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Evaluating White Matter Lesion 
Segmentations with Refined 
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Tal Arbel5, Oskar Maier6, Heinz Handels6, Mohsen Ghafoorian7, Bram Platel8, 
Ariel Birenbaum9, Hayit Greenspan10, Dzung L. Pham3, Ciprian M. Crainiceanu4, 
Peter A. Calabresi   11, Jerry L. Prince1,2, William R. Gray Roncal2, Russell T. Shinohara12,13 & 
Ipek Oguz14

The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation 
algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. 
However, it offers diminishing insight when the number of objects is unknown, such as in white matter 
lesion segmentation of multiple sclerosis (MS) patients. We present a refinement for finer grained 
parsing of SDI results in situations where the number of objects is unknown. We explore these ideas 
with two case studies showing what can be learned from our two presented studies. Our first study 
explores an inter-rater comparison, showing that smaller lesions cannot be reliably identified. In our 
second case study, we demonstrate fusing multiple MS lesion segmentation algorithms based on 
the insights into the algorithms provided by our analysis to generate a segmentation that exhibits 
improved performance. This work demonstrates the wealth of information that can be learned from 
refined analysis of medical image segmentations.

Segmentation is one of the cornerstones of image processing; it is the process of automatic or semi-automatic 
detection of boundaries within an image. In a medical imaging context, segmentation is concerned with differen-
tiating tissue classes (i.e., white matter vs. gray matter in the brain), identifying anatomy, or pathology. Motivating 
examples for the use of segmentation in medical imaging include content based image retrieval1, tumor delinea-
tion2, cell detection3 and motion tracking4, object measurement for size5, shape analysis6 evaluation, and myriad 
other uses7–47. The review articles by Pham et al.48 and Sharma et al.49 are a useful resource, providing an overview 
of the different applications of segmentation in medical imaging. A common feature of all this literature is the 
evaluation of the proposed segmentation algorithm either in comparison to previous work, or more importantly, 
to some manual/digital gold-standard. In fact, it is impossible to report new segmentation methods without such 
evaluation; it therefore follows that evaluating medical image segmentation algorithms is important.

There have been many methods employed in the evaluation of medical image segmentation algorithms. 
Voxel-based methods such as intra-class correlation coefficient (ICC)50,51, Sørensen-Dice Index52,53, and Jaccard 
coefficient54 can provide insight about the agreement between a ground truth segmentation and an algorithm 
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or between two segmentations to establish their similarity. Related measures include Cohen’s kappa55, detection 
and outline error estimates (DOEE)56, as well as true/false positives and their corresponding negatives. Distance 
metrics, such as symmetric surface distance, can directly show how far a segmentation deviates from a desired 
object boundary or boundary landmarks57. See Taha and Hanbury58 for a more detailed review and comparison 
of evaluation approaches for medical image segmentation.

An issue with these traditional measures for medical image segmentation is the focus on reporting a global 
measure. For simple object detection tasks, where a single object is under consideration, these global scores 
directly relate to the segmentation peformance of the single object under consideration. However, in the case 
of an unknown number of objects, such as vertebrae detection in the spine, these evaluations may be masking 
underlying issues. Thus, considering the number of correctly detected objects is an important measure of the 
accuracy of such algorithms. This is exacerbated in cases were the number of objects is not known a priori, such 
as in cell segmentation. Ideally, we would like to evaluate these segmentations on an object by object basis, which 
might be perfectly fine in the case of spinal vertebrae or lung lobes. However, the evaluation of hundreds (or even 
thousands) of objects on an object-by-object basis is impractical due to the large number of cases.

A prime example of an application domain with a variable number of objects is multiple sclerosis (MS) lesion 
segmentation from magnetic resonance image (MRI) scans of the brain or spine. White matter lesions (WMLs) 
are a hallmark of MS and their segmentation and quantification are critical for clinical purposes and other appli-
cations59–62. Many approaches to MS lesion segmentation have been proposed: artificial63 and convolutional 
neural networks64; Bayesian models65; Gaussian mixture models66; graph cuts67; random forests68; and many oth-
ers36,38,68–110. Review articles by Lladó et al.111 and García-Lorenzo et al.112 provide context and an historical insight 
into the field. Research is continuing in this area with new methods being developed at an almost breakneck pace, 
with several grand challenges (MICCAI 2008113, ISBI 2015114,115, MICCAI 2013116, MICCAI 2015117, MICCAI 
2016118, MICCAI 2018119) being organized to help establish the state-of-the-art. With recent work having focused 
on standardizing these grand challenges120 to improve the interpretability and stability of results. However, the 
evaluation of new algorithms continues to rely heavily on Dice and Jaccard overlaps, lesion counts, and total 
lesion volume (known as lesion load). This, as noted above, limits our ability to fully assess the detailed character-
istics of an algorithm, and in particular to differentiate their performance. Moreover, reliance on these measures 
impedes our ability to refine and improve existing algorithms.

In this work, we build on our previous work121 and address these concerns by illustrating potentially useful 
information that can be obtained from a deeper understanding of the SDI. In Section 2, we provide an historical 
review of the SDI and related work. In Section 3, we present the methods used in this work, describe our data, 
and review some state-of-the-art WML segmentation algorithms that we will use for comparison purposes. In 
Section 4, we use the SDI to understand the differences between two raters (an inter-rater comparison), we apply 
similar analyses to compare four state-of-the-art algorithms. We demonstrate a naive hybrid algorithm based 
on cross-validation and our SDI analysis, in Section 5. To avoid confusion, we point out that our evaluations are 
focused on binary segmentations of WMLs, though our approach can apply to any binary segmentation where the 
number of objects is not known a priori, such as cell segmentation or star detection122.

Background
Lee R. Dice, wishing to understand the association between species, proposed what he called the Coincidence 
Index in his 1945 paper52 as a statistic to gauge the similarity of two samples. The measure was introduced to 
address shortcomings in the work of Forbes123, who had suggested using a coefficient of association to address the 
problem. The work of Forbes resulted in a near binarized measure between species association negating its use-
fulness. Both measures have values in the range [0, 1], however, in contrast to the coefficient of association, the 
Coincidence Index could use the full extents of this range in a meaningful manner. Independent of Dice, Thorvald 
Sørensen introduced an almost identical measure53, the difference being that Sørensen developed a formulation 
focused on the absence of species rather than their presence. We will refer to this measure as the Sørensen-Dice 
index (SDI), noting that it has been known by many names: Dice’s coefficient, Dice overlap, Sørensen index, etc. 
However several other, less obvious, names have appeared in the literature. For example, one of the early papers 
applying the measure to medical imaging was Zijdenbos et al.124, which resulted in the measure being referred to 
as the Zijdenbos similarity index by some authors in the intervening years43,125–129.

The formulation for the SDI, which we provide below, is for the case of exploring two co-occurring species (or 
in our instance elements). However, multi-element extensions have been reported; known generally as the 
Bray-Curtis similarity130 though also known as Pielou’s percentage similarity131 or the quantitative Sørensen 
index, and also the Generalized Dice Coefficient132. We will restrict this work to the case of two co-occurring 
elements. The SDI is closely associated with the Jaccard index54, it is trivial to convert the scores of one to the 
other. We have focused this work on the SDI; however, we note that analyses similar to those presented in Section 
4 can readily be performed using the Jaccard index. Now, for sets A and B we define the SDI as,

∩=
| |

| | + | |
A B A B

A B
SDI( , ) 2 ,

where |·| denotes cardinality. We note that the SDI is a pseudo-semimetric; the SDI does not satisfy the Identity 
Property (pseudo) or the Triangle Property (semi-) of a metric.

Zijdenbos et al.124 in introducing SDI to medical imaging—by deriving the SDI formulation from the Kappa 
coefficient essentially mirroring the work of Dice five decades earlier (as Zijdenbos et al. duly note)—was provid-
ing a way to standardize comparisons between different WML segmentation algorithms. The work has clearly had 
a profound effect on the field, with the original paper of Zijdenbos et al. having well over 1,000 citations. The SDI 
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(under its many monikers) has now become a standard way for validating the improvement of segmentation 
algorithms. Dice when introducing the SDI in 1945, simultaneously presented the computation of a χ2-test for the 
measure immediately showing “whether the combinations of species in the samples … may possibly be due to chance 
errors in random sampling.”52. This is a powerful aspect of Dice’s work. However, the original presentation and the 
Kappa coefficient formulation highlight the issue with SDI, namely, it is designed for objects that have some inter-
pretable correspondence. In the case of liver segmentation, for example, there is one object under consideration 
and a one-to-one correspondence between objects when comparing two liver segmentations and the use of SDI 
makes sense. Thus there is an implicit assumption that the number of segmentation targets is known a priori, e.g., 
whether it is one liver, two hippocampi, or five lung lobes. There is, however, an entire class of segmentation prob-
lems where the number of objects is unknown. The problem of WML segmentation is a good example, where the 
number of objects can vary from zero to hundreds. In particular for WML segmentation there can be disagree-
ment even between radiologists about the exact number of lesions present in a particular region. In such cases, the 
problem of object detection and segmentation are conflated and performance evaluation should make some effort 
to distinguish this aspect accordingly. Unfortunately, it has been customary for the image-wide SDI to be used to 
reflect both aspects of this problem and this leads to an oversimplification in trying to distinguish the character-
istics of various algorithms. Alternatively, considering object detection by counting the number of detected 
objects as a measure of success/failure is also misleading, as object counts include both false positives and false 
negatives; moreover an object count misrepresents large objects that have been split into multiple smaller objects 
and vice versa. Another concern with the SDI is its inability to incorporate the size of objects within its score. This 
is of great importance with WML segmentation; a segmentation algorithm that misses small lesions may be of less 
clinical use as new (necessarily small) lesions can be indicative of disease progression, this is not reflected in the 
global SDI score.

We can address some of these concerns by introducing the segmentation classification for known object cor-
respondences developed by Nascimento and Marques133. In their work, a nomenclature was described to classify 
the various types of matches that can occur between two segmentations. Given two segmentations, one ground 
truth and the other the output of an automated algorithm, we can think of the connected components of these 
two segmentations; moreover, we can consider how these connected components relate to each other. Specifically 
for WMLs, if the manual segmentation has identified a lesion, then we can ask if the automated segmentation 
has identified a single corresponding connected component that overlaps with the manual segmentation but may 
not have the same extents. In such a case, there is said to be a 1-1 match between the two segmentations, and we 
can think of this lesion as being correctly detected. Hence, we can think of all the lesions that have been correctly 
detected, and consider the SDI—or any evaluation measurement for that matter—of the class of correctly detected 
lesions. We adopt the Nascimento nomenclature and refer to this class as “Correct Detection”. Using this approach 
we can readily define two other classes that arise when comparing manual and automatic segmentations. The first 
class is “False Alarm” which characterizes lesions that the algorithm identifies and the manual segmentation does 
not; the second class is “Detection Failure” which is defined as lesions in the manual segmentation that the algo-
rithm fails to identify. These first three classes are illustrated in Fig. 1, as the three left most panels. We note that 
these three classes have been used in the past to distinguish segmentations; however, they were used on a global, 
per voxel, basis. We will use them on a per lesion basis.

There are three additional classes that are now required to complete the taxonomy for classifying the agree-
ment between the manual and algorithm segmentations. First, consider the case where the manual delineation has 
identified several small lesions close together, whereas the algorithm has identified this cluster of lesions as a sin-
gle lesion (see Fig. 1 for an example). The algorithm has not failed to detect the lesions but has, however, failed to 
disambiguate the lesions. We can think of the algorithm (for classification purposes) as having merged the lesions, 
which is why we refer to this as the “Merge” class. Upon identifying the merge class, it becomes self-evident that 
there must be a reciprocal class in which the algorithm has subdivided a single manually-identified lesion; we 
refer to this as the “Split” class. Finally, we identify a “Split-Merge” class in which, for example, the algorithm has 
identified four lesions that overlap with three lesions in the manual segmentation. Both segmentations agree there 
are lesions, but the boundaries between the confluent lesions are in disagreement. These six different classes of 
object agreement originate from the work of Nascimento and Marques133. We observe that these six classifications 

Figure 1.  Illustrated from left to right are examples of the six classes for the Nascimento nomenclature; 
the leftmost panel is the case of “Correct Detection” also known as 1-1 correspondence between the 
manual segmentation and the automated segmentation. The next two cases are “Detection Failure” or 0-1 
correspondence, were there is a manual segmentation but no overlapping object in the automated segmentation, 
and “False Alarm” or 1-0 correspondence. The next three cases are the object detection classes known as 
“Merge”, “Split”, and “Split-Merge”. The 1-N or “Merge” case occurs when the automated segmentation has 
merged the multiple objects from the manual segmentation into a single object. Next is M-1, “Split”, in which a 
single manually segmented object has been split into multiple objects by the automated approach. Finally, on the 
right, M-N, are multiple manually segmented objects split and merged by the automated segmentation.
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represent a complete taxonomy for all possible overlap combinations between two segmentations. Illustrations for 
the merge, split, and split-merge classes are shown in the three right most panels of Fig. 1.

In this work, we take these ideas of incorporating object detection classification and explore their potential appli-
cation in medical image segmentation. This is important because the global SDI, or any global metric, can obscure 
performance in some classes of objects. However, global SDI can be a sufficient and defining statistic in the case of a 
fixed number of detectable objects. We specifically apply the detection classification idea to the SDI computed on WML 
segmentations to enhance the automated segmentations and improve our process for creating manual segmentations.

Methods and Materials
Classifying segmentation overlap.  Assume that we have two binary segmentations,  and , of an 
image, which are both trying to identify particular objects in which the exact quantity of objects is unknown a 
priori. We first identify the 6-connected components in 3D (4-connected components in 2D) in each segmenta-
tion, and denote these objects as ui and vj coming from  and , respectively. Then for each object ui, we identify 
corresponding objects in  as any vj which has a non-empty intersection with ui. We denote the set of such corre-
sponding objects by ∩= | ∈ ≠ ∅C u v v u v( ) { , }i j j i j  and we similarly denote the set of corresponding objects of 
vj in  as ∩= | ∈ ≠ ∅C v u u u v( ) { , }j i i i j . We observe that the cardinality of C u( )i  determines the nature of the 
object detection classification; for example, if | | =C u( ) 1i  and if for v C u( )j i∈  we have | | =C v( ) 1j  then the objects 
are in a 1-1 correspondence which would equate to the “Correct Detection” class as used by Nascimento and 
Marques133. If, however, | | =C u( ) Mi  (where <1 M) and for each ∈v C u( )j i  we have | | =C v( ) 1j , then the objects 
are in an M-1 correspondence, which would be the “Split” class.

Thus far, the exact nature of  and  has not been stated, though it has been implied that they correspond to 
a manual segmentation and an automated segmentation, which is definitely a useful and common case. However, 
we want to expand this idea to include the case where both  and  are manual segmentations. This allows us to 
offer insight about the behavior of manual raters. For example, if the number of objects that are being merged, 
split, and split-merged between two human raters is high then it may reflect disagreements about interpreting 
object boundaries; it may also reflect the noise level in the images. If the number of objects in these same catego-
ries varies from low to high across a cohort, it may reflect inconsistent rater behavior or dissonant data. Thus, we 
can make observations about the inter-rater behavior of these raters on specific data. Moreover, if the two manual 
segmentations come from the same rater, we can explore intra-rater consistency. We have expanded the nomen-
clature of Nascimento and Marques to cover the case of comparing two manual segmentations (see Table 1). 
Another possible scenario, although not studied here, is the comparison of segmentations over time. The match 
type listed in Table 1 is readily computed as the cardinality of the appropriate C u( )i  − C v( )j  pairs.

In addition to our extensions of the Nascimento nomenclature133, we choose to plot the volume of each indi-
vidual object, specifically WMLs, against the SDI. In doing so, we avoid the inherent volume insensitivity of the 
SDI by presenting both the volume and SDI of each individual object.

Data.  The data consists of MR images divided into two cohorts: (1) Training data set; and (2) Test data set. The 
Training data set consists of five subjects, four with four time-points and one subject with five time-points. The Test data 
set includes fourteen subjects, ten subjects with four time-points, three subjects had five time-points, and the final sub-
ject had six time-points. Two consecutive time-points are separated by approximately one year for all subjects. Table 2 
includes a demographic breakdown for the training and test data sets. The data are available for download from the 
2015 Longitudinal Lesion Segmentation Challenge Website (http://smart-stats-tools.org/lesion-challenge).

Each scan was imaged and preprocessed in the same manner, with data acquired on a 3.0 Tesla MRI scanner 
(Philips Medical Systems, Best, The Netherlands) using the following sequences: a t1-weighted (T1-w) magnetiza-
tion prepared rapid gradient echo (MPRAGE) with TR = 10.3 ms, TE = 6 ms, flip angle = 8°, and 
. × . × .0 82 0 82 1 17 mm3 voxel size; a double spin echo (DSE) which produces the PD-w and t2-w images with  

TR = 4177 ms, TE1 = 12.31 ms, TE2 = 80 ms, and . × . × .0 82 0 82 2 2 mm3 voxel size; and a T2-w fluid attenuated 

Match 
Type Manual vs. Manual Algorithm vs. Manual

1-1 Expert Agreement Correct Detection

1-N Ambiguous Masks Merge

M-1 Ambiguous Masks Split

M-N Ambiguous Masks Split-Merge

0-1 Expert Disagreement Detection Failure

1-0 Expert Disagreement False Alarm

Table 1.  Our updated nomenclature, expanding on the work of Nascimento and Marques133 which focused 
on the comparison between manual and automated segmentations (Algorithm vs. Manual), to also cover the 
case when two manual segmentations are being compared (Manual vs. Manual). Examples of the different 
classes, for the situation of Algorithm vs. Manual, are shown in Fig. 1. The top four classes (1-1, 1-N, M-1, and 
M-N) represent cases of segmentation agreement, though the number of lesions and the boundary of those 
lesions is disputed. Whereas the bottom two classes (1-0, 0-1) are the classes which summarize segmentation 
disagreement.
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inversion recovery (FLAIR) with TI = 835 ms, TE = 68 ms, and . × . × .0 82 0 82 2 2 mm3 voxel size. The imaging 
protocols were approved by the local institutional review board.

Each subject underwent the following preprocessing steps: the baseline (first time-point) MPRAGE was 
inhomogeneity-corrected using N4134, skull-stripped135, dura stripped61, followed by a second N4 inhomogeneity 
correction, and rigid registration to a 1 mm3 isotropic MNI template. We have found that running N4 a second 
time after skull and dura removal is more effective than a single application at reducing inhomogeneity in the 
images (see Fig. 2 for an example training image after preprocessing). Once the baseline MPRAGE is in MNI 
space, it is used as a target for the remaining images. The remaining images include the baseline T2-w, PD-w, and 
FLAIR, as well as the scans from each of the follow-up time-points. These images are N4 corrected and then rig-
idly registered to the 1 mm isotropic baseline MPRAGE in MNI space. The skull and dura stripped mask from the 
baseline MPRAGE are applied to all the subsequent images, which are then N4 corrected again. The preprocess-
ing steps were performed using JIST (Version 3.2)136.

All the images in the Training and Test data sets had their lesions manually delineated by two raters in the 
MNI space. Rater #1 had four years of experience delineating lesions at the time, while Rater #2 had 10 years 
experience with manual lesion segmentation and 17 years experience in structural MRI analysis at that time. We 
note that the raters were blinded to the temporal ordering of the data. The protocol for the manual delineation 
followed by both raters is provided in Carass et al.115.

Consensus delineation.  We construct a Consensus Delineation for each test data set by using the simulta-
neous truth and performance level estimation (STAPLE) algorithm44. The Consensus Delineation uses the two 
manual delineations created by our raters as well as the output from all fourteen algorithms that submitted to the 
2015 Longitudinal Lesion Segmentation Challenge114,115. The manual delineations and the fourteen algorithm 
delineations are treated equally within the STAPLE framework. Figure 3 shows an example slice from our Test 
data set with the corresponding delineations from Rater #1, #2, and the Consensus Delineation.

Comparison methods.  In Section 4.2, we explore what can be learned from the top four methods included 
in the 2015 Longitudinal Lesion Segmentation Challenge114,115; those methods are outlined below.

 DIAG
Convolution Neural Networks for MS Lesion Segmentation
(M. Ghafoorian and B. Platel)

Data Set N (M/F)
Time-Points 
Mean (SD)

Age Mean 
(SD)

Follow-Up 
Mean (SD)

Training 5 (1/4) 4.4 (±0.55) 43.5 (±10.3) 1.0 (±0.13)

RR 4 (1/3) 4.5 (±0.50) 40.0 (±07.6) 1.0 (±0.14)

PP 1 (0/1) 4.0 (±0.00) 57.9 (±0.00) 1.0 (±0.04)

Test 14 (3/11) 4.4 (±0.63) 39.3 (±08.9) 1.0 (±0.23)

RR 12 (3/9) 4.4 (±0.67) 39.2 (±09.6) 1.0 (±0.25)

PP 1 (0/1) 4.0 (±0.00) 39.0 (±0.00) 1.0 (±0.04)

SP 1 (0/1) 4.0 (±0.00) 41.7 (±0.00) 1.0 (±0.05)

Table 2.  Demographic details for both the training and test data set. The top row is the information of the 
entire data set, while subsequent rows within a section are specific to the patient diagnoses. The codes are RR 
for relapsing remitting MS, PP for primary progressive MS, and SP for secondary progressive MS. N (M/F) 
denotes the number of patients and the male/female ratio, respectively. Time-points is the mean (and standard 
deviation) of the number of time-points provided to participants. Age is the mean age (and standard deviation), 
in years, at baseline. Follow-up is the mean (and standard deviation), in years, of the time between follow-up 
scans.

Figure 2.  Shown are the (a) MPRAGE, (b) FLAIR, (c) T2-w, and (d) PD-w images for a single time-point from 
one of the provided Training data set subjects after the preprocessing described in Section 3.2.
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The DIAG utilizes a convolutional neural network (CNN) with five layers in a sliding window fashion to create 
a voxel-based classifier137. As input the CNN used all the available modalities, with each modality contributing an 
image patch of size ×32 32.

 IMI
MS-Lesion Segmentation in MRI with Random Forests
(O. Maier and H. Handels)
The IMI method trained a random forest (RF) with supervised learning to infer the classification function 

underlying the training data91. The classification of brain lesions in MRI is a complex task with high levels of 
noise, hence a total of 200 trees are trained without any growth-restriction.

 MV-CNN
Multi-View Convolutional Neural Networks
(A. Birenbaum and H. Greenspan)
MV-CNN is a method based on a Longitudinal Multi-View CNN138. The classifier is modeled as a CNN, whose 

input for every evaluated voxel are patches from axial, coronal, and sagittal views of the available modalities64.

 PVG One
Hierarchical MRF and Random Forest Segmentation of MS Lesions and Healthy Tissues in Brain MRI
(A. Jesson and T. Arbel)
The PVG method built a hierarchical framework for the segmentation of a variety of healthy tissues and 

lesions. At the voxel level, lesion and tissue labels are estimated through a MRF segmentation framework that lev-
erages spatial prior probabilities for nine healthy tissues through multi-atlas label fusion (MALF). A RF classifier 
then provides region level lesion refinement.

We note that the selected four algorithms had the highest ranked SDI amongst the fourteen algorithms against 
the Consensus Delineation, as shown in Fig. 4, which also reports the SDI for our raters against the Consensus 
Delineation. We note that the mean SDIs reported in Fig. 4 are all within one standard deviation of each other 
and well within their pairwise standard error. Using the global measure of mean SDI would suggest very little 
difference in the behavior of these four algorithms; however, as we will see in Section 4.2 this is not the case. We 
also report the 95% confidence intervals of the mean SDIs for the manual raters and the four methods in Fig. 4.

Figure 3.  Shown is an axial slice of the (a) FLAIR for a single time-point from one of the Test data set subjects, 
and the corresponding mask by (b) Rater #1, (c) Rater #2, and the (d) Consensus Delineation.

Figure 4.  Mean, standard deviation (SD), and range of the SDI against the Consensus Delineation for the two 
human raters and the top four algorithms (as ranked by their SDI). We also include the 95% confidence interval 
of the mean SDI.

https://doi.org/10.1038/s41598-020-64803-w
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Case Studies
We explore two case studies: (1) an inter-rater comparison across the Test data set; and (2) an exploration of four 
algorithms used in the 2015 Longitudinal Lesion Segmentation Challenge, on the same Test data set.

Inter-rater comparison.  Shown in Fig. 5 are representations of the inter-rater detection classes, see Table 1 
for details. We also present the Expert Agreement and Ambiguous Masks classes in Fig. 6, where we show the 
per-lesion SDI trends for these classes. The expert disagreement cases are those cases in which one rater has iden-
tified a lesion and the other rater has no lesion which overlaps the identified lesion.

Figure 5(a) shows histograms depicting the Expert Agreement and Ambiguous Masks cases for our inter-rater 
comparison. The histograms show the volume versus the count of lesions of that particular size. We see from 
Fig. 5(a), that a large number of small lesions identified by Rater #2 split single lesions identified by Rater #1, see 
the split (  M-1) case. Additionally, we see that while the split-merge class has a broad range (minimum size 11 
mm3 upto a maximum size of 36,967 mm3) it has a count of one whenever such split-merge cases occur, suggest-
ing that such cases are rare. Figure 5(b) shows the number of cases of each class on a per data set basis. We note 
that Fig. 5(b) echos the observations from Fig. 5(a) that the split-merge class has a very low incidence rate. We 
also note that the number of cases in the object detection agreement class is considerably higher than either of the 
other three classes.

Figure 5(c) shows histograms depicting the two Expert Disagreement cases for our inter-rater comparison. 
The histograms show the volume and the count of lesions of that particular size that were identified by one 
rater but not by the other rater. Figure 5(d) shows the counts on a per data set basis for the two different Expert 
Disagreement cases; a dot denotes the respective count for one of the 61 test data sets. From Fig. 5(c,d), we have 
that Rater #1 identified 388 lesions that Rater #2 did not, where 14.18% were of size 1 mm3 (equivalently one 

Figure 5.  Shown in (a) are log-scale histograms depicting the Expert Agreement and Ambiguous Masks for our 
inter-rater comparison. The histograms show the volume (x-axis) and the count of lesions (y-axis) of that size. 
The volume of the lesions is the volume assigned by Rater #2. The Expert Agreement case (1-1) shows those 
lesions that had a one-to-one correspondence between lesions identified by Rater #1 and #2. The Ambiguous 
Masks classes (1-N, M-1, and M-N) are also shown. Shown in (b) are the counts on a per data set basis for the 
four different Expert Agreement and Ambiguous Masks cases; a dot denotes the respective count for one of the 
61 test data sets, the rectangles represent the inter quartile range (IQR), and the horizontal bars are the means. 
Shown in (c) are log-scale histograms depicting the two Expert Disagreement cases for our inter-rater 
comparison. The histograms show the volume (x-axis) and the count of lesions (y-axis) of that size that were 
identified by Rater #1 but not Rater #2 (1-0) or identified by Rater #2 but not Rater #1 (0-1). The volumes come 
from the rater that identified the lesion. Shown in (d) are the counts on a per data set basis for the two different 
Expert Disagreement cases; a dot denotes the respective count for one of the 61 test data sets, the rectangles 
represent the IQR, and the horizontal bars are the means.

https://doi.org/10.1038/s41598-020-64803-w


8Scientific Reports |         (2020) 10:8242  | https://doi.org/10.1038/s41598-020-64803-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

voxel) and 61.34% were of size 10 mm3 or less. The total of 388 unidentified lesions can also be computed as the 
sum of the 1-0 category in Fig. 5(d). Conversely, Rater #2 identified 8,514 lesions that Rater #1 did not, 43.35% of 
which had a size of 1 mm3 and 75.06% had a size of 10 mm3 or less. The total of 8,514 unidentified lesions can also 
be computed as the sum of the 0–1 category in Fig. 5(d). We note that the identification of small lesions by Rater 
#2 shown in Fig. 5(c) would appear consistent with our observations from Fig. 5(a) that lesions identified by Rater 
#1 are identified as groups of smaller lesions by Rater #2. Clearly, it is difficult for raters to agree on small lesions; 
however, our two raters failed to agree on 8,902 lesions meaning that there was not another (larger or smaller) 
lesion with any overlap for these lesions. Given that the total number of uniquely identified lesions was 11,245 
then the 8,902 represents 79.2% of the total number of identified lesions.

Our first key observation is the large number of 1 mm3 lesion detection failures may point to our choice of 
connectivity model, which is related to Rater #2’s interpretation of connectivity. Had we used an 18-connectivity 
model, the total number of 1 mm3 lesions would have been 21 for Rater #1 and 1,163 for Rater #2, as opposed to 
79 for Rater #1 and 3,837 for Rater #2 when using 6-connectivity. The ratio between the number of lesions at 6- 
and 18-connectivity is similar for both raters, but is clearly an order of magnitude difference between Rater #1 and 
Rater #2. It is tempting to switch connectivity models, however there is a biological ambiguity when making such 
a change; do we have a single lesion that can be connected across image grid diagonals or do we have two lesions 
that are grid diagonal connected because of the underlying imaging resolution? Such issues are only compounded 
when considering 26-connected lesions. We comment on the meaning and impact of this observation in Sec. 6.1.

Our second key observation concerns small lesions and the errors related to identifying such lesions. The vast 
majority of expert disagreement is among small lesions (61.34% and 75.06% of respective expert disagreement 
was for lesions with volume ≤10 mm3), which is something that is more readily addressable than the interplay of 
connectivity and image resolution. We can simply suppress all lesions below a certain threshold and report how 
the SDI varies at different thresholds. Clearly, there is little or no confidence between the raters for small lesions, 
so excluding such lesions seems like the most appropriate thing in this situation; particularly if it leads to greater 
agreement between the expert delineations. The mean inter-rater SDI over the 61 data sets is originally 0.5994; if 
we zero out lesions below 1 mm3 then the mean inter-rater SDI is 0.6007, and if we set a threshold of 10 mm3 then 
the mean inter-rater SDI is 0.6029. These SDI numbers are summarized in Table 3, along with their ranges. The 
effects the threshold has on the number of detected objects is summarized in Table 4.

While Fig. 5 informs us about the object detection agreement between our two raters, Fig. 6 highlights how 
much agreement there is on a lesion-by-lesion basis. For each category, we show a scatterplot showing per-lesion 
Dice as a function of lesion volume. Fitted curves represent the average lesion-level SDI values across lesion 

Figure 6.  For our inter-rater comparison, we show per-lesion SDI for the expert agreement cases as a function 
of the lesion volume (color coded by lesion classification). The volume of the lesions is the volume assigned by 
Rater #2. For each category, the dots are individual lesions and the solid lines are a LOESS best fit139,140.

Threshold

SDI

Mean (SD) Range
95% Confidence 
Interval

0 mm3 0.599 (±0.136) [0.193, 0.793] [0.565, 0.634]

1 mm3 0.601 (±0.136) [0.194, 0.798] [0.566, 0.636]†

10 mm3 0.603 (±0.137) [0.194, 0.805] [0.568, 0.638]†‡

Table 3.  Mean, standard deviation (SD), and range of the SDI overlap between the manual raters at different 
threshold levels on lesion size. The 0 mm3 corresponds to the original data. We also show the 95% confidence 
interval of the mean SDI. Statistical comparisons between the different thresholds was done using the two-sided 
paired Wilcoxon rank test141 with correction for multiple comparisons. †Denotes statistical significance at an 
α level of 0.001 when comparing to the 0 mm3 threshold. ‡Denotes statistical significance at an α level of 0.001 
when comparing to the 1 mm3 threshold.
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volumes, estimated using locally estimated scatter-plot smoothing (LOESS)139,140. This was computed using the 
LOESS implementation in R with tricubic weighting. For the Expert Agreement class, we see average rater agree-
ment is very consistent across the range of all lesion volumes, ranging from 0.56 to 0.62. However, this is disap-
pointing as we would expect that when raters agree that a single lesion is present—which they do for the Expert 
Agreement class—they would have a similar interpretation about the lesion boundary. For context, an SDI of 0.66  
means that the raters effectively disagree on 50% of the voxels. For example, if Rater #1 identified one voxel for a 
lesion and Rater #2 identified two voxels for the same lesion, with the raters having just a single voxel overlap; 
then the SDI for the lesion would be 0.66 . More generally, if Rater #1 identifies a lesion as having r voxels and 
Rater #2 uniquely identifies the same lesion as having r2  voxels with an overlap of r voxels between them then the 
SDI would remain 0.66 . Which highlights the volume insensitivity of SDI and more importantly, the high level of 
disagreement between the human raters.

Algorithm comparison.  Next, we compare the four algorithms to the consensus delineation. We show 
the per-lesion SDI trends for each of the following classes: correct detection (1-1), merge (1-N), split (M-1), 
and split-merge (M-N). These classes represent the cases of agreement between the various algorithms and the 
Consensus Delineation, and are shown in Fig. 7. The average lesion-level SDI values across lesion volumes was 
estimated using LOESS (computation described in Section 4.1). The other two classes (detection failure (0-1) and 
false alarm (1-0)) do not fit neatly within these plots as they have an SDI of zero and in the latter no true lesion 
volume. We present plots of the detection failure and false alarms for each algorithm in Fig. 8, by showing the 
number of counts per volume basis for both of these classes. From Fig. 7, we observe that while these algorithms 
have a globally similar SDI, they have very different characteristics on a per-lesion basis and within the context of 
the four classes presented. This point is also evident when examining Fig. 8: both DIAG and MV-CNN have lower 
detection failure levels but at the expense of dramatically increased false alarm rates (note that the false alarm 
rates are shown on a log scale).

As our data are processed in a common 1 mm3 isotropic MNI template, we can create heat maps for each 
of the different detection classes. We construct these heat maps by taking the class labels for each object and 
averaging them for each algorithm over the 61 images in our Test data set. A value of 1, at a voxel for a particular 

Threshold

Detection Classes Lesion Count (Percentage)

Expert 
Agreement

Expert 
Disagreement

Ambiguous 
Masks

0 mm3 1,796 (15.97%) 8,902 (79.16%) 547 (4.86%)

1 mm3 1,792 (24.67%) 5,031 (69.26%) 441 (6.07%)

10 mm3 1,433 (33.81%) 2,512 (59.27%) 293 (6.91%)

Table 4.  We present the number of lesions (percentage) in each detection class for the three different threshold 
levels on lesion volume. The 0 mm3 threshold corresponds to the original data. See Table 1 for descriptions of 
the corresponding classes and Fig. 1 for examples.

Figure 7.  For our four comparison algorithms, we show per-lesion SDI against the Consensus Delineation as 
a function of the lesion volume (color coded by lesion classification). For each category, the dots are individual 
lesions and the solid lines are best fits based on LOESS139,140.
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class and algorithm, would mean that in all 61 test images the algorithm had lesions of that particular class at 
that particular voxel with respect to the Consensus Delineation. These heat maps are thresholded at 0.15 to allow 
better visualization of lower instance values. An example axial slice of these heat maps is shown in Fig. 9, with 
the corresponding axial maximum intensity projections (MIPs) shown in Fig. 10. Reviewing both Figs. 9 and 10  
suggests a very different spatial distribution to the correctly detected lesions. MV-CNN is markedly different 
from the appearance of PVG One, DIAG, and IMI for the correct detection (1-1) class (shown in Fig. 9); we 
observe this by noting the distinctive shape that the correct detection class has for each of the four algorithms. 
This is also reflected in the MIPs in Fig. 10, with MV-CNN clearly having more correct detections within the 
inter-hemispheric fissure and larger posterior lateral extents. Correspondingly, MV-CNN has lower detection 
failure rates in the inter-hemispheric fissure in the MIP. We also observe the similarities between IMI and PVG 
One, both having similar distributions around the ventricles on the single axial slices, with some differences when 
considering the MIP images.

Hybrid algorithm
From the top four algorithms presented in Section 4.2, we construct a new hybrid WML segmentation algorithm. 
The goal here is to demonstrate how our refined SDI analysis can provide opportunities to improve existing algo-
rithms. In Fig. 11, we present the correct detection class for each of the four algorithms under consideration and 
include 95% confidence bands (computation described in Section 4.1). We leverage these four algorithms’ results 

Figure 8.  Shown for all four comparison algorithms (DIAG, IMI, MV-CNN, and PVG One) are the number of 
detection failures and false alarms (shown with a log scale) on a per data set basis. For each plot, a dot denotes 
the respective count for one of the 61 test data sets, the rectangles represent the inter quartile range (IQR), and 
the horizontal bars are the means. When the IQR reaches the bottom of the graph it extends to zero.

Figure 9.  Shown are heat-maps (with grid lines) for the lesions in particular classes. The top row shows the 
correct detection class for the four comparison algorithms and the bottom row shows the detection failure class.
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and our insights from SDI analysis to produce a better WML segmentation. We construct our algorithm, hereafter 
referred to as Hybrid, based on a cross-validation and a naive volumetric threshold framework. We do this by 
subdividing the number of subjects into n-folds of data: by subject, we mean all time-points of a single subject. We 
consider the −n( 1)-folds of data and identify the best performing algorithm in the correct detection class across 
the striation of lesion volumes. Specifically, starting at the smallest size lesions we identify the best performing 
algorithm as the algorithm with the highest SDI in the correct detection class, which we denote as 1 . There is a 
volumetric threshold, t1, at which 1  ceases to be the best performing algorithm and is replaced by 2 ; which in 
turn is replaced 3 at volumetric threshold, t2. In this manner, we can learn i ’s and volumetric thresholds ti from 
the −n( 1)-folds of data, which we subsequently apply to the nth fold. By “apply” to the nth fold, we mean identify 
lesions with volumes between the thresholds ti and +t i( 1) belonging to the best performing algorithm in that range, 
which would be +i( 1)  in this case. Our algorithms output is the union of these lesion segmentations. We can 
formally write the set of lesions, , identified by our algorithm as,

 l t l t l{ vol( ) and vol( ) is indentified by },
i

i i i i( 1) ( 1) ( 1)∪= ∈ | < ≤+ + +

were vol(l) denotes the volume of the lesion, l, which falls between the desired thresholds and was identified by 
the best performing algorithm in that range. For completeness, we note that =t 00  and that i is not bound by the 
number of algorithms under consideration but rather by the number of times the best algorithm changes across 

Figure 10.  Shown are the axial maximum intensity projections (with grid lines) of the heat-maps for the correct 
detection class (top row) and the detection failure class (bottom row).

Figure 11.  Shown are the regression curves for the correct detection class for each of DIAG, IMI, MV-CNN, 
and PVG One. Also shown is the 95% confidence band around each regression.
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the range of lesion volumes. If one algorithm was considered the best in correct detection across the range of 
lesion volumes than i would be bounded by one. In Fig. 12, we show how the results of a hybrid algorithm are 

Figure 12.  For a test data set, in the top row, we show the axial slices of the DIAG, MV-CNN, and PVG One 
segmentations, and the corresponding FLAIR image. In the second row, we show the volume thresholded 
version of DIAG (T-DIAG), MV-CNN (T-MV-CNN), and PVG One (T-PVG One), after the corresponding 
thresholds have been applied from the 2-Fold variety of our hybrid algorithm. The final image in the second row 
is the segmentation generated from the union of these results and is denoted Hybrid (). For this subject, the 
IMI algorithm did not contribute any lesions and the corresponding images are not displayed.

Figure 13.  Shown on the top row are an axial slice of the FLAIR image for a subject from the Test data set, and 
the corresponding segmentations by Rater #1, Rater #2. On the bottom row are the corresponding slices for the 
Consensus Delineation (labeled Consensus) and the hybrid algorithm with 2-folds (labeled Hybrid 2-Folds) and 
with 3-folds (labeled Hybrid 3-Folds).
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constructed. In particular, we show the original segmentations, the segmentations after the appropriate volume 
thresholds have been identified and the corresponding union of those thresholded segmentations. In Fig. 13, we 
show an example axial slice of a FLAIR image and the corresponding segmentations from both raters, the consen-
sus delineation, and the outputs of using the hybrid algorithm with 2-folds (Hybrid 2-Folds) and with 3-folds 
(Hybrid 3-Folds).

We construct results for our hybrid lesion segmentation algorithm, based on cross-validation using two- and 
three-folds. To verify the utility of our hybrid lesion segmentation algorithm, we compute the mean SDI against 
the Consensus Delineation (Fig. 14) and include the results to those for DIAG, IMI, MV-CNN, and PVG One. As 
we can see from Fig. 14, either one of our cross-validated algorithms has a substantially higher mean SDI than any 
of the four algorithms against the Consensus Delineation. Hybrid with 2-Folds has a smaller standard deviation 
and correspondingly tighter 95% confidence interval for its mean SDI, than the other methods. To test the signif-
icance of these result we compute a two-sided Wilcoxon Signed-Rank Paired Test141 with a correction for multiple 
comparisons between the two versions of our algorithm and each of the four algorithms under consideration 
here. Hybrid with 3-Folds is statistically significantly better than all the reported methods at an α-level of 0.01, 
except PVG One. Meanwhile, Hybrid with 2-Folds is not statistically significantly different than any of the 
reported methods at an α-level of 0.01. Importantly, our 2-Fold and 3-Fold hybrid algorithms are the first results 
on the 2015 Longitudinal Lesion Segmentation Challenge data to match the performance of the manual segmen-
tations against the Consensus Delineation.

Discussion and Conclusions
The most important aspect of this work is in demonstrating the potential wealth of information that can be 
gleaned from refined analysis of medical image segmentations. We also showed that simple modifications to rater 
delineations and algorithms can enhance the desired outcomes. This work is not intended to be a comprehensive 
review of available segmentation measures or the relative merits of such measures, but rather an exploration of 
what could be learned from such measures. As noted earlier, we have focused this work on the SDI, however this 
approach could be applied to any segmentation measure. We make no claim that the SDI is the most appropriate 
metric for segmentation evaluation; however, given its prevalence it seems prudent to maximize the information 
that it can provide. Below we review and consider the potential impact of our case studies.

Inter-rater comparison.  For the inter-rater comparison, we could see the raters had a different interpre-
tation of the viable size of lesions that they could identify: Rater #1 had 904 lesions ≤10 mm3 whereas Rater #2 
had 6800 lesions in the same range. At the time of writing we can not confidently explain this surprising disparity 
between the raters; it may represent the confidence each rater has in their own ability to identify small lesions 
or the manner in which the raters used the delineation toolkit. The small lesion size is also related to the choice 
of connectivity, however changing from 6-connected to 18-connected does not fully mitigate the issue. The SDI 
within the Expert Agreement class was in the range 0.56 to 0.62, which is disappointing. Unfortunately, the level 
of disagreement is an area of far greater concern; see Table 4 for example.

These issues are addressable to some extent. We can identify lesions below a certain volume as being unreliable 
and remove them from the segmentation through thresholding. From Table 3, we see the effect of thresholding 
is statistically significant. However, the magnitude of the improvement for SDI is minor. Thresholding on lesion 
size has a more dramatic impact at reducing the number of lesions that are in the Expert Disagreement class, see 
Table 4. We note that the choice of thresholds for valid manual lesion segmentation in the literature is in a similar 
range, with Filippi et al.142 suggesting that a valid lesion must have an extent ≥3 mm in at least one plane and 
Mike et al.143 suggesting a 3 mm minimum diameter visible in all three orthogonal views. This is an important 
point as it reaffirms the correctness of the thresholds outlined by Filippi et al.142 and Mike et al.143 We can also 
enforce connectivity rules when the raters are delineating the lesions. Furthermore, for those lesions in the correct 

Figure 14.  Mean, standard deviation (SD), and range of the SDI overlap scores against the Consensus 
Delineation for Hybrid, with cross-validation using two- and three-folds are shown in the top two rows. We also 
show the 95% confidence interval of the mean SDI. Hybrid 2-Folds is based on a two-fold cross validation from 
the results of DIAG, IMI, MV-CNN, and PVG One; Hybrid 3-Folds is the three-fold cross validation result from 
the same data. We train on −n( 1)-folds and test on the n-fold; repeating this process by cycling through the 
various folds, with the combined results presented.
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detection class, we can show both rater’s contours of their respective boundaries superimposed on MR images 
and use this to help them either (1) refine their respective boundaries, (2) reach a consensus, or (3) use the images 
to help improve future rater training.

Using the Ambiguous Masks class also highlighted some positive aspects of our rater behavior. The low inci-
dence of cases in the split-merge category (see Fig. 5) is encouraging. It suggests that it is rare for raters to identify 
lesion groups in a dissimilar manner. That is, if one rater sees M lesions in a region our second rater was unlikely 
to identify N different lesions within the same region; with those M and N lesion being different partitions of the 
same lesions.

Algorithm comparison and hybrid algorithms.  From Fig. 4, we see that our four comparison algo-
rithms have similar SDI against the Consensus Delineation; however from Figs. 7 and 8 we note that each of 
these four algorithms exhibits very different performance characteristics within each SDI class. For example, 
both DIAG and MV-CNN have lower detection failure levels but dramatically higher false alarm rates (see Fig. 8). 
However, it is these different performance characteristics that allowed us to build our 2-Fold and 3-Fold hybrid 
algorithm results. Our 2-Fold and 3-Fold were derived solely based on the correct detection (1-1) class behavior 
of each algorithm (see Fig. 11). Figure 12 shows an example of how lesions of different morphological properties 
(shape, size, and location) coming from different algorithms can contribute to the results of the a hybrid algo-
rithms. In this particular example, MV-CNN contributed lesions which it identified as small; DIAG contributed 
lesions which it identified as medium; and PVG One contributed lesions which it identified as large. While IMI 
did not contribute any results. Figures 12 and 13 demonstrate that a variety of morphological features can be cap-
tured by the hybrid style fusion algorithms. However, richer and more diverse forms of fusing–than the proposed 
straightforward union operation–could provide improved further potential improvements, see discussion below.

Furthermore, we can understand the failure characteristics of each of the algorithms from Fig. 8; in particular, 
IMI and PVG One have very low false alarm (1-0) rates. We could have used this to help further refine our 2-Fold 
and 3-Fold results. For example, we could use the lesions identified by either IMI, PVG One, or both to identify 
lesions while using our volumetric selection scheme to determine the extents of those same lesions in our 2-Fold 
and 3-Fold final hybrid segmentation. We could additionally incorporate our heat maps to further improve our 
2-Fold and 3-Fold results by filtering out regions where an algorithm is prone to produce false-alarms or lowering 
detection criteria in areas subject to detection failure. These examples illustrate the many different ways in which 
the presented analysis could be used by algorithm developers to improve their methods.

Our 2-Fold and 3-Fold results were constructed using cross-validation; however, there was knowledge of 
the correct-detection class performance with the training folds which could be a point of criticism. Ultimately, 
either of the proposed hybrid style fusion algorithms are bound by the accuracy of the available algorithms which 
is obviously a limiting factor. The point of this work is not to present a new lesion segmentation algorithm but 
rather to demonstrate the relative ease with which an algorithm could be formulated by leveraging the proposed 
advanced evaluation methods. The focus of this paper is not be the proposed algorithms, but the potential use 
of the new evaluation method to offer insight about the qualities and deficiencies of an algorithm (Sec. 4.2) or 
for comparison of human raters (Sec. 4.1). However, there are two striking observations, first either version of 
our hybrid algorithm would have been the top ranked algorithm in the 2015 Longitudinal Lesion Segmentation 
Challenge (as shown in Table 3 in Carass et al.115) Second, our 3-Fold version is generating results at a level 
consistent with the top ranked human rater. Moreover, it is our plan to update the 2015 Longitudinal Lesion 
Segmentation Challenge Website (http://smart-stats-tools.org/lesion-challenge) to offer plots similar to Fig. 6 for 
each new participant. It is our hope that these plots will help highlight opportunities for algorithmic improvement 
for submitted results.

Future work.  We have been focused throughout this work on improving our understanding of segmentations 
where the number of objects is not known a priori. However, it is interesting to consider applications of this work 
wherein the number of objects is known and the population of images of such objects is large. In such instances it 
may be difficult to review the individual segmentations to appreciate systematic trends. It is one of our postulates 
that figures showing SDI vs. object volume would highlight any anomalous behavior, allowing for more rapid 
review of rater delineations or correction of erroneous algorithm outcomes.

It would be interesting to explore our SDI framework in a location specific manner. According to our heat 
maps (Figs. 9 and 10) it is feasible to conceive that one algorithm would have superior performance in the frontal 
temporal lobe, for example, and that the same algorithm may be prone to errors periventricularly. Once such 
performance characteristics are known, it becomes straightforward to post-process an algorithm’s segmentation 
by boosting probabilities in high confidence areas or removing objects in error prone areas.

We exclusively used the SDI within the Nascimento nomenclature, however we could have also used other 
measures to explore the inter-rater behavior or when comparing the four algorithms. In particular, instead 
of exploring the six different detection classes in terms of lesion SDI and volume, we could have considered a 
multi-dimensional representation (similar to the work by Commowick et al.118) including the aforementioned 
quantities and any number of informative measures; such as the Hausdorff144 distance or ventricular or cortical 
mantle distance. The latter could offer interesting insights into algorithm behavior in the juxtacortical, leukocor-
tical, intracortical, and subpial regions–which is the next frontier in MS lesion segmentation.

Simultaneous with the publication of this paper, we plan to make the code for generating SDI classifica-
tions and plots similar to Fig. 6 available from http://iacl.jhu.edu/. The 2015 Longitudinal Lesion Segmentation 
Challenge Website, currently offers a curt report of the performance of newly submitted results. It is our hope to 
also update the Website to offer plots similar to Fig. 6 for each new participant.
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Data availability
The Challenge training and test data is available from http://smart-stats-tools.org/lesion-challenge.
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