TEXT-BASED MOTION SYNTHESIS WITH
A HIERARCHICAL TWO-STREAM RNN

OUR APPROACH

PROBLEM

We introduce a hierarchical joint embedding space to learn embeddings of pose and language sim-
ultaneously. We separate our intermediate pose embeddings hierarchically to limb embeddings
such that our model learns features from the different components of the body. We have a two-
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person walks four steps forward“or |.-.| word feature embeddings to improve text understanding. Lastly, we add a pose discriminator with
multiple superimposed actions e.g., | -'| anadversarial loss to further improve the plausibility of the synthesized motions.
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translate long-range dependencies and
correlations in complex sentences and
do not generalize well to complex actions
involving synchronized limb movements,
e.g. dancing.
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In contrast, we propose an RNN based

hierarchical two-stream model to explore | - Input Sentences
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a finer joint-level mapping between L (50, ey St

language and 3D pose sequences. Our L |
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