e.g.,
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Figure 2: Plots showing the APE (left) and AVE (right) in mm
for our method (blue), Lin et al. [Lin et al. 2018] (grey), Ahuja
et al. [Ahuja and Morency 2019] (orange). Lower values are
better. We observe improvements of above 50% on both met-
rics for our method.

dancing). We propose a method to handle complex sentences and
actions by introducing the following:

o A hierarchical joint embedding space, where our model
learns embeddings of pose and language simultaneously. We
separate our intermediate pose embeddings hierarchically to
limb embeddings such that our model learns features from
the different components of the body.

e A two-stream sequential network to separately learn the
upper and the lower body movements and focus on the end
joints of the body (e.g., wrist movements for “playing violin”
or footwork for “waltzing”).

e Contextualized BERT embeddings [Devlin et al. 2018]
with handpicked word feature embeddings to improve text
understanding.

e A pose discriminator with an adversarial loss to further
improve the plausibility of the synthesized motions.

Experimental results show that our method outperforms the current
benchmarks [Ahuja and Morency 2019; Lin et al. 2018] significantly
on both the quantitative error metrics and on qualitative evalua-
tions.

PROPOSED METHOD

We train our model end-to-end with a hierarchical two-stream pose
autoencoder, a sentence encoder, and a pose discriminator. Our pose
encoder uses five separate layers to focus on the five major parts
of the body - left arm, right arm, trunk, left leg, and right leg, and
combines them hierarchically to two latent representations for the
upper and the lower body poses in the manifold space. We use pre-
trained BERT model [Devlin et al. 2018] and LSTM to encode input
sentence into similar latent representations as the pose. Our model
learns a joint embedding between the natural language and the
poses of the upper body and the lower body (Fig. 1). The hierarchical
structure of the linear layers in the decoder unit mirrors that of the
pose encoder. We add a residual connection between the inputs and
the outputs of the individual decoder units such that the decoder
learns the velocity of the poses rather than their 3D positions. The
GRUs and the hierarchical linear layers in the decoder recurrently
output the reconstructed pose for each current frame based on
the residual outputs and the latent representations of the previous
frames. To train our network, we minimize loss terms describing
the error in the pose and the velocity predictions, and the error
between the pose and the language embeddings. We also add a
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A human performs the steps of a waltz dance while it is
holding its hands like it is leading a partner with its hands.

Figure 3: Comparison of consecutive frames of generated an-
imations of our method (top row) with Lin et al. [Lin et al.
2018] (middle row) and JL2P [ Ahuja and Morency 2019] (bot-
tom row) for a given sentence. The Waltz dance is prominent
in our model. By comparison, in both the benchmarks, the
arm movements are missing, and the skeleton tends to slide
rather than step.

pose discriminator with an adversarial loss to further improve the
plausibility of the synthesized motions.

EXPERIMENTS AND RESULTS

We compare our method with the benchmarks of Lin et al. [Lin
et al. 2018] and Joint Language to Pose (JL2P) [Ahuja and Morency
2019]. To quantitatively evaluate the correctness of our motion, we
use the Average Position Error (APE), which measures the average
positional difference for a joint between the generated poses and
the ground-truth pose sequence, and the Average Variance Error
(AVE), which measures the difference of variances of individual
joints of the generated poses compared to the ground truth poses.
Fig. 2 shows more than 50% improvement of our method compared
to JL2P and Lin et al. for the mean APE and AVE calculated for all
local joint positions with and without the global root trajectory. As
an example of the motion quality, Fig. 3 shows that our method
generates a prominent waltz dance with synchronized footwork,
while both the benchmarks fail.
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