
Abstract 
At the Language Technology Lab of DFKI we are developing advanced robust and efficient methods 
and components for free NL text processing which are suitable for data-intensive applications like text 
mining, information extraction or intelligent search engines. In this paper we will present a short 
overview of some of the core components, and how they have been used together with well-known 
Machine Learning tools as part of two application projects in the area of text mining, especially text 
classification. 

1 Introduction 
Text Mining (TM) is concerned with the task of extracting relevant information from natural language 
(NL) text documents and to search for interesting relationships between the extracted entities (i.e., 
structured data objects). A challenging feature of TM systems is that the information is only implicitly 
encoded in an unstructured way from the perspective of a computational system. Thus, a major first 
step in every TM system is to map the unstructured NL text to a structured internal representation  
(basically a set of data objects), which is then processed by the mining algorithms. It seems obvious that 
the more structure one can extract from the NL texts the better the mining algorithm might perform. In 
principle, it would be possible to use an exhaustive and deep generic text understanding system, which 
would aim to accommodate the full complexities of a language and to make sense of the entire text. 
However, even if it would be possible to formalize and represent the complete lexicon and grammar of 
a natural language, the system would still need a very high degree of robustness and efficiency. It has 
been shown that realizing such a system is at least today impossible. However, in order to fulfill the ever 
increasing demands for improved processing of real-world texts, NL researchers have started to relax 
the theoretical challenge to some more practical approaches which handle the requested robustness and 
efficiency. This has lead to so called shallow NL processing approaches, where certain generic lan-
guage regularities which are known to cause complexity problems are either not handled, e.g., instead 
of computing all possible readings only an underspecified structure is computed or handled very 
pragmatical, e.g., by restricting the depth of recursion on the basis of a corpus analysis or by making us 
of heuristic rules, like “longest matching substrings”. This engineering view of language has lead to a 
renaissance and improvement of well-known efficient techniques, most notably finite state technology 
for parsing.  
We are interested in exploring and investigating re-usable and domain-adaptive language technology by 
viewing NLP as a stepwise process of normalization. In this paper we describe the experience we 
obtained by combining shallow NL technology with machine learning tools in the area of text classi-
fication which was conducted as part of two application projects. The main questions we were (and still 
are) interested: 

1. How deep do we have to analyse texts? 
2. Which learning algorithm is the best and how many training examples do we need? 
3. What can we expect for resulting accuracy? 

The (obvious?) main answer we obtained was that it all depends on the data but our results gave us 
some heuristics and hints that might help in other application domains. 

1.1 Project background 
The first project ICC – Innovation at the Call Center – was founded by the Ministry of Economy and 
Finances of the Saarland and has been realized in close collaboration with AOL. Its motivation resulted 
from the observation that customer care in technical domains is increasingly based on e-mail com-
munication, allowing for reproduction of approved solutions. For a Call Center agent, identifying the 
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customer’s problem is often time-consuming, as the problem space changes if new products are 
launched or existing regulations are modified. This task can partly be automated by a system suggesting 
relevant solutions for an incoming e-mail. Hence we developed an assistance system for automatic 
classification of emails to a set of predefined answering blocks, cf. [Busemann et al., 2000]. The second 
project TIM – Telekom Information Management – was funded by the German Telekom AG. The task 
was to produce a system for automatic press clipping, i.e. press releases should be automatically 
classified to several classes. Here, the main focus was on the system’s precision, i.e. a text should be 
classified only if it is sure that it belongs to the class.  

1.2 Shallow Natural Language Processing 
In both projects, linguistically based preprocessing of text documents is performed by SMES, an 
information extraction core system for real world German text processing [Neumann et al., 1997, 
Neumann et al., 2000].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig1 
 
It consists of two major components the Linguistic Knowledge Pool (LKP) and STP, the core shallow 
text processor of SMES (see Fig1). STP processes a NL-text through a chain of modules. We dis-
tinguish two primarily levels of processing, the lexical level and the clause level. Both are subdivided 
into several components. All lexical and grammatical components of SMES are realized by means of 
cascaded weighted finite state machines. The final result for a sentence computed by SMES is an 
underspecified dependence structure, where only upper bounds for attachment and scoping of modi-
fiers are expressed. 
 
Tokenization The tokenizer maps sequences of consecutive characters into larger units called tokens 
and identifies their types. Currently we use more than 50 token classes including generic classes for 
semantically ambiguous tokens (e.g., “10:15” could be a time expression or volleyball result, hence we 
classify this token as number-dot compound) and complex classes like abbreviations or complex 
compounds (e.g., “AT&T-Chief”). It proved that such variety of token classes simplifies the processing 
of subsequent sub-modules significantly. 
 
Morphology and Tagging Each token identified as a potential word form is analysed by the mor-
phological analysis including on-line recognition of compounds (which is crucial since compounding is 
a very productive process of the German language) and hyphen coordination (e.g., in “An- und 
Verkauf” (purchase and sale) “An-“ is resolved to “Ankauf” (purchase)). Each token recognized as a 
valid word form is associated with the list of its possible readings, characterized by stem, inflection 
information (e.g., case, person, gender) and part of speech category. Since a high amount of German 

Lexical Level 
• Text Tokenizer 
• Morphology 
• POS-Filtering 
• Named Entity Rc. 

Clause Level 
• Sentence topology 
• Phrase Recognizer 
• Grammatical Fct. Rec 

> 150.000 lemmata; 
special named entity lexica; 
compound & tagging rules; 

general (NP, PP, VG); 
special (lexicon-poor, 
Time/Date/Names); 
general sentence patterns; 

Lexical DB 

Finite State Grammars 

Text Under-specified 
Dependency  
Trees 

Shallow Text Processor  

Linguistic Knowledge Pool Text Chart 

Navigation 



word forms is ambiguous efficient disambiguation strategies are needed. Apart from manually con-
structed rules (taking into account of German specific spelling rules), we also used rules automatically 
determined by Brill's tagger, [Brill, 95]. 
 
Named entity finder Named entities (NE) such as organizations, persons, locations and time expres-
sions are dynamically identified using finite-state grammars. Since some NEs (e.g. company names) 
may appear in the text either with or without a designator, we use a dynamic lexicon to store recog-
nized NEs without their designators (e.g., “Braun AG” vs. “Braun”) in order to identify subsequent 
occurrences correctly. In the whiteboard project (see sec. 5) we have recently developed an unsu-
pervised learning method for NE recognition based on Maximum Entropy Modeling which will be used 
to automatically extend the existing NE coverage of SMES. 
 
Parsing In most of the well-known shallow text processing systems cascaded chunk parsers are used, 
which perform clause recognition after fragment recognition following a bottom-up style. We have also 
developed a similar bottom-up strategy for the processing of German texts. However, the main 
problem we experienced using the bottom-up strategy was insufficient robustness: because the parser 
depends on the lower phrasal recognizers, its performance is heavily influenced by their respective 
performance. As a consequence, the parser frequently wasn't able to process structurally simple sen-
tences, because they contained, for example, highly complex nominal phrases.  
For that reason we developed a novel top-down/bottom-up chunk parser, which consists of three major 
subcomponents. 
During the first step of the parser a cascade of finite-state grammars are applied to the stream of lexical 
tokens and named entities in order to determine the topological structure of the sentence according to 
the linguistic field theory. A sentence is segmented into several parts: the front field, the left verb part, 
middle field, right verb part, and rest field. Subclauses can also be expressed in that way such that the 
left verb part is either empty or occupied by a relative pronoun or a subjunction element, and the 
complete verb group is placed in the right verb part. Note that each separated field can be arbitrarily 
complex with very few restrictions on the ordering of the phrases inside a field. After the phrase 
recognizer has expanded the corresponding phrasal strings, a further analysis step is done by the 
grammatical function recognizer which identifies possible arguments on the basis of the lexical 
subcategorization information available for the local head. The final output of the clause level for a 
sentence is thus an underspecified dependence structure. This is a flat dependence-based structure of 
a sentence, where only upper bounds for attachment and scoping of modifiers are expressed. 
 
SMES has a huge lexical database with more than 150.000 stem entries, more than 12,000 
sub-categorization frames as well as basic lexicons for proper names. During several experiments we 
observed that SMES has a very good performance and coverage (e.g., 97,9 % tagging accuracy, a 
precision of 95.77 % and a recall of 85 % for the NE recognizer, and about 87% F-measure for the 
chunk parser), cf. [Neumann et al., 2000]. Complete processing of a text with about 4500 words takes 
about 1 second. Very important in the context of this paper is SMES's high degree of modularity: each 
component can be used in isolation. Thus, it is possible to run only a subset of the components, e.g. to 
perform term extraction by using only the specialized sub-grammars or/and the phrasal grammars. 

1.2 Machine Learning Software 
For the task of text classification, several Machine Learning tools, which stand for different learning 
paradigms, have been selected and evaluated in different settings of our domains: the decision tree 
learners ID3 [Quinlan, 1986] and MC4 which combines ID3 and pruning methods of C4.5 [Quinlan, 
1992], the rule-based learner RIPPER [Cohen, 1995] and its boosted version, and the support vector 
machine learner SVM-Light [Joachims, 1998]. Recently, we conducted additional experiments for 
email classification with a ROCCHIO-like [Lewis et al, 1996] relevance feedback algorithm and a 
SVM implementation based on SMO [Platt, 1999] which promise even better results. Unfortunately up 
to now we did not perform tests using the same preconditions as with the other systems. 

2 Data  
The kind of data is essential for SMES and ML systems. In our scenarios the press releases have been 
of a much better quality than the emails. For instance, in emails punctuation marks are used very 



loosely; we had to cope with a large amount of misspellings, and most emails lacked grammatical 
correctness, as can be seen in the following example: 
” Wie mache ich zum mein Programm total deinstalieren, und wieder neu instalierem, mit, wen Sie mir 
senden Version 4.0 ??????????????” which roughly translates to: ”How do I make to mine program 
totally deinstal, and again new reinstall, with, who you send to me version 4.0 ??????????????”. 
In general, the decision on how deep linguistic preprocession can be useful depends on the data (be-
cause of the pure recall expected). If you go too deep you might not get any results, whereas if you 
decide to stay on the surface, you will probably get problems in detecting structural similarities in data. 
Concerning the ML algorithms, the number of categories and training examples available (and their 
distribution among the categories) and the length of the texts are important parameters. In ICC there 
are 2350 training examples and 44 categories. The emails contain 60 words on average. In TIM there 
are 824 training examples and 6 categories. The press releases contain 578 words on average. This 
different information had important effects on our results. A further important aspect concerns the 
noisiness of data. It turned out that the data of ICC was noisier than that of TIM in the following sense: 
- in some emails several problems are mentioned, i.e. several categories are appropriate 
- the category system is ambiguous by offering several classes for the same problems (highlighting 

several sub-themes) 
- the example corpus has been ”created” by the clerks in the call center and has not been supervised 

by some expert(s). 
We studied the influence of non-linguistic and linguistic preparation on data that is fed to the ML 
programs by selecting a subset of SMES’s components. We tried simple letter trigrams, morphological 
analysis of nouns, verbs and adjectives, and shallow parsing methods that extract domain specific 
information. The main issue of the “deeper” linguistic preprocessing is the combination of domain 
knowledge with pure statistical methods of the ML part. Furthermore we experimented with several 
different feature weighting measures like binary, word counts, or several different relevance measures 
like tf-idf or Chi-Square. In general tf-idf measurements produced the best result except for 
SVM-Light where we used pure word counts. 

3  Results 
The kind of measurement is “accuracy” which means in average X percent of incoming new texts will 
be classified into the correct category. All measurements were done using 10 fold cross validation.  

3.1    ICC Experiments 
We made several tests using different data preprocessing for the ML algorithms. We started our test 
series with letter trigrams. The second preprocessing has been morphological analysis. Here the 
Learner was fed with unknown words and the stems of nouns, verbs, adjectives and adverbs. The last 
kind of data preprocessing consisted of shallow text processing. We found that main information of 
emails in a Call Center is to be found in sentences containing negation and special words as well as in 
questions such as: “Why can’t I read my email attachments?” or “I can’t read my email attachments.”. 
The results are: 
 

    
trigram morph  shallow 

 
ID3      28.45  46.82  44.55 
MC4     29.29  47.45  45.67 
RIPPER   47.12  56.11  56.92 
Boosted R  52.78  60.37  60.76 
SVM-Light  54.29  58.29  61.42 
 
This test series show that morphological analysis of short German texts seems to be a better choice than 
simple trigramming. The decision whether to introduce additional knowledge by using shallow parsing 
should depend on the used ML algorithm. 

3.2 TIM Experiments  
In TIM we didn’t proceed to deeper SMES yet but we intend doing this in future research. The results 
were: 



 
    trigram morph  

 
ID3      74.44  75.33 
MC4     72.35  72.00 
RIPPER   71.01  70.34 
Boosted R  79.55  79.67 
SVM-Light  81.25  81.67 
 
Again SVM-Light outperformed all other learning algorithms. Furthermore, because SVM-Light 
provides the possibility to take only examples into account that cause high confidence values it can be 
tuned for high-precision classification. Morphological analysis does not significantly raise the classi-
fication accuracy. The reason is that the documents are much larger thus linguistic normalization of 
words is not that important. However, it might also be the case, that because of the low number of 
different classes of the TIM corpus (6 classes), the ML learners are not “forced to understand” the texts 
in certain detail, because “meaning differences” are sufficiently represented in character sequences. 

3 Ongoing and future work 
For complex tasks like the discovery of domain-specific relations from real-world NL texts, more 
complex NL components have to be investigated, e.g., accurate analysis of grammatical functions, deep 
case or anaphora resolution. Hence, the necessary amount of deep processing seems to increase with 
the complexity of the tasks. In the DFKI project whiteboard1, methods and technologies for the in-
tegration of shallow and deep NLP are explored. One main strategy we are following could be par-
aphrased as “demand-driven control ”: only call deep NL components if a more detailed and accurate 
analysis is requested for the relevant data objects computed by the shallow components. The other main 
strategy we are following is the automatic domain-specific extraction and extension of general lin-
guistic resources using hybrid machine learning methods, e.g., in order to bootstrap domain-specific 
lexical and grammatical knowledge, cf. [Neumann, 2001]. In both cases we hope to be able to combine 
the advantage of deep (precise and exhaustive) and shallow (robust and efficient) natural language 
methods into one overall model. 
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