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Abstract—For activity detection on biomedical time-series data,
biomedical signals are modeled as a switching linear dynamical
system with random variables, including discrete and continuous
dynamics. We present a formalism for representing a system’s
joint probability density function as a hybrid factor graph.
Solving inference problems is based on belief propagation using
message passing. Inference results yield the activity estimations
in terms of probability distributions instead of binary decisions.
This work builds on previous efforts to consolidate factor graphs
as unifying representations for signal processing algorithms. We
show that the formalism can be successfully applied to detect
activities in surface electromyography data acquired during walk-
ing. The modularity of factor graphs enables the straightforward
adoption and extension of the formalism expanding its scope of
application.

Index Terms—factor graphs, probabilistic graphical models,
inference algorithm, activity estimation, activity detection, belief
propagation, biomedical engineering

I. INTRODUCTION

An important goal of biomedical engineering is the inter-
pretation of biomedical signals, for which activity changes and
abnormalities must be detected. Robust activity detection on
biomedical time-series data may then permit the interpretation
for diagnostic purposes, the derivation of clinical decisions, or
even a closed-loop control of medical devices.
In practice, many biomedical signals exhibit switching behav-
ior, i.e., the underlying physiological system changes rapidly
or the data acquisition is corrupted due to a sudden failure. We
consider a concrete example using surface electromyography
(sEMG) data, reflecting the activity of separate muscles or
groups of muscles. Activities can be modeled as discrete
random variables with the categories active and inactive, and
sEMG data can be modeled as a continuous random variable.
To combine discrete and continuous random variables, we
model a switching linear dynamical system (SLDS) in hybrid
factor graphs. As a subset of probabilistic graphical models,
factor graphs provide a consistent framework, modular setup,
and high clarity due to the graphical representation. Further-
more, inference algorithms can be directly derived from belief
propagation for calculating marginal distributions.
SLDSs have been used in a variety of domains: In control
theory, they were investigated as Markov Jump Linear Systems
[1]. In the context of state estimation and target tracking, the
SLDS concept was introduced as Interacting Multiple Model

estimator [2] or Switching Kalman Filter [3].
In the machine learning community, several approximate in-
ference algorithms have been introduced, see for instance
[4]. In the context of factor graphs, SLDSs have so far
been considered by Zoeter and Heskes [5] to solve inference
problems on respective factor graphs by applying Expectation
Propagation. The study presents the Markov structure of the
model graphically. However, it does not include the derivation
of nodes and message types required [5]. In comparison, we
use the sum-product algorithm [6] to derive the inference
algorithm on the modeled SLDS.
Within the scope of this work, we implement the nodes
and message types needed to facilitate modular construction
of hybrid factor graphs. We describe the derivation of the
inference algorithm on the resulting hybrid factor graph based
on forward and backward message-passing and show that
the resulting inference algorithm enables activity detection
on sEMG data where activities are determined as probability
distributions instead of binary decisions.
We extend previous efforts aiming to introduce factor graphs
as a unifying approach to signal processing, see [7]. In the
same spirit, we provide straightforward factor graph building
blocks, which can be easily combined and connected with the
previous factor graph nodes in [7]. Messages can be passed
over the graph using simple-to-use tabulated propagation rules.
The rest of the paper is structured as follows: In Section II
the fundamentals of factor graphs including operation rules
are depicted. Following, the mathematical description of the
SLDS and its modeling in hybrid factor graphs is outlined
in Section III. Section IV presents the application of the
developed inference algorithm to sEMG data sets recorded
during walking. Lastly, the conclusion summarizes the findings
of the work and points out limitations.

II. FUNDAMENTALS

A main goal in probabilistic models is to determine the
marginal probability density function (MPDF) of a subset of
variables using the joint probability density function (JPDF)
over all variables in the model. Generally, for computing
MPDFs, we need to solve the integral over all variables.
Message passing on factor graphs allows to simplify compu-
tationally expensive calculations by exploiting the conditional
independence structure of the probability density function:
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Figure 1: Graphical representation of Equation (1) with −→µ
as forward and ←−µ backward messages on the edges towards
X3. Dashed boxes highlight the combination of nodes during
message passing by eliminating variables.

Global functions (dependent on all variables) are factorized by
a product of local functions, each depending only on a subset
of variables [6]. This in turn allows to eliminate variables
before multiplying factors during inference.
The following declaration of the functionalities of factor
graphs is based on the work of Loeliger et al. [7].
Figure 1 depicts a factor graph for the factorized JPDF

f(x1, . . . , x7) = f1(x1)f2(x2)f3(x1, x2, x3)f4(x4) (1)
· f5(x3, x4, x5)f6(x5, x6, x7)f7(x7)

of continuous random variables X1, . . . , X7. The messages
µ on the edges of the factor graph are determined by the
sum-product algorithm: By applying the sum-product rule,
messages are computed from leaves inward, when the factor
graph is a tree and all required incoming messages are given,
see [7] for more details on this convention. The direction of
the messages is given by the direction of the mathematical
operation indicated by the used nodes. In Figure 1, the MPDF
for the variable/edge X3

f3(x3) ∝ −→µ C(x3)
←−µ D(x3) (2)

is determined as the product of the forward message −→µ C(x3)
and the backward message ←−µ D(x3) on the edge X3.
Passing messages over a factor graph combines nodes to sub-
graphs (dashed boxes in Figure 1) by eliminating variables.
Despite high model complexity, this leads to efficient inference
algorithms. The classical message-passing algorithm applied
to cyclic factor graphs usually does not converge to the exact
solution. Section III includes an approach for dealing with
specific cyclic factor graphs, however.

Message Types In factor graphs, various types of distri-
butions can be used as messages. In Figure 1, the factors f
represent abstract nodes without specific functions for illus-
trating the basic functionalities of factor graphs. For the use
of Gaussian distributions, Loeliger et al. [7] define basic nodes
for e.g. multiplication and summation according to tabulated
rules. In this work, we additionally use discrete distributions,
Gaussian mixture distributions, and their combination as mes-
sages on a hybrid factor graph.
A discrete message µX(x) – representing the distribution of a
discrete random variable X – is defined by the parameters αXi

specifying the probability of the respective discrete category i
with i = 1, . . . , k. The semantics of a discrete message is:

pX(x) =
∑

xi∈RX

αXi δ(x− xi) with αXi ≥ 0, (3)

where δ defines the Dirac delta function. The range of the
discrete variable X is RX = {x1, x2, . . . , xk}. A Gaussian
mixture message µX(x) – representing the distribution of a
continuous normal distributed random variable X – is defined
as a tuple of the parameters weights wXi , means mXi , and
variances VXi depicting a sum of n Gaussian distributions,
where i represents the respective Gaussian distribution in the
sum. The semantics of a Gaussian mixture message is:

pX(x) =

n∑
i=1

wXi
· N (x;mXi

, VXi
), with wXi

≥ 0. (4)

III. SLDS AS HYBRID FACTOR GRAPH

The combination of discrete and continuous variables calls
for a hybrid representation. For this, we model an SLDS that
combines various linear dynamical systems, switching depen-
dent on the discrete state. Hereafter, we give the mathematical
description of an SLDS following the definition in [4].

SLDS The hybrid dynamics of the system is given by the
discrete and the continuous latent variables, Ht and Xt in
each time step t = 1, . . . , T . The observation is modeled as a
continuous variable Yt. The transition distribution

pHt|Ht−1

(
h(l)

∣∣∣h(k)
)
= P

(
Ht = h(l)

∣∣∣Ht−1 = h(k)
)

(5)

represents a table, which contains the probabilities with which
the system switches between discrete categories of Ht.
In the probabilistic sense, the distribution pHt|Ht−1

(
h(l)

∣∣∣h(k)
)

describes a conditional joint probability density function of
Ht given the distribution of Ht−1. Superscripts indicate the
category of a discrete variable. The range of values of Ht is
defined as RH =

{
h(1), h(2), . . . , h(q)

}
. The continuous state

transition equation for an SLDS is

Xt = A(Ht)Xt−1 +W with W ∼ N (0, Q(Ht)) (6)

and the observation equation is

Yt = C(Ht)Xt + V with V ∼ N (0, R(Ht)). (7)

The discrete variable Ht defines which linear dynamical
system is to be used in time step t. In case Ht = h(l), the
linear dynamical system is defined by matrices Al, Ql, Cl and
Rl. The observed variable Yt depends on latent variables Ht

and Xt. The initial discrete distribution is

pH0

(
h(l)

)
= P

(
H0 = h(l)

)
(8)

and the initial continuous distribution is

pX0|H0

(
x
∣∣∣h(l)

)
= N

(
x;m

(l)
X0

, V
(l)
X0

)
. (9)

The JPDF of both discrete and continuous variables over T
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(a) Factor graph of an common SLDS with discrete-continuous dynamics. The gray
boxes depict the nodes that are combined to one single node for eliminating the loops
from the graph.
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(b) An SLDS transformed as a loop-free hybrid factor
graph. The gray shaded nodes represent the combined
nodes of the factor graph in (a).

Figure 2: SLDS in hybrid factor graphs (a) and SLDS in hybrid factor graphs with tree structure (b). Blue dashed edges/nodes
are discrete, red edges/nodes are continuous. Arrows highlight the direction of the arithmetic operation of the used nodes,
nevertheless, factor graphs are still undirected graphs.

time steps is:

pY0,...,YT ,X0,...,XT ,H0,...,HT
= pH0

pX0|H0
pY0|X0,H0

(10)

·
T∏

t=1

pHt|Ht−1
pXt|Xt−1,Ht

pYt|Xt,Ht
.

SLDS as Hybrid Factor Graph The graphical represen-
tation of the SLDS – described mathematically above – is
shown in Figure 2a as a hybrid factor graph containing discrete
and continuous nodes. Since the hybrid factor graph contains
loops, inference cannot be solved directly by applying the sum-
product rule. To deal with loops, we exploit the property of
factor graphs that nodes can be summarized by a compound
node. We eliminate the loops by summarizing the nodes
highlighted by gray boxes. Combining the nodes requires the
propagation of mixed discrete/continuous messages over the
gray nodes. To this end, we introduce the cluster message
type, which contains a discrete and a continuous part and is
based on the cluster distributions used in [4].

Cluster Messages We define a cluster message – represent-
ing the combined distribution of the discrete random variable
Ht and the continuous normal distributed random variable Xt

– as a tuple of the parameters weights w
(l)
Xi

, means m
(l)
Xi

, and
variances V

(l)
Xi

depicting l sums of n Gaussian distributions,
where i represents the respective Gaussian distribution in the
sum, and l is the category of the discrete variable Ht. The
semantics of a cluster message is:

pX,H(x, h) =
∑
i,l

w
(l)
Xi

δ
(
h− h(l)

)
N
(
x;m

(l)
Xi

, V
(l)
Xi

)
, (11)

with w
(l)
Xi
≥ 0.

Figure 3 visualizes a cluster message including the marginal-
ized discrete and continuous distributions whose discrete state
contains three categories. The index l depicts the category
of the discrete variable Ht. For each discrete category l the
cluster message contains a Gaussian mixture distribution. To
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Figure 3: Graphical representation of a cluster message with a
discrete state containing three categories l1, l2 and l3. For each
discrete category l the cluster message contains a Gaussian
mixture distribution. The components of the discrete distribu-
tion of the cluster message – marginalized over the continuous
variable – are shown as blue dashed lines. In dark red, the
Gaussian mixture distribution is shown marginalized over all
discrete categories.

determine the discrete distribution of the cluster message the
continuous variable is marginalized.
By using cluster messages and combining the highlighted
nodes in the gray boxes, the hybrid factor graph in Figure
2a is transferred to the hybrid factor graph in Figure 2b.

Inference Now that the resulting factor graph is a tree, the
inference problem is solvable by message passing: Inference is
performed by passing cluster messages forward and backward
over the whole factor graph. The MPDFs are calculated on
the edges H ′′

t , X
′′
t by combining the forward and backward

message. The combination is performed by multiplying each
part of one message with each part of the other message.



Pruning When combining Gaussian mixture distributions,
the number of Gaussian distributions increases in a quadratic
way in each time step t and thus exponentially over time. Large
numbers of Gaussian distributions obtained with a large T lead
to high computation times, which call for a approximation step
to preserve computational performance. We account for this by
applying pruning methods, which trim the number of Gaussian
distributions dependent on fixed parameters. As in any kind of
approximation, empirical errors occur with pruning and have
to be traded off against accuracy. Other methods for pruning
Gaussian mixtures are described in [8].

IV. APPLICATION ON SEMG DATA

This section presents the application of the inference algo-
rithm on the hybrid factor graph of Figure 2b, on sEMG data
to showcase its applicability in biomedical signal processing.
A key problem in activity detection on sEMG signals is
noise. Since the amplitude of sEMG signals is low, they are
characterized by a small signal to noise ratio (SNR) due to
the high noise components, making activity detection more
difficult. The processes occurring during the generation of
the sEMG signals can be approximated by means of an
autoregressive model (AR model) [9]. In an AR model, each
sample is represented as a linear combination of previous
samples and a noise term. The model presented in Section
III can be understood as an AR model and will be used in the
following to perform activity detection on real sEMG data.
We use sEMG data sets of ten subjects from the study in
[10], which contains data of the subjects right musculus tibialis
anterior, recorded during walking. The goal was to evaluate the
estimates of the discrete state – corresponding to the muscle
activity/inactivity – and the continuous state. We use a 30 s
segment of the raw sEMG signal, which is sampled with a
rate of 1500Hz, down-sampled to 500Hz.
Table I illustrates quantitative results, by means of precision
and recall using the proposed inference algorithm on the
hybrid factor graph of Figure 2b. We empirically set the model
parameters and artificially added noise to the raw sEMG data
to generate different SNRs. For determining precision and
recall, the average is reported over the ten subjects. Precision
and recall provide accurate estimation results for high SNRs
compared to small SNRs. Decreasing SNRs < 15 lead to
decreasing estimation accuracy. Each activity detection on a
sEMG data set takes a computation time of ≈ 5min.

TABLE I: Evaluation of the estimation results of the inference
algorithm on the hybrid factor graph of Figure 2b on sEMG
data. Different artificial SNRs are modeled by adding noise to
the raw sEMG data.

SNR Precision [%] Recall [%]
[dB] inactive active inactive active

15 19.52 91.86 11.24 99.78
25 54.16 98.19 38.57 99.82
35 95.62 99.69 91.23 99.88
45 97.45 99.89 98.30 99.93
55 98.45 99.96 98.90 99.97

V. CONCLUSION

We successfully modeled a switching linear dynamical
system in hybrid factor graphs. We solved inference prob-
lems by applying message-passing based on the sum-product
algorithm, combined with a pruning method to account for
the exponential growing of the Gaussian mixture distributions.
The inference algorithm over the factor graph delivers suitable
estimation results on sEMG data recorded during walking,
where small SNRs cause higher estimation errors than high
SNRs. All required nodes and message types have been im-
plemented. Hence, a modular construction of various types of
hybrid factor graphs becomes possible. Due to the modularity,
factor graphs can be easily extended by factors integrating
reference signals or various measurements.
There are four major limitations in this study that could be
addressed in future research: First, the empirical tuning of the
model parameters lead to inaccuracy. Second, the used pruning
method discards Gaussians, which causes loss of information.
Third, estimates with SNRs < 15 become mostly useless.
Finally, the high computational time ≈ 5min is impractical.
Despite mentioned limitations, our work extends previous
factor graph frameworks [7] and can be easily combined
with other factor graphs in a mix-and-match style. It is thus
a further step towards unifying signal processing algorithms
in a single framework. We have motivated the usefulness in
a first biomedical application and plan to extend these first
results to larger data sets and other biomedical signals, such as
electrocardiography and electroencephalography in the future.
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