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Abstract: In any document, graphical elements like tables, figures, and formulas contain essential
information. The processing and interpretation of such information require specialized algorithms.
Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step
in document analysis pipelines is to detect these graphical components. It leads to a high-level
conceptual understanding of the documents that make the digitization of documents viable. Since
the advent of deep learning, deep learning-based object detection performance has improved many
folds. This work outlines and summarizes the deep learning approaches for detecting graphical page
objects in document images. Therefore, we discuss the most relevant deep learning-based approaches
and state-of-the-art graphical page object detection in document images. This work provides a
comprehensive understanding of the current state-of-the-art and related challenges. Furthermore,
we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the
promising directions that can be utilized for further improvements.

Keywords: deep neural network; document images; review paper; deep learning; performance eval-
uation; page object detection; graphical page objects; document image analysis; page segmentation

1. Introduction

The rapid increase in digitization of document images in both financial and non-
financial sectors has considerably improved the accessibility of the data. To obtain reliable
information from these scanned document images, options like manual capturing of data
have become highly laborious and impractical. Therefore, over the last few decades,
accurate information extraction has been vital research for the document analysis commu-
nity [1–4].

Apart from the text, information in scanned documents is often stored in a graphical
manner, such as tables, formulas, and figures. These are referred to as graphical page
objects in document analysis community [5]. Figure 1 illustrates the problem that involves
the detection of figures, formulas, and tables in document images. It is imperative to detect
the graphical page objects before applying optical character recognition (OCR). One such
scenario is information extraction from document images. Figure 2 illustrates the necessity
of applying graphical page object detection systems for information extraction in document
images. It is evident that even the state-of-the-art OCR method [6] fails to extract precise
information from figures, tables, and formulas. Another application of such page object
detection methods is document retrieval systems [7,8], where a document image having a
specific type of page object is required. Therefore, it is essential to develop approaches that
can parse the information from these page objects.
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Figure 1. Demonstration of the problem of graphical page object detection in document images. First Row: figure detection
in document images. Second Row: detection of single and multiple formulas in document images. Third Row: localization
of tabular areas in document images. The samples are taken from the dataset of ICDAR-17 POD [9].

With the recent surge of deep learning-based object detection algorithms in computer
vision [10–12], a considerable amount of methods are developed that have formulated the
problem of detecting graphical page objects in document images as an object detection
problem. Furthermore, several datasets consisting of thousands of annotated scanned
document images are also published. Although the approaches leveraging these datasets
have significantly improved state-of-the-art, a consolidated comparison among these
approaches is missing.

In this survey paper, we have presented a thorough analysis of the recent state-of-the-
art approaches that have approached the problem of graphical page object detection in
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scanned document images by employing deep neural networks. Since page objects can be
of several types [13], we have covered the three most important page objects in document
images [9]. These graphical page objects are referred to as table, formulas, and figures.
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Figure 2. An illustration of information extraction through the conventional OCR method. On the left
side of the figure, there is a document image containing multiple graphical page objects taken from
the ICDAR-17 POD dataset [5], whereas the extracted information is present on the right side. We
have applied an open-source Tesseract OCR [6] to extract the information. Since the OCR correctly
recognized the textual content, we only demonstrate the extracted information from graphical page
objects for brevity. The incorrectly extracted content depicts that graphical page object detection is an
essential preliminary step before information extraction.

This paper investigates how deep neural network-based approaches work on detecting
these types of page objects. Therefore, we have covered the most relevant approaches that
have produced state-of-the-art results in this domain. Some of the discussed approaches
work only on a single page object, and some have covered all three of them. However,
our primary focus is to provide a perspective about the outcome of deep learning-based
approaches on graphical page object detection in document images. To summarize, our
contributions are as follows:

1. We present the comparisons between recently introduced algorithms for improving
page object detection by highlighting their advantages and limitations.

2. We present a brief overview of the publicly available challenging datasets for graphical
page object detection.

3. We provide an evaluative comparison among the state-of-the-art graphical page object
detection systems.

Figure 3 illustrates the complete flow of this survey paper, whereas the remainder of
the paper is organized as follows: Section 2 presents a brief overview of the prior works that
have exploited traditional approaches to detect graphical page objects. Section 3 explains
all the approaches contributing to graphical page objects by leveraging deep learning
methods. Section 4 highlights all the publicly available datasets that can be employed to
tackle the mentioned problem. Section 5 explains the mostly employed evaluation metrics
and analyzes performances of all the discussed approaches in Section 3. Section 6 concludes
the paper with a discussion on the current challenges and highlights the future directions.
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Figure 3. The block diagram illustrating the complete flow of the survey paper.

2. Traditional Approaches

The problem of graphical page object detection in documents is a well-recognized
problem. Several approaches that employed traditional methods are introduced in this
domain. Figure 4 illustrates the fundamental differences between the traditional approaches
and the deep learning-based approaches. The traditional approaches leverage image
processing techniques such as binarization and connected component analysis. Contrarily,
deep learning-based methods utilize backbone CNN to generate the spatial feature maps
from the document images.

Input Document 
Image

Preprocessing 
techniques

Predicted Page
Objects

Feature 
Extractors

Feature 
Selection Classi�er

HMM, SVM,..

Input Document 
Image

Preprocessing 
techniques

Preprocessing 
techniques

Predicted Page
Objects

Feature Extraction 
Network

Grouping and 
Region Selection 

Network

Backbone 
Network

Deep Learning Approaches

Traditional Approaches

Figure 4. Visual depiction of the basic differences between the traditional methods and the deep
learning-based techniques. Traditional approaches rely heavily on image processing methods and
custom heuristics whereas deep learning techniques leverage convolutional neural networks-based
architectures. In deep learning approaches, spatial features from the document images are extracted
from backbone networks such as VGG-16 [14] or ResNet [15]. These features are further propagated
to region detection or segmentation networks to classify and localize page objects.

In order to implement table detection, the prior techniques [16–18] have defined a
certain underlying structure for tables in a document. Tupaj et al. [19] employed Optical
Character Recognition (OCR) to extract tabular information. The method tried to recognize
possible table areas by analyzing the keywords and white spaces. The main disadvantage
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of this approach is that it is fully based on the presumptions regarding the tables’ structure
and the collection of the used keywords.

Wang et al. [20] proposed another approach in the field of table analysis. It utilizes
distance between consecutive words to detect table lines. Subsequently, adjacent vertical
lines are grouped with consecutive horizontal words to propose table entity candidates.
However, the underlying assumption is that there can be a maximum of two columns in
a table. Hence, three types of layouts (single, double, and mixed columns) are designed
in this approach. The drawback of this method is that it is only applicable to a limited
number of designed temples.

Kieninger et al. [21–23] introduced a system called T-Recs to extract tabular informa-
tion from documents. Their method takes the word bounding boxes which are segregated
to build a segmentation graph in a bottom-up manner. Their system is vulnerable to tables
containing multi rows and columns.

A method for detecting tables by calculating the intersection area between the vertical
and horizontal lines was suggested by Gatos et al. [24]. The recreation of tables is then
done by denoting corresponding vertical and horizontal lines related to intersection pairs.
This approach presumes that a table should have ruling lines. A method for table detection
by using Hidden Markov Models (HMMs) was suggested by Costa e Silva et al. [25]. The
method fetches text from PDF files by applying the pdftotext Linux utility. Then feature
vectors are computed based upon the gaps present between the text. This approach can
only be employed for non-raster PDF files that do not contain noisy data.

A method for table detection under the assumption that tables in documents can
contain only singular columns is proposed by Hu et al. [26]. Another technique for table
detection in heterogeneous documents was proposed by Shafait et al. [18]. This mecha-
nism is built into an open-source Tesseract OCR engine [6]. Although these traditional
approaches were effective on the documents with restricted layout variations, either they
rely on the meta-data or highly depends on the post-processing methods involving custom
heuristics. Furthermore, they fail to produce similar results on generic datasets. Therefore,
it is essential to exploit recently proposed deep learning techniques to tackle the problem
of graphical page object detection in document images.

3. Methodologies

Graphical objects like tables, figures, and formulas are an integral part of documents
because they hold a significant amount of information in a confined space. As explained in
Section 1, detecting the graphical object means localizing these objects within a document
image. Conceptually this problem is identical to localizing the objects in natural scene
images. Recently, deep learning algorithms have also attracted the interest of researchers
in the document image analysis community.

This section will discuss the methodologies that have utilized the capabilities of deep
neural networks to solve the problem of graphical page object detection in document
images. By following the convention of [5], we have covered approaches that have worked
on the detection of the following graphical page objects in document images: (1) Tables,
(2) Figures, and (3) Formulas.

For the convenience of our readers, we have classified the methodologies according to
the employed deep learning concepts. We discuss the organizational flow of the method-
ologies in Figure 5. Table 1 summarizes the presented approaches and highlights their
advantages and limitations.
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Table 1. A Summary of different graphical page object detection methods that have employed deep neural networks.

Literature Method Advantages Disadvantages

De-CNT [27]
Deformable convolutions,
implemented in the Faster
R-CNN [11] architecture.

The dynamic receptive field of
deformable CNN helps
recognize tabular broundaries
having arbitrary layouts.

Deformable CNN
requires more
computation as compared
to conventional CNN.

Fi-Fo Detector [28]

Color transform, connected
component analysis, distance
transform applied on images
that are fed to deformable
pyramid network.

(a) Transformed images yield
better results as compared to
raw input images. (b) The
approach leverages the
deformable FPN model in their
object detection network.

The approach depends on
the extra pre-processing
steps.

DeepDeSRT [29] Faster R-CNN [11] with
transfer learning.

Straightforward and effective
approach to detect tables.

Does not perform as
accurate as other
state-of-the-art methods.

Vo et al. [30] Ensembling of Fast R-CNN
[31] and Faster R-CNN [11].

Leveraging the power of both
selective search and region pro-
posal network to generate reli-
able region of interests.

Computationally
expensive because of
combination of two
separate object detection
networks.

GOD [32] Faster R-CNN [11] and Mask
R-CNN [10].

Simple end-to-end approach to
detect multiple page objects.

The network often
mis-classifies the
similar-looking page
objects belonging to
different classes.

Gilani et al. [33] Transformed images are passed
through Faster R-CNN [11].

The distance transform method
helps the object detection
network to focus on desired
page object.

Requires extra
pre-processing method.

CDeC-Net [34] Cascaded Mask R-CNN [12].

(a) Multi-scale feature pyramid
network. (b) Deformable
Convolution improves the
performance.

The method requires high
computational resources
due to composite
backbone and deformable
convolutions.

Kavasidis et al. [35] Semantic image segmentation
with saliency detection.

(a) Table detection formulated as
a task of saliency detection. (b)
Dilated convolutions instead of
traditional convolution improve
efficiency.

The approach depends on
multiple pre-processing
steps to achieve good
results.

Yi et al. [36] Dynamic programming based
technique.

Replacing non maximal
suppression with dynamic
programming algorithm
improves the refining process
for region of interests.

Extra post-processing
over head.
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Siddiqui et al. [19]
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Vo et al. [20]

Gilani et al. [15]

Younas et al. [23]

Kavasidis et al. [16]

Figure 5. Categorization of discussed methodologies in the paper. The problem of page object
detection is tackled through employing various deep learning concepts. The explained approaches
are divided conceptually.

3.1. Faster R-CNN

Recently, it has been the case that the improvement of object detection algorithms
in the field of computer vision has a direct relation with the improvement of graphical
page object detection in document images. Faster R-CNN [11] which is the improved
version of Fast R-CNN [31] is a two-stage object detection network. Figure 6 illustrates
the architecture of Faster R-CNN. In order to obtain a detailed explanation about the
architecture, readers may refer to [11]. This section covers the approaches that detect the
graphical page objects by exploiting the capabilities of Faster R-CNN [11].

Figure 6. Explained architecture of Faster R-CNN. Image is obtained from [11].

An image-based deep learning table detection approach was suggested by Schreiber
et al. [29] where they implemented Faster R-CNN for detection of tables in document
images. The paper presents that the recently introduced object detectors dependent on Con-
volutional Neural Networks (CNN) can detect tables in document images. By leveraging
back-bones like ZFNet [37] and VGG-16 [14], the authors have achieved promising results
on ICDAR-13 dataset [38]. Their approach has also utilized the transfer learning technique
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by using the pre-trained model on the Pascal-VOC dataset [39]. They also attempt table
structure recognition along with table detection.

Vo et al. [30] published a method for page object detection, which involves detecting
figures, formulas, and tables. Their technique makes use of an ensemble technique of
Fast R-CNN [31], and Faster R-CNN [11]. They combined the region proposals obtained
from Fast R-CNN and Faster R-CNN and then apply bounding box regression to boost
performance. They have used the ICDAR-17 POD [5] dataset to benchmark their approach.

The blend of traditional methods and deep learning networks is presented by Younas
et al. [40] to solve the problem of formula and figure detection in document images. The
authors propose that instead of giving raw input images to object detection algorithms,
transformed image representations yield better results. Connected component analysis
(CC), distance transform, and color transform on the raw input images are performed and
are subsequently processed using the Faster R-CNN model.

Gilani et al. [33] have utilized a similar technique. They have used the image transfor-
mation method in which a Euclidean distance transform [41], linear distance transform [42],
and max distance transform [43] are applied on blue, green, and red channels of the input
image, respectively. This transformed image is further propagated to Faster R-CNN to
identify and regress the tabular boundaries in document images.

Another approach in which performance of two state-of-the-art object detection net-
works: Faster R-CNN [11] and Mask R-CNN [10] is compared on graphical page objects [32].
The article presents exhaustive evaluations on the detection of tables, formulas, and figures
in document images. The paper’s conclusion states that Mask R-CNN [10] is better suited
to solve the problem of page object detection because of having extra components in the
loss function.

3.2. Mask R-CNN

Mask R-CNN [10] is the extended model of Faster R-CNN [11] with an addition of
an extra loss known as segmentation loss. Figure 7 depicts the basic architecture of Mask
R-CNN. However, the comprehensive detail about the network can be found at [10]. The
graphical page objects present in the document images have very low inter-class variance.
An object originally labeled as a table can easily be misinterpreted with a figure or formula.
By leveraging the segmentation loss of Mask R-CNN, researchers in the document image
analysis community have improved the performance of graphical page object detection
systems. This section covers those methodologies.

Figure 7. Explained architecture of Mask R-CNN. Image is obtained from [10].

Saha et al. [32] published the method for page object detection in document images
through employing Mask R-CNN. Their end-to-end deep learning-based system, called
Graphical Object Detection (GOD), detects the tables, figures, and formulas directly from
the raw input images. The authors propose that there is no need to add extra pre or
post-processing steps to solve page object detection. By leveraging the power of transfer
learning, the authors have done bench-marking on the well-known datasets of ICDAR-17
POD [5], UNLV [44], and ICDAR-13 [38].
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A recent end-to-end table detection network called CDeC-Net is introduced by Agar-
wal et al. [34]. The system CDeC-Net leverages the novel object detection network Cascade
Mask R-CNN based on Cascade R-CNN [12]. The presented article has shown a notice-
able improvement in the performance of table detection system across several datasets
such as ICDAR-17 POD [5], ICDAR-13 [38], ICDAR-2019, Marmot [45], TableBank [46],
PubLayNet [9], and UNLV [44]. After extensive evaluations, the authors have concluded
that the network Cascade Mask R-CNN is superior to the previous state-of-the-art table
detection systems.

3.3. Deformable Convolutions

Deformable convolutions differentiate the conventional convolutions by providing
the leverage of deformable modules. The deformable module learns the sampling matrix
with the location offsets. The offsets are learned according to the previous feature maps
through additional convolution layers. This process makes the receptive field dynamic
and enables the convolutional filters to adapt to different scales. While Figure 8 depicts
the basic intuition behind the deformable convolutional networks, thorough information
about the architecture is explained in [47]. Most of the mentioned methodologies have
employed conventional convolutions in their object detection frameworks to solve page
object detection in document images. Recently, instead of conventional convolutions,
deformable convolutions [47] are investigated to detect tables, figures, and formulas. This
section highlights those approaches.

Figure 8. Architecture of 3 × 3 Deformable Convolution. Image is obtained from [47].

Siddiqui et al. [27] proposed an approach to detect tables that leverages deformable
convolutions in their object detection framework. The authors argue that deformable
convolutions are better suited for the problem of table detection. Because of their dynamic
receptive field, tabular areas belonging to various scales and aspect ratios can be localized
conveniently. The authors employed Faster R-CNN [11] by replacing a conventional Feature
Pyramid Network (FPN) with a deformable FPN module. After extensive evaluations, the
authors proved that deformable Faster R-CNN had outsmarted the conventional Faster
R-CNN for the problem of table detection in document images.

Younas et al. [28] exploited a similar approach by employing a deformable FPN
module to detect formulas and figures in document images. Instead of providing raw
input images to their deformable Faster R-CNN model, the authors have proposed an
image transformation method identical to [40]. With the combination of transformed image
representation and deformable object detection architecture, the authors have produced
state-of-the-art results for the figure and formula detection on the famous ICDAR-17 POD
dataset [5]. Along with the novel approach, the writers have also corrected the ICDAR-17
POD dataset [5] and have made it publicly at available https://bit.ly/2AUSlzI (accessed
on 25 April 2021).

https://bit.ly/2AUSlzI
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3.4. Dynamic Programming Based Approach

Yi et al. [36] introduced a deep learning-based graphical page object detection ap-
proach similar to the object detection algorithms. In the presented approach, a convolu-
tional neural network designed specifically for page object detection proposed candidate
regions that are refined through a dynamic programming approach instead of the well-
known non-maximum suppression method [48]. Tables, figures, formulas, and text lines
are localized in document images by their system. The authors argue that page objects have
a high variance in their aspect ratios, unlike objects in natural scenic images. Therefore,
non-maximum suppression is not well-suited to detect all the page objects in a document
image. The presented work compares the performance of their system with the conven-
tional object detection approach of Fast R-CNN [31] and Faster R-CNN [11], and concludes
that the dynamic programming-based approach has outperformed the rest of the methods.

3.5. Fully Convolutional Neural Networks

Along with object detection algorithms, Fully Convolutional Neural Networks (FC-
NNs) [49] have been exploited to solve graphical page object detection in document images.
The basic intuition behind FCNNs is assigning the label for each pixel present in an image.
Figure 9 depicts the architecture of FCNNs and for further explanation, we refer our readers
to [49]. Kavasidis et al. [35] posed the problem of tables and chart detection as a saliency
detection problem. The authors propose that each class of page object can be referred to as
a separate saliency category. To segment those categories (tables and charts), the system
employs FCNNs where each pixel will be classified into tables, charts, or a background in
a document image. The obtained saliency map is further propagated to the fully connected
Conditional Random Field (CRF) [49], which smooths the system’s output.

Figure 9. Explained architecture of Fully Convolutional Neural Network. Image is obtained
from [50].

4. Datasets

Deep neural networks consist of a huge number of parameters. To achieve conver-
gence, datasets with a massive amount of images are required to train these networks
optimally [27,29]. Recently, the document image analysis community published several
public datasets. Some of these datasets have provided annotations for various graphical
page objects. This section will mainly cover the recently published datasets that contain
information about the boundaries of tables, formulas, and figures. Figure 10 depicts few
samples of these datasets.
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Figure 10. Sample document images taken from the various datasets of DocBank [13], ICDAR-13 [38],
IIT-AR-13K [51], and PubLayNet [9]. Part (a,b) represent the highlighted graphical page objects in a
document image.

Moreover, we discuss few datasets that only contain annotations for one of the three
mentioned page objects, such as tables. Figure 11 depicts a couple of samples belonging to
these datasets. Table 2 presents the summary of all the datasets covered in this section.

Figure 11. Sample document images taken from the various datasets of ICDAR-17 POD [5], ICDAR-
19 [52], TableBank [46], and UNLV [44]. Part (a,b) represent the highlighted graphical page objects in
a document image. It is important to mention that most of the datasets illustrated in this figure have
annotations for the tabular boundaries only.
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Table 2. Graphical page object datasets. It is important to mention that we have considered equation and formula as
semantically equal in this table. Some of these datasets contain as many as 12 page objects [13]. For the sake of convenience,
we have only included table, figure, and formula.

Dataset Table Figure Formula # Samples Year Location

PubLayNet [9] 3 3 7 360 K 2019 https://developer.ibm.com/exchanges/ (accessed on 25 April 2021)

DocBank [13] 3 3 3 500 K 2020 https://doc-analysis.github.io/docbank-page (accessed on
25 April 2021)

ICDAR-17 POD [5] 3 3 3 2.4 K 2017 https://www.icst.pku.edu.cn/cpdp (accessed on 25 April 2021)

IIIT-AR-13k [51] 3 3 7 13 K 2020 http://cvit.iiit.ac.in/usodi/iiitar13k.php (accessed on 25 April 2021)

DeepFigures [53] 3 3 7 5.5 K 2018 https://s3-us-west-2.amazonaws.com/ai2-s2-research-public
(accessed on 25 April 2021)

ICDAR-13 [38] 3 7 7 238 2013 http://www.tamirhassan.com/html/ (accessed on 25 April 2021)

UNLV [44] 3 7 7 427 2010 http://www.iapr-tc11.org/mediawiki/index.php? (accessed on
25 April 2021)

ICDAR-2019 [52] 3 7 7 3.6 K 2019 https://zenodo.org/record/2649217 (accessed on 25 April 2021)

Marmot [45] 3 7 3 958 2012 https://www.icst.pku.edu.cn/cpdp/sjzy (accessed on 25 April 2021)

TableBank [45] 3 7 7 417 K 2020 https://doc-analysis.github.io/tablebank-page (accessed on
25 April 2021)

4.1. ICDAR-17 POD

ICDAR-17 Page Object Detection (POD) [5] is a publicly available dataset introduced
in the page object detection competition at ICDAR 2017. This dataset is one of the most
widely used datasets to evaluate graphical page object detection systems. The dataset
comprises a page consisting of various layouts such as single-column, double-columns,
and multi-columns. This dataset has an annotation for tables, formulas, figures present in
document images. The page objects contain headings, textual, page title, content, captions,
etc. This dataset contains 2417 English document images in total, extracted from 1500
scientific papers of CiteSeer. This dataset is split into training and test set, having 1600 and
817 document images, respectively. Contents are as follows: Training set contains 1978
figures, 698 tables, and 3515 formulas, while Test set contains 961 figures, 371 tables, and
1192 formulas.

4.2. PubLayNet

In 2019, Zhong et al. [9] published a huge dataset for document layout analysis known
as PubLayNet. This dataset is generated by automatically annotating the document layout
of over 1 million PubMed CentralTM PDF articles. The dataset contains various document
layout categories, including text, title, list, table, and figures. Having more than 360 thou-
sand annotated document images, this huge dataset facilitates the researchers to develop
and evaluate advanced deep learning-based models for document page object detection.

4.3. DocBank

Another dataset to solve document layout analysis is released by Li et al. [13]. The
dataset is known as DocBank, which is the extended version of the TableBank dataset [46].
DocBank is a novel large-scale dataset, and it is constructed by employing weak supervi-
sion from the LaTeX documents available on arXiv.com. The proposed dataset comprises
500 thousand document pages with 12 different kinds of semantic blocks such as tables, fig-
ures, equations, figures, lists, paragraphs, etc. The authors also define the training/val/test
splits in which 400 thousand samples are used for the training purpose, whereas 50 thou-
sand samples are allocated for validation and testing purposes. This large-scale rich dataset
extends the opportunities to investigate the blend of deep neural networks employed in
computer vision with the methods mainly used in document analysis.

https://developer.ibm.com/exchanges/data/all/publaynet
https://doc-analysis.github.io/docbank-page
https://www.icst.pku.edu.cn/cpdp
http://cvit.iiit.ac.in/usodi/iiitar13k.php
https://s3-us-west-2.amazonaws.com/ai2-s2-research-public
http://www.tamirhassan.com/html/dataset.html
http://www.iapr-tc11.org/mediawiki/index.php?title=Table_Ground_Truth_for_the_UW3_and_UNLV_datasets
https://zenodo.org/record/2649217
https://www.icst.pku.edu.cn/cpdp/sjzy
https://doc-analysis.github.io/tablebank-page
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4.4. Marmot

Marmot is widely utilized by scientists in the area of understanding the tables and
formulas. This dataset has been published by the Institute of Computer Science and
Technology (Peking University) and described in the paper proposed by Fang et al. [45].
This dataset consists of 2000 document images. These images are comprised of conference
papers of both English and Chinese languages from 1970 to 2011. There is roughly a 1:1
ratio for both positive and negative images in the dataset. Due to the complex page layouts,
this dataset is highly applicable for evaluating table detection systems. There were few
instances of incorrect annotations in the dataset, which is corrected by Schreiber et al. [29].
The size of the dataset reduces to 1967 document images after the correction.

4.5. TableBank

During early 2019, in the community dedicated to table detection, Minghao et al. [46]
recognize the requirement for enormous datasets and established TableBank. TableBank is
a dataset consisting of 417 thousand labeled images utilizing tabular data. The dataset has
been accumulated by gathering the information over the documents which are present in
.docx format. The dataset also contains another form of information, that is, Latex docu-
ments which were accumulated from the arXiv 5 database. The publishers of this dataset
suggest the usage of this dataset for both structural recognition and table detection tasks.
The authors of this dataset claim that this large-scale dataset will enable the researchers to
exploit the capacity of deep neural networks.

4.6. IIIT-AR-13k

Mondal et al. [51] have proposed a novel IIIT-AR-13k dataset. The dataset mainly
consists of business-type documents. There are in total 13 thousand pages containing
graphical elements like tables, signatures, figures, and so on. The bounding boxes are
marked in a non-automated manner to construct the dataset. The authors generated this
dataset manually, and it is one of the biggest datasets in the domain of graphical page
object detection.

4.7. DeepFigures

Based on our knowledge, DeepFigures [53] is one of the most extensive free-to-use
datasets to utilize for the task of graphical page object detection. It comprises more than
1.4 million documents along with the information of boundaries of tables and figures. The
authors leverage the scientific articles found online on the databases like PubMed and
arXiv to create the dataset. This large-scale dataset provides an opportunity to investigate
the performance of table and figure detection systems in document images.

4.8. ICDAR-13

ICDAR-13 [38] is widely utilized for the problem of table detection and table structure
extraction. The dataset consists of PDF files. These PDF files are converted into images. The
dataset is composed of graphs, structured tables, text as information, and charts. However,
It only provides annotations for structure data for table recognition and table detection.
This dataset has 67 PDFs with 150 tables in which 27 PDFs are from the EU, and 40 PDFs
are from the US Government. In total, this dataset has 238 images, from which 128 images
contain table information. This dataset is often used for reporting and comparing.

4.9. UNLV

For document image analysis, UNLV [44] is a very well-known dataset in this field.
This dataset is composed of various documents like business letters, magazines, reports,
newspapers, etc. Even though this document has almost 10,000 images, only 427 images
possess a tabular region. Often, the research community uses the images that contain the
tabular regions to manage numerous experiments.
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4.10. ICDAR-2019

In 2019, Competition on Table Detection and Recognition(cTDaR) [52] is executed in
ICDAR. The competition proposes two new datasets: historical and modern datasets. The
historical datasets encompass train schedules, simple tabular prints from old books, images
from hand-written accounting ledgers, and so on. In contrast, modern datasets encompass
samples from forms, financial documents, and scientific papers. This dataset has become a
benchmark dataset to assess the performance of state-of-the-art systems for table analysis.

5. Evaluation

This section covers the well-known evaluation metrics that have been employed by
the deep learning-based approaches to assess their performance and compares the results
among various state-of-the-art approaches. Moreover, we will present the comprehensive
evaluative comparison between the methodologies that are explained in Section 3.

5.1. Precision

The metric precision is defined as the ratio between the correctly predicted positives
samples to the total positive samples. Figure 12 depicts the definition of precision for the
problem of graphical page objects in document images. Mathematically, it is described as:

Precision =
correct prediction
total predictions

=
TP

TP + FP
(1)

where TP denotes the True Positives and FP represents False Positives.

Figure 12. An instance of a precise and imprecise table detection. Green color represents the ground-
truth tabular area whereas red color denotes the predicted tabular boundary.

5.2. Recall

The metrics recall evaluates the performance of the system by calculating the number
of corrected predictions in the actual test set. It is calculated as follows:

Recall =
correct predictions

Total correct annotations in ground-truth
=

TP
TP + FN

(2)

where TP denotes the True Positives and FN represents False Negatives.

5.3. F-Measure

The harmonic mean of precision and recall is known as F-Measure. The formula for
finding an F1 score is given by:

F-Meausre =
2 × Precision × Recall

Precision + Recall
(3)
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5.4. Intersection Over Union

Intersection Over Union (IOU) is a well-known evaluation metric commonly used in
evaluating the capabilities of object detection algorithms. Since object detection techniques
have been widely exploited to solve graphical page object detection, we have decided to
discuss this metric in our paper. IOU calculates how much the area of the predicted bound-
ing box intersects with the area of the actual ground-truth. For the sake of convenience,
an example of computing IOU is illustrated in Figure 13. Mathematically, it is explained
as follows:

IOU =
Area of Overlap region
Area of Union region

(4)

Figure 13. Visual illustration of IOU in object detection methods. The bounding box with blue
color represents the ground-truth whereas the bounding box with red color denotes the predicted
bounding box. Considering the IOU threshold set to 0.5, only the first two predictions from the left
will be considered true positives whereas the rest of them will be treated as false positives.

The problem of graphical page object detection is to localize the boundaries of for-
mulas, figures, and tables. For the sake of visual convenience, we have divided the
performance evaluation between the explained methodologies into three separate tables.
The quantitative analysis for detection of tables, figures and formulas are summarized in
Tables 3–5 respectively. Various approaches have evaluated their methods on distinctive
IOU thresholds.

Table 3. Table detection performance evaluation across various datasets. The double horizontal line divides the em-
ployed datasets.

Literature Year Dataset IOU Precision Recall F-Measure Method

Saha et al. [32] 2019 ICDAR-17 POD 0.6 - - 0.971 Mask R-CNN

Siddiqui et al. [27] 2018 ICDAR-17 POD 0.6 0.965 0.971 0.968 Deformable Faster R-CNN

Agarwal et al. [34] 2020 ICDAR-13 0.5 1 1 1 CDEC-Net

Saha et al. [32] 2019 ICDAR-13 0.5 0.982 1 0.991 Mask R-CNN

Kavasidis et al. [35] 2018 ICDAR-13 0.5 0.981 0.981 0.981 Fully Convolutional Network

Siddiqui et al. [27] 2018 ICDAR-13 0.5 0.996 0.996 0.996 Deformable FPN

Schreiber et al. [29] 2017 ICDAR-13 0.5 0.974 0.962 0.968 Faster R-CNN

Agarwal et al. [34] 2020 UNLV 0.5 0.960 0.770 0.865 CDeC-Net

Saha et al. [32] 2019 UNLV 0.5 0.946 0.910 0.928 Mask R-CNN

Siddiqui et al. [27] 2018 UNLV 0.5 0.786 0.749 0.767 Deformable FPN

Gilani et al. [33] 2017 UNLV 0.5 0.823 0.907 0.863 Faster R-CNN

Agarwal et al. [34] 2020 ICDAR-2019 0.5 0.987 0.946 0.966 CDeC-Net
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Table 4. Figure detection performance comparison.

Literature Year Dataset IOU Precision Recall F-Measure Method

Younas et al. [28] 2020 ICDAR-17 POD 0.6 0.931 0.913 0.922 Fi-Fo with Deformable Convoltuions

Saha et al. [32] 2019 ICDAR-17 POD 0.6 - - 0.918 Mask R-CNN

Table 5. Formula detection performance comparison.

Literature Year Dataset IOU Precision Recall F-Measure Method

Younas et al. [28] 2020 ICDAR-17 POD 0.6 0.957 0.952 0.954 Fi-Fo with Deformable Convoltuions

Saha et al. [32] 2019 ICDAR-17 POD 0.6 - - 0.924 Mask R-CNN

5.5. Evaluation for Table Detection

It can be observed by looking at Table 3, the instance segmentation-based architectures
like Cascade Mask R-CNN has outperformed the rest of the approaches with a slight
margin. It shows that the multi-scale classification module that has improved the generic
object detection [54], has also advanced the table detection systems in document images.

5.6. Evaluation for Figure Detection

Table 4 compares the performance between the two recently proposed deep learning-
based approaches for figure detection in document images. It is evident that the approach
with deformable convolutions has outranked the instance segmentation-based approach.
This is because of the dynamic receptive field that takes care of the figures having various
scales and aspect ratios in the document images. The results also entail that instead of
providing raw images to the deep neural network, transforming images through traditional
document image analysis methods can yield better results.

5.7. Evaluations for Formula Detection

The performance assessment between the two novel approaches is explained in Table 5.
Analogous to the figure detection, the approach with the blend of image transformations
and deformable convolutions has out-smarted the other method for formula detection.

While evaluating page object detection systems, it is essential to mention that still
there is a room for improvement to come up with deep neural networks that can localize
and classify all the page objects present in a document image. So far, we have seen that
particular methods or modules are utilized to detect various page objects.

6. Discussion and Conclusions

The process of extracting precise information from graphical page objects is a crucial
and challenging problem in document image analysis and has received noticeable attention.
The state-of-the-art page object detection systems have been remarkably improved due
to recent advances in deep learning. This survey paper has provided a comprehensive
overview of approaches that perform end-to-end graphical element detection in document
images. Furthermore, this paper presents a structural taxonomy for the approaches ac-
cording to the utilized deep learning method in Section 3. It compares these methods
by highlighting their advantages and disadvantages in Table 1. Moreover, we explain
the recently employed datasets in Section 4 and summarize their essential statistics in
Table 2. Furthermore, we talk about the currently used evaluation criteria and analyze the
performance of current deep learning based-graphical page object detection systems in
Section 5. We conclude this survey paper with a discussion on the current difficulties and
challenges in Section 6.1, and finally recommended some future directions in Section 6.2.
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6.1. Difficulties and Challenges

After reviewing several methods in the field of graphical page object detection, we
have noticed some key issues that deserve to be addressed. These are as follows:

• First and foremost is that the current state-of-the-art performs better when the network
is trained for a single type of graphical object, i.e., only for table or only for formula.
The performance of a graphical page object degrades when it is trained to detect
multiple graphical page objects in document images [5,32].

• The second critical challenge is low inter-class (between different classes) and high
intra-class (within the same class) variation. Due to low inter-class variance, tables
without ruling lines can easily be misclassified with algorithms or mathematical
formulas and vice-cersa [27,55]. Similarly, a figure can be falsely predicted as a table
and vice-versa on account of low intra-class variance.

• The datasets differ significantly from each other. At present, several datasets only
focus on a single graphical page object [38,46,52]. Therefore, there is a growing need
for large-scale datasets that provide annotations for multiple page objects like figures,
formulas, and tables [5,13].

• The recent two-stage object detection networks are generally gigantic in size [56,57].
It is not easy to process the images at their original resolution with limited compu-
tational resources. Therefore, some important features are compromised during the
downsampling process in the case of detecting smaller graphical page objects such as
embedded formulas [58].

• Most of the current state-of-the-art methods rely on some post-processing to obtain re-
liable results [28]. Therefore, more generic deep learning-based solutions are required
that can detect distinctive graphical page objects in a diverse environment.

Because of the challenges mentioned above, we can conclude that standardization is
required with diversity to tune the methods towards generic graphical object detection in
document images. Moreover, the development of methods tailored only for graphical page
object detection in document images can significantly improve the performance. This work
is one effort to unify the performance of the deep neural network architectures for most
renowned datasets.

6.2. Future Work

There are many possibilities to explore in order to improve the performance of graphi-
cal page object detection in document images. In general, recently proposed novel neural
network architectures for object detection [56,59–61] can improve performance of graph-
ical page object detection systems. The second promising direction is the multimodal
processing of the graphical objects. In the case of graphical page object detection, multi-
modal processing, in the simplest form, is the processing of image information and text
information together [62,63]. An example of such a case is when a figure is categorized
as a table and vice versa; the text information can be beneficial. The table is the most
complicated graphical page object among all the graphical page objects [48]. To improve
the performance further, another promising path to explore is the localization of individual
columns and rows of the specified tables. Furthermore, identifying headers of the table
can significantly help to understand the table’s inner structure. Furthermore, the following
directions can be explored in the future:

• Weak/Unsupervised learning: At present, all the reliable graphical page object detec-
tion systems depend on large-scale labeled datasets. The processing of annotating the
document images with graphical page objects is laborious and inefficient. Hence, there
is a dire need to build weak/unsupervised graphical page object detection systems
that produce impressive results after training limited samples.

• Light weight systems: Modern state-of-the-art graphical page object detection meth-
ods are not efficient at all. However, there is a growing need to build intelligent
information extraction systems that can work effortlessly on mobile devices [64,65].
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• Domain adaptation: There is still a significant gap in developing clever page object
detection methods that can adapt to different domains. An example of such a scenario
is building a system that works equally well on the historical and modern document
images.

• Neural architecture search: Deep learning enables us to eliminate custom features
engineering, which demands domain knowledge. However, the current employed
deep neural network also requires setting precise hyperparameters. Another exciting
direction could be leveraging neural architectural search to automate the design of
a number of layers and anchor settings as accomplished in the field of computer
vision [66–69].
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