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Abstract

In this paper we present1 sppc, a high-performance system for intelligent extraction

of structured data from free text documents. sppc consists of a set of domain-adaptive

shallow core components that are realized by means of cascaded weighted finite state

machines and generic dynamic tries. The system has been fully implemented for Ger-

man; it includes morphological and on-line compound analysis, efficient POS-filtering,

high performance named entity recognition and chunk parsing based on a novel divide-

and-conquer strategy. The whole approach proved to be very useful for processing free

word order languages like German. sppc has a good performance (more than 6000

words per second on standard PC environments) and achieves high linguistic coverage,

especially for the divide-and-conquer parsing strategy, where we obtained an f-measure

of 87.14% on unseen data.

Key words: natural language processing, shallow free text processing, German

language, finite-state technology, information extraction, divide-and-conquer parsing

1The paper is based on previous work described in (Piskorski and Neumann, 2000) and (Neumann,

Braun, and Piskorski, 2000), but presents substantial improvements and new results.
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1 Introduction

In the majority of current large–scale information management approaches linguistic text

analysis is restricted to be performed on the word level (e.g., tokenization, stemming,

morphological analysis or part-of-speech tagging) which is then combined with different

word occurrence statistics. Unfortunately such techniques are far from achieving optimal

recall and precision simultaneously. Only in few research areas viz. information extraction

(Grishman and Sundheim, 1996; Cowie and Lehnert, 1996) or extraction of ontologies

from text documents some approaches (e.g., (Assadi, 1997)) already make use of partial

parsing. However, the majority of current systems perform a partial parsing approach

using only a very limited amount of general syntactic knowledge for the identification of

nominal and prepositional phrases and verb groups. The combination of such units is

then performed by means of domain-specific relations (either hand-coded or automatically

acquired). The most advanced of today’s systems are applied to English text, but there

are now a number of competitive systems which process other languages as well (e.g.,

German (Neumann et al., 1997), French (Assadi, 1997), Japanese (Sekine and Nobata,

1998), or Italian (Ciravegna et al., 1999)).

Why shallow processing? Current large–scale information management systems IMS

are concerned with the task of extracting relevant features from natural language (NL) text

documents and searching for interesting relationships between the extracted entities (i.e.,

structured data objects), e.g., text mining, information extraction, semantics–oriented in-

formation retrieval or extraction of ontologies from NL texts, see also fig. 1. A challenging

feature of such IMS is that the information is only implicitly encoded in an unstructured

way from the perspective of a computational system. Thus, a major first step is to map

the unstructured NL text to a structured internal representation (basically a set of data

objects), which is then further processed by the application and domain–specific algo-

rithms (e.g., in the case of text mining these are known data mining algorithms and in

the case of information extraction they are domain–specific template filling and merging

algorithms).
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Figure 1: Applications of shallow text processing

It seems obvious that the more structure one can extract from the NL texts the better

the application specific algorithms might perform. In principle, it would be possible to use

an exhaustive and deep generic text understanding system, which would aim to accom-

modate the full complexities of a language and to make sense of the entire text. However,

even if it were be possible to formalize and represent the complete lexicon and grammar

of a natural language, the system would still need a very high degree of robustness and

efficiency. It has been shown that, at least today, realizing such a system is impossible

for large–scale NL processing. However, in order to fulfill the ever increasing demands for

improved processing of real-world texts, NL researchers have started to relax the theoret-

ical challenge to some more practical approaches which handle the requested robustness

and efficiency. This has lead to so–called shallow NL processing approaches, where certain

generic language regularities which are known to cause complexity problems are either not

handled, e.g., instead of computing all possible readings only an underspecified structure

is computed or handled very pragmatically, e.g., by restricting the depth of recursion on
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the basis of a corpus analysis or by making use of heuristic rules, like “longest matching

substrings”. This engineering view of language has lead to a renaissance and improvement

of well-known efficient techniques, most notably finite state technology for robust parsing.

NLP as normalization We are interested in exploring and investigating large–scale

re-usable and domain-adaptive language technology by viewing NLP as a step–by–step

process of normalization from more general coarse-grained to more fine-grained informa-

tion depending on the degree of structure and the naming (typing) of structural elements.

For example, in the case of morphological processing, the determination of lexical stems

(e.g., “Haus” (house)) can be seen as a normalization of the corresponding word forms (e.g.,

“Häusern” (houses-PL-DAT) and “Hauses” (house-SG-GEN). In the same way, named en-

tity expressions or other special phrases (word groups) can be normalized to some canonical

forms and treated as paraphrases of the underlying concept. For example, the two date

expressions “18.12.98” and “Freitag, der achtzehnte Dezember 1998” could be normalized

to the following structure:

〈type = date, year = 1998,month = 12, day = 18, weekday = 5〉.

In the case of generic phrases or clause expressions, a dependence-based structure can be

used for normalization. For example, the nominal phrase “für die Deutsche Wirtschaft”

(for the German economy) can be represented as

〈head = f ür, comp = 〈head = wirtschaft, quant = def,mod = deutsch〉〉.

One of the main advantages of following a dependence approach to syntactic representation

is its use of syntactic relations to associate surface lexical items. Actually this property has

lead to a recent renaissance of dependence approaches especially for its use in shallow text

analysis (e.g., (Grinberg, Lafferty, and Sleato, 1995; Oflazer, 1999)). Following this view

point, domain-specific IE templates also can be seen as normalizations because they only

represent the relevant text fragments (or their normalizations) used to fill corresponding

slots by skipping all other text expressions. Thus seen, two different text documents which

yield the same template instance can be regarded as paraphrases because they “mean”

the same.
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Robust parsing of unrestricted text In this paper we will take this point of view as

our main design criteria for the development of sppc: a robust and efficient core engine for

shallow text processing. sppc consists of a set of advanced domain–independent shallow

text processing tools which supports very flexible preprocessing of text wrt. the degree

of depth of linguistic analysis. In contrast to the common approach of deep grammat-

ical processing, where the goal is to find all possible readings of a syntactic expression,

we provide a complete but underspecified representation by only computing a general

coarse-grained syntactic structure which can be thought of as domain independent. This

rough syntactic analysis can then be made more precise by taking into account domain-

specific knowledge. Our parser recognizes basic syntactic units and grammatical relations

(e.g., subject/object) robustly by using relatively underspecified feature structures, by

postponing attachment decisions and by introducing a small number of heuristics.

sppc is a very fast and robust, completed and functioning large–scale NLP system

for German which possesses a high degree of modularity and domain–independence. Be-

sides this important engineering strength of the system, the major scientific contribution

is its novel two-phase robust parsing strategy. In contrast to standard bottom-up chunk

parsing strategies, we present a divide-and-conquer strategy for robust parsing that only

determines the topological structure of a sentence (i.e., verb groups, sub–clauses) in a first

phase. In a second phase the phrasal grammars are applied to the contents of the different

fields of the main and sub-clauses followed by a final step which determines the grammat-

ical functions for the identified syntactic constituents. The whole approach proved to be

very useful for processing free word order languages like German what concerns speed,

robustness and coverage (f-measure of 87.14% of unseen data, see sec. 6). Although the

basic underlying machinery of our robust parsing approach is based on state–of-the–art

finite technology, the degree and richness of the syntactic structure (constituent structure,

grammatical functions, agreement information) goes beyond most of the recent shallow

parsing systems; especially for processing unrestricted German NL text, it seems to be the

best.

sppc has a high application potential and has already been used in different application

areas ranging from processing email messages (Busemann et al., 1997), text classification
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(Neumann and Schmeier, 1999), text routing in call centers, text data mining, extraction

of business news information (these latter as part of industrial projects), to extraction of

semantic nets on the basis of integrated domain ontologies (Staab et al., 1999). sppc has

been fully implemented for German with high coverage on the lexical and syntactic level,

and with an excellent speed. We have also implemented first versions of sppc for English

and Japanese using the same core technology (see also sec. 8). In this paper we will,

however, focus on processing German text documents.

The rest of the paper is organized as follows. In section 2 we give a complete overview

of the whole system by describing briefly all relevant components using a running example

to demonstrate some of the technical details. In the sections 3 to 5 we then describe

in more detail the major novel aspects of our parsing approach. In section 3 we describe

important aspects of our finite state technology, in section 4 we define and discuss a robust

algorithm for performing online recognition of German compounds, and in section 5 the

robust two–level parser is described. Evaluation results of major components are collected

and summarized in section 6. In section 7, we relate our work basically to other methods

which also treat unrestricted German texts, and conclude the paper in section 8 with a

short description of some interesting future directions.

2 System overview

In this section we give a complete, but rough overview of the system. Details of major

novel aspects of our approach will then be described in the following sections. The ar-

chitecture of sppc is shown in Figure 2. It consists of two major components, a) the

Linguistic Knowledge Pool lkp and b) stp, the shallow text processor itself. The stp

provides a partial analysis of NL-texts by exploiting the linguistic resources available in

the lkp. Emphasis is placed on recognizing basic syntactic units without attempting to

resolve attachment ambiguities or to recover missing information (such as traces resulting

from the movement of constituents). The output of stp is a sequence of flat underspeci-

fied (partial) dependency trees (udts), where only upper bounds for attachment and the

scoping of modifiers are expressed (see Section 5 for details). Besides the identification of
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Figure 2: The blueprint of the system architecture.

shallow linguistic patterns (i.e., chunks) and the labeling of head-dependent relations, stp

also assigns grammatical functions (e.g., subject, object) using a large subcategorisation

lexicon.

We distinguish two primary levels of processing within in stp, the lexical level and

the clause level. Both are subdivided into several components. In order to illustrate their

functionality we will use the following sentence as a running example

Die Siemens GmbH hat 1988 einen Gewinn von 150 Millionen DM, weil die

Aufträge im Vergleich zum Vorjahr um 13% gestiegen sind.

Siemens Ltd made a profit of 150 million German Marks in 1988 due to a 13%

increase in contracts in comparison to the previous year.

2.1 Lexical Processing

Tokenization The first component on the lexical level is the text tokenizer which

maps sequences of characters into greater units, called tokens and identifies their type (e.g.,
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lowercase words, abbreviations). We use a wide variety of about 50 token types which

simplifies the processing of the subsequent modules. For instance, the token “GmbH”

(Ltd) in our example would be classified as a mixed word since it consists of both lower

and upper case letters, where such information determines a potential acronym.

Morphological analysis Each token which is identified as a potential word form is fur-

ther processed by the morphological component which includes inflectional analysis

of word forms, and on-line recognition of compounds (e.g., “Kunststoffbranche” synthetic

materials industry). The latter tasks is crucial when processing unrestricted NL texts since

compounding is a very productive and creatively used property of the German language

(see more details in section 4). Each recognized valid word form is associated with the list

of its possible readings consisting of the stem, inflection information and the part-of-speech

(POS–) category. For example, the token ”Gewinn” in our example sentence would be

associated with the verb reading [POS: V FORM: IMP NUM: SG] (imperative singular of

to win) and the noun reading [POS: N NUM: SG CASE: {Nom, Dat, Acc}] (revenue in

singular nominative, dative or accusative). Our morphological component uses a full-form

lexicon containing about 700,000 entries which were automatically created from 120,000

stem entries in the morphological component morphix (Finkler and Neumann, 1988). We

did not use morphix in our system, simply because it is not available in C++ (the major

programming language of the core system) with its full functionality. On the other hand, it

is clear that making use of a full-form lexicon simplifies on-line morphological processing.

Hence our combined approach—full-form lexicon with on-line compounding— also seems

to be an interesting practical alternative.

POS–tagging Words which are ambiguous with respect to their POS–category are dis-

ambiguated using three types of manually constructed filtering rules: (a) case-sensitive

rules, (b) contextual filtering rules based on POS-information (e.g., change tag of word

from noun or verb to noun if the previous word is a determiner), and (c) rules for filter-

ing out rare readings (e.g., “recht” - right vs. rake(3rd person, sg)). In order to achieve

broader coverage we integrated (and manually checked) rules determined by Brill’s tagger
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(Brill, 1993). The current version of the system contains about 120 filtering rules which are

compiled into one single finite-state expression using the techniques described in section

3. As a simple illustrative example, consider again the word ”Gewinn” (meaning either to

win or revenue) where the POS–tagger would filter out the verb reading since verbs can

only be used with an uppercase initial letter in the initial position of a sentence.

Named–Entity recognition In the final step of the lexical component, the Named

Entity (NE) finder treats temporal expressions like time and date, several name ex-

pressions such as organizations, persons and location. Each type of NE is defined as a

finite–state sub–grammar which takes into account the specific context an NE appears

in (e.g., company designator, first name, morpho–syntactic properties of contextual ele-

ments). We are following a rule–based pattern–recognition approach similar to the ap-

proaches described in (Appelt et al., 1993; Grishman, 1995), such that NE’s are identified

basically by looking for contextual cues relying only on a small amount of NE–specific

dictionaries (e.g., a list of the names of the 50 largest companies). The major reason for

doing this is that the creation and use of NE’s change dynamically over time, so that a

pure dictionary approach is not realistic. We also decided to use a rule–based approach,

because statistics based approaches (cf. (Borthwick, 1999) and (Bikel et al., 1997)) are

too corpus and domain sensitive, and a rule–based approach is usually easier to maintain.

However, we observed that subsequent occurrences of already recognized NE’s fre-

quently appear in abbreviated form (e.g., ”Siemens GmbH” and ”Siemens”), often by

making use only of a single word. Instead of defining specific recognition rules for these

cases, we developed a method for the online creation of a dynamic NE lexicon. Once an

NE has been recognized by means of the known rules (e.g., “Martin Marietta Corp.”), we

store all words (without the contextual cues) in a lexicon (e.g., separate, but connected

entries for “Martin Marietta”, “Martin” and “Marietta”). Then, for each unknown word

sequence or common noun (e.g., the word “March” is usually used to refer to the month,

but could also be part of an NE) which occurs in a certain distance to an recognized NE,

we look it up in the dynamic lexicon. In this way, an NE–specific kind of co–reference

resolution is performed. Continuing the annotation of our running example with extracted
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features, the NE–recognizer contributes as follows:

Die [company Siemens GmbH] hat [num 1988] einen Gewinn von [monetary 150

Millionen DM], weil die Aufträge im Vergleich zum Vorjahr um [percent 13%]

gestiegen sind.

Recognition of named entities could be postponed and integrated into the clausal level,

but it seems to be more appropriate to perform it at this stage since it reduces the amount

of potential sentence boundaries (many punctuation marks are included in named entities).

2.2 Clause Level

At the clause level, the hierarchical structure of the words of a sentence is constructed us-

ing our robust divide–and-conquer chunk parser. In section 5 the motivation as well as the

technical details are discussed, so we will introduce it here only very briefly. In contrast

to deep parsing strategies, where phrases and clauses as well as determination of their

grammatical functions are interleaved, we separate these steps into three corresponding

sub–components: 1) recognition of NPs, PPs, verb groups (VG), as well as named entity

(NE) phrases; 2) recognition of topological clause structure; and 3) recognition of gram-

matical functions. Steps 1 and 2 are interleaved, whereas step 3 operates on the output

of the topological structure recognition component. Steps 1 and 2 are realized by means

of finite state grammars. Step 3 is realized through a specialized constraint solver which

performs agreement checks between a verbal head and its dependents while taking into ac-

count the subcategorisation information which is available in the lkp (see Figure 2). The

finite-state backbone of the whole system currently consists of 141 (mainly disjunctive)

regular expressions plus a small number of lexical rules for passivization used in Step 3.

Again using our running example, in a first phase only the verb groups and the topo-

logical structure of a sentence according to the linguistic field theory (cf. (Engel, 1988))

are determined domain-independently. In our example, the recognition of verb groups

(VG yields—note that we assume that NE–recognition as already taken place):

Die [company Siemens GmbH] [V G hat] [num 1988] einen Gewinn von [monetary

150 Millionen DM], weil die Aufträge im Vergleich zum Vorjahr um [percent
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13%] [V G gestiegen sind].]]

and the determination of the topological structure results in the following bracketing sub–

clause structures (where MAIN-CL and SUB-CL stand for main clause and sub clause

respectively):

[MAIN−CL Die [company Siemens GmbH] [V G hat] [num 1988] einen Gewinn

von [monetary 150 Millionen DM], [SUB−CL weil die Aufträge im Vergleich zum

Vorjahr um [percent 13%] [V G gestiegen sind].]]

In the next phase, general (as well as domain-specific) phrasal grammars (nominal and

prepositional phrases) are applied to the contents of the different parts of the main and

sub-clauses. The current result of the analysis of our example sentence is enriched with

NP and PP bracketings (for nominal and prepositional constructs respectively):

[MAIN−CL [NP Die [company Siemens GmbH]] [V G hat] [num 1988] [NP einen

Gewinn] [PP von [monetary 150 Millionen DM]], [SUB−CL weil [NP die Aufträge]

[PP im Vergleich] [PP zum Vorjahr] [PP um [percent 13%]] [V G gestiegen sind].]]

In the final step, the grammatical structure is computed using a large subcategorization

lexicon for verb stems. It defines syntactic constraints for the arguments of the verb

(usually nominal phrases) in order to assign grammatical functions to them once they

have been identified (see details of this step in section 5). The final output of the parser

for a sentence is then an underspecified dependence tree, where only upper bounds for

attachment and scoping of modifiers are expressed (see Figure 3).

2.3 Information access

The system stores all partial results on each level of processing uniformly as feature value

structures (together with their type and the corresponding start and end positions of the

spanned input text) in a data structure called text chart (Piskorski and Neumann, 2000).

The different kinds of index information computed by the individual components (e.g., text

position, reduced word form, category, phrase) support an uniform flexible and efficient

access to all extracted features. Therefore unnecessary re-computations can be avoided
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Figure 3: The underspecified dependence structure of the example sentence.

and rich contextual information in case of disambiguation or the handling of unknown

constructions is provided. The system provides for a parameterizable XML interface, such

that the user can select which sort of computed information should be considered for

enriching the processed document with corresponding XML mark ups. In that way, the

whole system can easily be configured for the demands of different applications. Figure 4

shows a screen dump of the current GUI of sppc and demonstrates the navigation options.

2.4 Core Technology

The whole system has been realized on top of two major core technologies which are

briefly described here (see section 3 for more details). For efficiency and expressivity

reasons, one of the major design goals of sppc is to model all levels of processing as finite-

state (FS) devices2. Therefore, we developed a generic toolkit for building, combining

and optimizing FS devices which provides all necessary functionalities relevant to the

realization of the different processing levels (from tokenization to robust parsing) in a

uniform way. Nevertheless, the toolkit contains all major state–of–the–art FS operations

and is designed with the consideration of future enhancements and applications, as well as

2Computationally, FS devices are time and space efficient. From the linguistic point of view, local

recognition patterns can be easily and intuitively expressed as FS devices
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Figure 4: A screen dump of the system in action. The user can choose which level to inspect, as

well as the type of expressions (e.g., in case of named entities, she can select “all”, “organizaton”,

“date” etc).

its use within other FS-based frameworks. Relevant details of our FS–toolkit are discussed

in section 3.

Since in some cases FS devices are not an optimal storage device (e.g., maintenance of

dynamic dictionaries), we have defined a generalized version of tries3, which is a ubiquitous

tree-based data structure in text processing (Cormen, Leiserson, and Rivest, 1992). We

support storage of strings over an arbitrary alphabet, where each such string is associated

3A trie is a rooted tree with edges labeled by alphabet symbols, such that all outgoing edges of a node

carry different labels. Furthermore, each node contains boolean value which indicates whether the path to

the current node already constitutes a complete word.
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with an arbitrary object. In addition to the standard time-efficient operations for insertion,

searching, and deletion, we also included various operations for computing the longest and

the shortest prefix/suffix of a given sequence in the trie, which are indispensable in the

algorithm for compound decomposition (see section 4). Tries are also especially useful for

implementing self organizing lexica which we we employ for the realization of the context-

sensitive dynamic lexicon used in the process of the named-entity recognition mentioned

earlier. We extended the standard trie so that all nodes representing complete words are

connected, which allows efficient computation of statistical information to be performed

over the set of extracted information.

3 Finite-State Technology

In order to cover all STP-relevant types of FS devices and to allow for a parametrizable

weight interpretation we used the finite-state machine (FSM) as an underlying model for

our toolkit. An FSM is a generalization of the more familiar finite-state automaton (FSA),

finite-state transducer (FST) and their weighted counterparts (WFSA,WFST) (Mohri,

1997). FST’s are automata for which each transition has an output label in addition

to the input label. For instance, the FST in Figure 5 represents a contextual rule for

part-of-speech disambiguation. Weighted FS devices allow for assigning weights to their

transitions and states. In contrary to WFST’s which are tailored to a specific semiring for

weight interpretation (Mohri, 1997), the FSM’s are more general in that they admit the

use of arbitrary semirings.

More formally, we define a finite-state machine M as a 9-tupple

M = (Σi,Σo, Q, i, ci, F, C,E, (S,
⊕

,
⊗

, 0, 1)), where: Σi and Σo are input and output

alphabets, Q is a finite set of states, i is the initial state, ci is the initial weight, F is the

set of final states, C : F 7→ S is the final weight function, E ⊂ Q×(Σi∪ε)×(Σo∪ε)×S×Q

is the set of transitions and (S,
⊕

,
⊗

, 0, 1) is a semiring (Cormen, Leiserson, and Rivest,

1992), where 0 and 1 are the neutral elements of the summary operator
⊕

and the exten-

sion operator
⊗

. The semiring determines the interpretation of weights, i.e. the weight of

a path is computed by combining the weights of all arcs on this path using the extension
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Figure 5: A simple FST representing a contextual POS-disambiguation rule: change tag

of word form noun or verb to noun if the previous word is a determiner

operator, whereas the summary operator is used for combining the weights of all accepting

paths for a given input string which yield the same output. Since different accepting paths

might potentially produce different output, an output of an FSM applied to a given input

string is defined as a set of pairs, each consisting of an output string and an associated

weight computed as described above. Furthermore, only single alphabet symbols may be

used as transition labels, since most FS operations require this feature and time consuming

conversions may be avoided (see (Piskorski, 1999) for more formal details).

The architecture and functionality of our FSM Toolkit is mainly based on the tools

developed by AT&T (Mohri, Pereira, and Riley, 1996). The operations provided are di-

vided into: (a) rational and combination operations (e.g., composition, intersection), (b)

equivalence transformations (e.g., determinization, minimization) and (c) converting oper-

ations (e.g., creating graphical representations). The realization of most of them is based

on the recent approaches proposed in (Mohri, 1997), (Mohri, Pereira, and Riley, 1996),

(Roche and Schabes, 1995), (Roche and Schabes, 1996) and they work with arbitrary

real-valued semirings (only a computational representation of the semiring is needed). We

used the tropical semiring (R∪∞,min,+,∞, 0) for FS-pattern prioritization, whereas the

real semiring (R,+, ·, 0, 1) is appropriate when dealing with FS probabilistic grammars. 4

For instance, the patterns for named-entity recognition are represented as WFSA’s (see

figure 6), where the weights indicate their priorities. These WFSA’s are merged into an

optimized (deterministic and minimal) single WFSA representing all NE-recognition pat-

terns. Through the choice of using the tropical semiring all potential ambiguities can be

4If the weights represent probabilities, the weight assigned to a path should be the product of the

weights of its transitions, while the weight assigned to a set of paths with a common source and target

should be the sum of all path weights in the set.
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TOKEN: firstCapital

TOKEN: firstCapital
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STRING: Holding

STRING: AG

2

STRING: GmbH

3
STRING: &

STRING: Co.

STRING: Co

Figure 6: The automaton representing the pattern (here a simplified version)

for recognition of company names.

resolved.

In contrast to the AT&T tools, we provide some new operations relevant to STP. For

instance, the algorithm for local extension, which is crucial for merging part-of-speech

filtering rules into a single FST has been realized and adapted for the case of WFST’s.

Local extension (Roche and Schabes, 1995) of an FSM which transforms a into b is an

FSM that transforms string u into v, where v is built from the string u by replacing each

occurrence of a by b in such a way that each possible factorization of the input string u is

considered. The overall cost is computed by combining the weights of all transformations

of a into b with the extension operator. More formally, a local extension of an FSM M

is an FSM Mlocext, which for all u ∈ Σ∗
i with u = x1y1x2.....xnynxn+1 and ∀k ∈ 1, ..., n:

yk ∈ L(M) (M accepts yk), M transforms yk into yk with cost ck and ∀l ∈ 1, ...., n + 1:

xl ∈ Σ∗− (Σ∗ ◦ (L(M))◦Σ∗), transduces u into v where v = x1 ◦y1 ◦x2 ◦ ....◦yn◦xn+1 with

cost c1
⊗

c2
⊗

....
⊗

cn. The merging of all POS-filtering rules is then done by computing

the local extension of each rule represented as FST and combining the resulting FST’s

into a single optimized FST by applying composition, determinization and minimization.

We also improved the general algorithm for removing ε-moves (Mohri, Pereira, and

Riley, 1996), which is an essential operation in the process of determinization. We sketch

here briefly the major modifications. The standard algorithm is divided into two phases.

In the first phase, the input FSM M is subdivided into Mε containing only ε-moves and
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Mε containing all other arcs. Subsequently, M̂ε representing the transitive closure of Mε is

computed. Finally, the new equivalent ε-free FSM is constructed by iterating over the set of

transitions of M̂ε and modification of existing weights or introduction of new edges in Mε.

Since the computation of the transitive closure in the general case of arbitrary semirings

has the complexity of O(n3) assuming that the computation of
⊗

and
⊕

can be performed

in O(1) (Cormen, Leiserson, and Rivest, 1992), we implemented some modifications.

Firstly, in the preprocessing step all of the simple ε-moves are removed from the in-

put FSM, where an ε-move is considered as simple when its target state does not have

any outgoing ε arcs. Removing such transitions introduces new transitions to the input

FSM or minor weight modifications, and results in the appearance of new simple ε-moves.

Therefore, this process is repeated until no more simple ε-moves exist5. Analogously to

the standard algorithm, the resulting FSM is then subdivided into Mε and Mε. In the

next step, the transitive closure of each connected component in Mε is computed since one

could expect them to be small in relation to the overall size of Mε. The remaining proce-

dure is identical to that of the standard algorithm. Despite the fact that the modifications

described here impair the worst-case complexity, they proved to speed up the removal of

ε-moves considerably in the process of optimizing the FS grammars used in SPPC. As a

matter of fact, the second phase of the algorithm (computing the transitive closure etc.)

turned out to be superfluous since there were no remaining ε-moves.

The FSM Toolkit is divided in two levels: a user–program level consisting of a stand-

alone application for manipulating FSM’s by reading and writing to files and a C++-

library level which implements the user-program level operations and allows for easy em-

bedding of the toolkit into other applications.

4 Online compound analysis

In this section we describe the basic algorithm for performing compound recognition in

German, because we feel that our approach is of particular interest in the context of

5The technique described here is more of a guideline, since depending on input data one could define

simple ε-moves differently and use various methods for removing them.
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large–scale robust NL processing.6 Unlike in English, German compounds7 are in gen-

eral orthographically single words (e.g., “Computerspiel” - computer game) and they are

usually not lexicalized. Therefore, every token not recognized as a valid word form in

a lexicon is a compound candidate and since nouns are written with a capitalized ini-

tial letter in standard German it is not a straightforward decision to exclude such words

from being a compound (noun compounds are most frequent). Furthermore, German com-

pounds frequently include so called linking morphemes (e.g., “s” in “Forschungsausgaben”

- “Forschung” + “s” + “ausgaben” (research expenses). The syntactic head of a German

compound is the rightmost constituent and all other constituents function as modifiers of

the head.

The syntactic structure of a compound may be complex and ambiguous. For instance,

the structure of the compound “Biergartenfest” (beer garden party) could be [beer [garden

party]] (garden party with beer) or [[beer garden] party] (party in the beer-pub). In addi-

tion, more than one valid syntactic segmentation for a given compound might exist (e.g.,

“Weinsorten” could be decomposed into “Wein” + “sorten” (wine types) or “Wein” + “s”

+ “orten” (wine places). Semantically correct segmentation and computation of the inter-

nal structure of a German compound might require a great deal of knowledge, but since

computing such complete information might be unnecessary for performing more low–

level tasks (e.g., part-of-speech filtering or phrase recognition), we focus here on shallow

compound analysis and present an algorithm which computes a single syntactically valid

segmentation of a compound and determines its head while leaving internal bracketing

unspecified.

The basic idea of the algorithm is to use a full-form lexicon to find the longest suffix

and prefix of a compound candidate which are valid word forms and may function as

compound morphemes, and to finally try to segment the remaining string by consecutively

finding longest prefixes. Since the choice of the longest suffix and the longest prefix

6Actually we are not aware of any published technical details concerning large-scale German compound

recognition.
7A compound is a consecutive sequence of at least two morphemes which functions as a valid word

form.
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might sometimes not be correct (e.g., “Autoradiozubehör” car radio equipment, can not be

properly decomposed if we choose the longest prefix “Autor” (author) and the longest suffix

“zubehör” (equipment) since the remaining part “adio” can not be further decomposed

and is not a valid word form either), the algorithm iterates over all combinations of suffixes

and prefixes starting with the longest ones.

(1) procedure find segmentation(STRINGw1w2.....wn)

(2) LIST Infixes = ∅

(3) s← longest valid suffix(w1w2.....wn)

(4) while(s 6= ε) do

(5) p← longest valid prefix(w1w2.....wn−|s|)

(6) while(p 6= ε) do

(7) r ← w|p|+1w2.....wn−|s|

(8) while(r 6= ε) do

(9) t← longest valid infix(r)

(10) if(t = ε) t = longest valid linking morpheme(r)

(11) if(t 6= ε)

(12) Indexes.add(t)

(13) r ← r|t|+1.....r|r|

(14) else break;

(15) if(r = ε) return p + Infixes + s

(16) p← longest valid prefix(p1p2.....p|p|−1)

(17) s← longest valid suffix(s2p3.....s|s|)

(18) return ∅

Since there are some compound morphemes (prefix or infix) which are not valid word

forms we use a special list of morphemes which may function as compound prefix or infix

(e.g., “multi”, “mega”, “macro”, “top” and some verb stems). In order to improve pre-

cision, we introduced simple constraints for validating compound morphemes (separately

for prefixes, suffixes and infixes) which proved to pay off. For instance, coordinations are
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disallowed to be compound morphemes, whereas only verbs in imperative singular form

are accepted as compound prefixes.

The decomposition algorithm is presented on page 20 in pseudo–code. The function

longest valid suffix returns the longest suffix of a given string which is a valid word

form (or is included in the special morpheme list) and may function as a valid compound

suffix. Analogously, the functions longest valid prefix and longest valid infix return

the longest prefix of a given string which may function as a valid compound prefix or as a

compound infix, respectively. After determination of the suffix and prefix, the algorithm

tries to segment the remaining word sequence in the while-loop in line 8. If at some stage

no appropriate prefix can be found we then look (line 10) for a valid linking morpheme

(note that since we use a full-form lexicon the only morpheme which has to be considered

is “s”). After successfully identifying all compound morphemes (line 15) we perform an

additional handling of suffixes (not illustrated in the pseudocode) beginning with “s” since

they introduce some ambiguities (e.g., “Wertschöpfungsteil” - added value part could be

split into “Wert” + “schöpfung” + “steil” or “Wert” + “schöpfung” + “s” + “teil”).8

The algorithm described in this section achieves surprisingly high recall and precision

(see section 6).9

5 Clause level processing

In this section we describe the robust parsing strategy with a focus on the computation of

the topological structure of German sentences and grammatical function recognition (for

on overview of the whole parsing strategy, see section 2.2). Before discussing these details,

we firstly motivate the approach.

Problems with standard chunk parsers Most of the well-known shallow text pro-

cessing systems (cf. (Sundheim, 1995) and (SAIC, 1998)) use cascaded chunk parsers

8Note that it is relatively easy to extend this algorithm to compute all syntactically valid segmentations
9The algorithm is also used as a subroutine for resolving coordinated compounds like for instance, “Leder-

, Glas-, Holz- und Kunststoffbranche” (leather, glass, wood, plastic, and synthetic materials industry) or

‘An- und Verkauf” (purchase and sale). However, we will not discuss it here because of lack of space.
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which perform clause recognition after fragment recognition following a bottom-up style

as described in (Abney, 1996). We have also developed a similar bottom-up strategy for

the processing of German texts, cf. (Neumann et al., 1997). However, the main prob-

lem we experienced using the bottom-up strategy was insufficient robustness: because the

parser depends on the lower phrasal recognizers, its performance is heavily influenced by

their respective performance. As a consequence, the parser frequently wasn’t able to pro-

cess structurally simple sentences, because they contained, for example, highly complex

nominal phrases, as in the following example:

“[NP Die vom Bundesgerichtshof und den Wettbewerbshütern als Verstoß gegen

das Kartellverbot gegeißelte zentrale TV-Vermarktung] ist gängige Praxis.”

Central television marketing, censured by the German Federal High Court and the

guards against unfair competition as an infringement of anti-cartel legislation, is com-

mon practice.

During free text processing it might not be possible (or even desirable) to recognize such

a phrase completely. However, if we assume that domain-specific templates are associated

with certain verbs or verb groups which trigger template filling, then it will be very difficult

to find the appropriate fillers without knowing the correct clause structure. Furthermore,

in a sole bottom-up approach, some ambiguities – for example relative pronouns – can’t

be resolved without introducing much underspecification into the intermediate structures.

Therefore we propose the following divide-and-conquer parsing strategy: In a first phase

only the verb groups and the topological structure of a sentence are determined domain-

independently following roughly the theory of topological fields (Engel, 1988) (see Figure

7). In a second phase, general (as well as domain-specific) phrasal grammars (nominal

and prepositional phrases) are applied to the contents of the different fields of the main

and sub-clauses.

We call our parsing strategy divide-and-conquer, because we first identify a coarse–

grained, top–down sub–clause bracketing for a sentence (divide), and then apply the

phrasal grammars on each string of the identified sub–clauses independently (conquer),

which realizes a bottom–up step. This is in contrast to the standard bottom–up chunk
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“[CoordS [core Diese Angaben konnte der Bundesgrenzschutz aber nicht

bestätigen], [core Kinkel sprach von Horrorzahlen, [relcl denen er keinen

Glauben schenke]]].”

[[This information could not be verified by the Border Police] [Kinkel spoke of

horrific figures [which he did not believe.]]]

Figure 7: An example of a topological structure. It consists of two core sub–clauses (where

the second one has an embedded relative clause) which are combined in a simple coordinated

structure. Note that the comma is obligatory in German, and hence can be used as a reliable cue

for identifying possible sub-clauses.

parsers which would first compute all phrases before combining them to sub–clauses. The

whole approach seems to be very useful for robust processing semi-free word order lan-

guages like German, in which there is, in principle, no strict order for the various phrases

of a sentence, e.g., in German the two sentences “The student buys the book for his friend

on the campus” and “For his friend the student buys on the campus the book” are well–

formed (assuming for the moment, that German syntax would apply to English sentences).

This free word order is a real challenge even in the case of chunk parsing, because the order

of the phrases cannot be taken into account (in contrast to Languages like English, which

have a relative fixed word order) when identifying grammatical functions (which is nec-

essary for identifying possible slot fillers in case of information extraction, for instance).

Our divide-and-conquer approach offers several advantages:

• improved robustness, because parsing of the sentence topology is based only on

simple indicators like verb groups and conjunctions and their interplay,

• the resolution of some ambiguities, including relative pronouns vs. determiner (e.g.,

the German word “der” (the) can be used for both), and sentence coordination vs.

NP coordination, and

• a high degree of modularity (easy integration of domain-dependent sub–components).

Furthermore, the recognition of the topological structure (at least the way we do it)

is domain independent. It identifies an additional layer of linguistically oriented structure
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Weil die Siemens GmbH,die vom Export lebt, Verluste erlitt, musste sie Aktien verkaufen.

Because the Siemens GmbH which strongly depends on exports suffered from losses

they had to sell some of the shares.

⇓

Weil die Siemens GmbH, die ...[Verb-Fin], V. [Verb-Fin], [Modv-Fin] sie A. [FV-Inf].

⇓

Weil die Siemens GmbH [Rel-Cl], V. [Verb-Fin], [Modv-Fin] sie A. [FV-Inf].

⇓

[Subconj-CL], [Modv-Fin] sie A. [FV-Inf].

⇓

[Subconj-CL], [Modv-Fin] sie A. [FV-Inf].

⇓

[clause]

Figure 8: The different steps of the dc-parser.

without using domain–specific information (in a similar way as a POS–tagger or morpho-

logical component can be used domain–independently), and hence can be used as a generic

device for unrestricted NL text processing.

5.1 Topological structure

The identification of the topological structure is focused around a particular property

of verbs in a German sentence: Based on the fact that in German a verb group (like

“hätte überredet werden müssen” — *have persuaded been should meaning should have

been persuaded) can be split into a left and a right verb part (“hätte” and “überredet

werden müssen‘”) these parts (abbreviated as lvp and rvp) are used for the segmentation

of a main sentence into several parts: the front field (ff), the left verb part, middle field

(mf), right verb part, and rest field (rf). For example, in a sentence like “Er hätte

gestern überredet werden müssen” (He should have been persuaded yesterday.), the verb

group (once identified) splits the sentence as follows:

ff lvp mf rvp rf

Er hätte gestern überredet werden müssen empty

24



Sub–clauses can also be expressed in such a way that the left verb part is either empty

or occupied by a relative pronoun or a subjunction element (e.g., because, since), and the

complete verb group is placed in the right verb part. Note that each separated field can

be arbitrarily complex with very few restrictions on the ordering of the phrases inside a

field. For example, the topological structure of the embedded sub–clause of the sentence

“Der Mann, der gestern hätte überredet werden müssen, lief nach Hause.” (The man, who

should have been persuaded yesterday, ran home) is:

ff lvp mf rvp rf

empty der gestern hätte überredet werden müssen empty

Recognition of the topological structure of a sentence can be described in four steps,

each realized by means of a finite state grammar (see also Figure 2; Figure 8 shows the

different steps in action). In each case, the input string is rewritten with the identified

elements and passed as input to the next step. The schematic structure of the algorithm

is as follows (initially, the stream of tokens and named entities is separated into a list of

sentences based on punctuation signs). For each sentence do:

1. identify verb group using verb group grammar

2. identify base clauses using base clause grammar

3. combine subsequent base clauses to form larger units;

if no larger unit was identified go to step 4 else go to step 2

4. identify main clauses using main clause grammar

Verb groups A verb grammar recognizes all single occurrences of verb forms (in most

cases corresponding to lvp) and all closed verbgroups (i.e., sequences of verb forms, cor-

responding to rvp). The major problem at this phase is not a structural one but the

massive morphosyntactic ambiguity of German verbs (for example, most plural verb forms

can also be non-finite or imperative forms). This kind of ambiguity cannot be resolved

without taking into account a wider context. Therefore these verb forms are assigned

disjunctive types, similar to the underspecified chunk categories proposed by (Federici,
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


Type VG-final

Subtype Mod-Perf-Ak

Modal-stem könn
Stem lob
Form nicht gelobt haben kann
Neg T
Agr . . .




Figure 9: The structure of the verb fragment “nicht gelobt haben kann” – *not

praised have could-been meaning could not have been praised. It actually says

that this verb group has been identified in the final position of a clause, and

that it basically describes a negated modality of the main verb “to praise”.

Monyemagni, and Pirrelli, 1996). These verbal types, like for example different forms of

finite participle (has connected versus the finite verb form connected), reflect the different

readings of the verb form and enable following modules to use these verb forms according

to the wider context, thereby removing the ambiguity. For example, in German it would

be possible to utter something like “He has the edges connected.” (proper English would

be He has connected the edges). Thus the right verb part connected—viewed in isolaton—

is ambiguous wrt. its use as a finite or participle verb form. In addition to a type, each

recognized verb form, is assigned a set of features which represent various properties of

the form like tense and mode information. (cf. Figure 9).

Base clauses (BC) are subjunctive and subordinate sub–clauses. Although they are

embedded into a larger structure, they can be recognized independently and simply on

the basis of commas, initial elements (like complementizer, interrogative or relative item

– see also Figure 8, where subconj-cl and rel-cl are tags for sub–clauses) and verb

fragments. The different types of sub–clauses are described very compactly as finite state

expressions. Figure 10 shows a (simplified) BC-structure in feature matrix notation.

Clause combination It is very often the case that base clauses are recursively embedded

as in the following example:

. . . weil der Hund den Braten gefressen hatte, den die Frau, nachdem sie ihn

zubereitet hatte, auf die Fensterbank gestellt hatte.
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


Type Subj-Cl

Subj wenn

Cont




Type Spannsatz

Verb

[
Type Verb

Form stellten
. . .

]

MF
(
die Arbeitgeber Forderungen

)

NF







Type Inf-Cl

Subj ohne
Cont




Type Simple-Inf

Verb

[
Type Verb

Form zu schaffen
. . .

]

MF (als Gegenleistung

neue Stellen)
















Figure 10: Simplified feature matrix of the base clause “. . ., wenn die Arbeit-

geber Forderungen stellten, ohne als Gegenleistung neue Stellen zu schaffen.”

. . . if the employers made new demands without creating new jobs in return.

Because the dog ate the roast which the woman put on the windowsill after preparing

it.

Two sorts of recursion can be distinguished: 1) middle field (MF) recursion, where the

embedded base clause is framed by the left and right verb parts of the embedding sentence,

and 2) the rest field (RF) recursion, where the embedded clause follows the right verb part

of the embedding sentence. In order to express and handle this sort of recursion using a

finite state approach, both recursions are treated as iterations so that they destructively

substitute recognized embedded base clauses with their type. Hence, the complexity of

the recognized structure of the sentence is reduced successively.

However, because sub–clauses of MF-recursion may have their own embedded RF-

recursion, the clause combination (CC) is used for bundling subsequent base clauses

before they are combined with sub–clauses identified by the outer MF-recursion. The BC

and CC module are called until no more base clauses can be reduced (see figure 11). If

the CC module were not to be used, then the following incorrect segmentation could not

be avoided:

. . . *[Rel−Cl daß das Glück [Subj−Cl, das Jochen Kroehne empfunden haben

sollte] [Subj−Cl, als ihm jüngst sein Großaktionär die Übertragungsrechte bescherte],

nicht mehr so recht erwärmt.]
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MF–recursion, call of base clause recognizer (bc-rec)

. . . , weil die Firma, nachdem sie expandiert hatte, grössere Kosten hatte.

⇓

bc-rec

⇓

. . . , weil die Firma [ compl-Subclause ] , grössere Kosten hatte.

⇓

bc-rec

⇓

. . . [ compl-Subclause ] .

NF-recursion, combination of sublcauses:

. . . , weil die Firma grössere Kosten hatte, nachdem sie expandiert hatte.

⇓

bc-rec

⇓

. . . [ compl-Subclause ] [ compl-Subclause ] .

⇓

Clause-Combination

⇓

. . . [ compl-Subclause ] .

Figure 11: The different treatment of MF and RF recursion for two sentences “, weil die Firma,

nachdem sie expandiert hatte, [grössere Kosten hatte].” and “, weil die Firma [grössere Kosten

hatte], nachdem sie expandiert hatte. ”(both mean , because after expanding, the company had

increased costs).

. . . that the happiness which Jochen Krhne should have felt when his major shareholder

gave him the transfer rights recently is not really pleasing anymore.

In the correct reading the second sub–clause “. . . als ihm jüngst sein . . .” is embedded into

the first one “. . . das Jochen Kroehne . . .”.

Main clauses (MC) Finally the MC module builds the complete topological structure

of the input sentence on the basis of the recognized (remaining) verb groups and base
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clauses, as well as on the word form information not yet consumed. The latter basically

includes punctuation and coordination. The following Figure schematically describes the

current coverage of the implemented MC-module (see Figure 7 for an example structure):

CSent ::= . . . LVP . . . [RVP] . . .

SSent ::= LVP . . . [RVP] . . .

CoordS ::= CSent ( , CSent)∗ Coord CSent |

::= CSent (, SSent)∗ Coord SSent

AsyndSent ::= CSent , CSent

CmpCSent ::= CSent , SSent | CSent , CSent

AsyndCond ::= SSent , SSent

5.2 Grammatical function recognition

After the phrasal recognizer has expanded the corresponding phrasal strings (see the run-

ning example in section 2.2 on page 11), a further analysis step is done by the grammatical

function recognizer (gfr), which identifies possible arguments on the basis of the lexical

subcategorization information available for the local head. The final output of the clause

level for a sentence is thus an underspecified dependence tree udt. A udt is a flat

dependence-based structure of a sentence, where only upper bounds for attachment and

scoping of modifiers are expressed (see Figure 3, page 13). In this example the PP’s of

each main or sub-clause are collected into one set. This means that although the exact

attachment point of each individual PP is not known it is guaranteed that a PP can only

be attached to phrases which are dominated by the main verb of the sentence (which is

the root node of the clause’s tree). However, the exact point of attachment is a matter of

domain-specific knowledge and hence should be defined as part of the domain knowledge

of an application. This is in contrast to the common approach of deep grammatical pro-

cessing, where the goal is to find all possible readings of an expression wrt. all possible

worlds. By just enumerating all possible readings such an approach is, to a certain ex-

tent, domain-independent. The task of domain-specificity is then reduced to the task of

“selecting the right reading” of the current specific domain. In our approach, we provide

29



a complete but underspecified representation by only computing a coarse-grained struc-

ture. This structure then has to be “unfolded” by the current application. In a way,

this means that after shallow processing we only obtain a very general, rough meaning

of an expression whose actual interpretation has to be “computed” (not selected) in the

current application. This is what we mean by underspecified text processing (for further

and alternative aspects of underspecified representations see e.g., (Gardent and Webber,

1998), (Muskens and Krahmer, 1998)).

A udt can be partial in the sense that some phrasal chunks of the sentence in question

could not be inserted into the head/modifier relationship. In that case, a udt will represent

the longest matching sub–clause together with a list of the non-recognized fragments.

Retaining the non-recognized fragments is important, because it makes it possible that

some domain specific inference rules have access to this information, even if it could not

be linguistically analyzed.

The subcategorization lexicon The gfr exploits a subcategorisation lexicon for the

identification of grammatical relations. The lexicon contains 11,998 verbs and a total

of 30,042 subcategorisation frames (Buchholz, 1996). It also provides information about

verbal arity, case (for NP complements), and the various types of sentential complements

a given verb might take.

In general, a verb has several different subcategorization frames. As an example,

consider the different frames associated to the main verb entry fahr (“to drive”):

fahr: {〈np, nom〉}

{〈np, nom〉, 〈pp, dat,mit〉}

{〈np, nom〉, 〈np, acc〉}

Here, it is specified that fahr has three different subcategorization frames. For each

frame, the number of subcategorized elements is given (through enumeration) and for

each subcategorized element the phrasal type and its case information is given. In case

of prepositional elements the preposition is also specified. Thus, a frame like {〈np, nom〉,

〈pp, dat,mit〉} says that fahr subcategorizes for two elements, where one is a nominative

NP and the other is a dative PP with preposition mit (“with”). There is no ordering
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presupposed for the elements, i.e., frames are handled as sets. The main reason is that

German is a free word order language so that the assumption of an ordered frame would

suggest a certain word order (or at least a preference). The main purpose of a (syntactic)

subcategorization frame is to provide for syntactic constraints used for the determination

of the grammatical functions. Other information of relevance is the state of the sentence

(e.g., active vs. passive), the attachment borders of a dependence tree, and the required

person and number agreement between verb and subject.

Shallow strategy Directly connected with any analysis of grammatical functions is the

distinction between arguments and adjuncts as well as the choice of a unique frame for a

certain verb. Recall that the output of the topological parser is a relatively flat under-

specified dependence tree udt (which still misses the grammatical functions, of course),

underspecified with regard to PP attachment. This means that adjuncts are not distin-

guished from arguments and also that more than one frame can be compatible with the

surface structure of the udt. One solution to this problem is to simply spell out all pos-

sible frames compatible with the udt and postpone resolving or reducing the ambiguity

at a later stage. Instead, we chose to resolve the ambiguity heuristically by defaulting to

the maximal subcategorisation frame that is compatible with the udt.

Once the number and type of arguments of a given verb is determined, their functional

role (e.g., subject or object) must be inferred. Because German is a semi-free world order

language, the position of a phrase in a sentence (i.e., before or after the verb) does not

provide reliable cues for determining grammatical functions. Instead, we check for feature

compatibility between the candidate arguments and the chosen frame type. Consider as

an example the sentence in Figure 3 on page 13. According to our subcategorisation

dictionary the verb “haben” (to have) takes a nominative and an accusative NP as its

complements. “Gewinn” (revenue) will be selected as the object of “hat” (has), only if it

has accusative case; similarly, “Siemens” will be the subject only if it is nominative and

agrees in number with the verb “hat” (has).

Feature checking is performed basically by looping through the dependent elements and

checking whether there is morpho-syntactic agreement between the dependent and subcat
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arguments. Feature checking is performed by a simple (but fast) unifier which operates

on feature vectors. Thus, the morpho–syntactic information of the dependent and subcat

elements are expanded into feature vectors, where missing features of the subcat elements

are set to the anonymous variable :no, so that information can be inherited from their

dependents. One exception concerns nominative subcat arguments. In this case a feature

vector is created by merging the case information with the feature vector of the verbal

head. This is important in order to ensure that only nominative NPs are considered

as subjects. We check for case agreement for all types of NP and PP arguments and for

person agreement between the verb and its candidate subject. Other useful information for

inferring grammatical relations is whether the verb is active or passive and the attachment

borders of the dependency tree.

The grammatical functions recognized by gfr correspond to a set of role labels, implic-

itly ordered according to an obliquity hierarchy: subj (deep subject), obj (deep object),

obj1 (indirect object), p-obj (prepositional object), and xcomp (subcategorized sub–

clause). These labels are meant to denote deep grammatical functions, such that, for

instance, the notion of subject and object does not necessarily correspond to the surface

subject and direct object in the sentence. This is precisely the case for passive sentences,

whose arguments are assigned the same roles as in the corresponding active sentence.

6 System performance

Evaluation of lexical and phrasal level We have performed a detailed evaluation on

a subset of 20,000 tokens from a German text document (a collection of business news

articles from the “Wirtschaftswoche”) of 197,116 tokens (1.26 MB). The following table

summarizes the results for the word and fragment level using the standard recall and

precision measure:
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Component Recall Precision

Compound analysis 98.53% 99.29%

POS-filtering 74.50% 96.36%

Named entity (including dynamic lexicon)

person names 81.27% 95.92%

organization 67.34% 96.69%

locations 75.11% 88.20%

Fragments (NP, PP) 76.11% 91.94%

In the case of compounds we measured whether a correct morpho-syntactical segmen-

tation was determined ignoring, however, whether the segmentation was also the seman-

tically most plausible one.10 Evaluation of the POS-filtering showed an increase in the

number of unique POS-assignments from 79.43% (before tagging) to 95.37% (after tag-

ging). This means that from the approximately 20% ambiguous words about 75% were

disambiguated with a precision of 96.36%. What concerns named entities, we only consid-

ered organizations, people’s names and locations, because these are the more difficult ones

and because the dynamic lexicon is automatically created for these alone. Our current ex-

periments show that our named entity finder has a promising precision. The smaller recall

is mainly due to the fact that we wanted to measure the performance of the dynamically

created lexicon so we only used a small list of the 50 most well-known company names.

In case of fragment recognition we only considered simple phrase structures, including

coordinated NP’s and NP’s whose head is a named entity, but ignoring attachment and

embedded sub–clauses.

Evaluation of parsing The dc-parser has been developed in parallel with the named

entity and fragment recognizer and evaluated separately. In order to evaluate the dc-

parser we collected a test corpus of 43 messages from different press releases (viz.

Deutsche Preesseagentur (dpa), Associated Press (ap) and Reuters) and differ-

ent domains (equal distribution of politics, business, sensations). The corpus contains 400

sentences with a total of 6306 words. Note that it was also created after the dc-parser

and all grammars were finally implemented. Table 1 shows the results of the evaluations

10We are not aware of any other publications describing evaluations of German compounding algorithms.

33



Criterium Matching of annotated data and results Used by module

Borders start and end points verbforms, BC

Type start and end points, type verbforms, BC, MC

Partial start or end point, type BC

Top start and end points, type MC

for the largest tag

Struct1 see Top, plus test of substructures MC

using Partial

Struct2 see Top, plus test of substructures MC

using Type

Figure 12: Correctness criteria used during evaluation.

(the F-measure was computed with β=1). We used the correctness criteria as defined in

Figure 12.

The evaluation of each component was measured on the basis of the result of all pre-

vious components. For the BC and MC module we also measured the performance by

manually correcting the errors of the previous components (denoted as “isolated evalua-

tion”). In most cases the difference between the precision and recall values is quite small,

meaning that the modules keep a good balance between coverage and correctness. Only in

the case of the MC-module the difference is about 5%. However, the result for the isolated

evaluation of the MC-module suggests that this is mainly due to errors caused by previous

components.

A more detailed analysis showed that the majority of errors were caused by mistakes

in the preprocessing phase. For example, ten errors were caused by an ambiguity between

different verb stems (only the first reading is chosen) and ten errors because of wrong

POS-filtering. Seven errors were caused by unknown verb forms, and in eight cases the

parser failed because it could not handle the ambiguities of some word forms properly,

since they were either a separated verb prefix or adverb.

Run-time behavior The evaluation of the dc-parser was performed with the LISP-

based version of smes (cf. (Neumann et al., 1997)) by replacing the original bidirectional
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Verb-Module

correctness Verbfragments Recall Precision F-measure

criterium total found correct in % in % in %

Borders 897 894 883 98.43 98.77 98.59

Type 897 894 880 98.10 98.43 98.26

Base-Clause-Module

correctness BC-Fragments Recall Precision F-measure

criterium total found correct in % in % in %

Type 130 129 121 93.08 93.80 93.43

Partial 130 129 125 96.15 96.89 96.51

Base-Clause-Module (isolated evaluation)

correctness Base-Clauses Recall Precision F-measure

criterium total found correct in % in % in %

Type 130 131 123 94.61 93.89 94.24

Partial 130 131 127 97.69 96.94 97.31

Main-Clause-Module

correctness Main-Clauses Recall Precision F-measure

criterium total found correct in % in % in %

Top 400 377 361 90.25 95.75 92.91

Struct1 400 377 361 90.25 95.75 92.91

Struct2 400 377 356 89.00 94.42 91.62

Main-Clause-Module (isolated evaluation)

correctness Main-Clauses Recall Precision F-measure

criterium total found correct in % in % in %

Top 400 389 376 94.00 96.65 95.30

Struct1 400 389 376 94.00 96.65 95.30

Struct2 400 389 372 93.00 95.62 94.29

complete analysis

correctness all components Recall Precision F-measure

criterium total found correct in % in % in %

Struct2 400 377 339 84.75 89.68 87.14

Table 1: Results of the evaluation of the topological structure

shallow bottom-up parsing module with the dc-parser. The average run-time per sen-

tence (average length 26 words) is 0.57 sec. All components other than the topological

parser (i.e., core technology, all lexical components, and the phrasal grammars for named

entities, NP, PP, and the verb groups) are implemented in C++. The run-time behavior

is already encouraging: processing of the mentioned German text document (1.26 MB)

up to the fragment recognition level needs about 32 seconds on a PentiumIII, 500 MHz,

128 RAM, which corresponds to about 6160 words per second. This includes recognition
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of 11,574 named entities and 67,653 phrases.

7 Related work

To our knowledge, there are only very few other systems described which process free

German texts. The new shallow text processor is a successor to the one used in the smes–

system, an IE-core system for real world German text processing (Neumann et al., 1997).

Here, a bidirectional verb-driven bottom-up parser was used, where the problems described

in this paper concerning parsing of longer sentences were encountered. Another similar

divide-and-conquer approach using a chart-based parser for analysis of German text doc-

uments was presented by (Wauschkuhn, 1996). Nevertheless, comparing its performance

with our approach seems to be rather difficult since he only measures how often his parser

finds at least one result for an un-annotated test corpus (where he reports 85.7% “cover-

age” of a test corpus of 72,000 sentences) without measuring the accuracy of the parser. In

this sense, our parser achieved a “coverage” of 94.25% (computing found/total), almost

certainly because we use more advanced lexical and phrasal components, e.g., pos-filter,

compound and named entity processing. (Peh and Ting, 1996) also describe a divide-and-

conquer approach based on statistical methods, where the segmentation of the sentence

is done by identifying so–called link words (solely punctuation marks, conjunctions and

prepositions) and disambiguating their specific role in the sentence. On an annotated test

corpus of 600 English sentences they report an accuracy of 85.1% based on the correct

recognition of part-of-speech, comma and conjunction disambiguation, and exact noun

phrase recognition.

8 Conclusion and Future work

We have presented an advanced domain-independent shallow text extraction and naviga-

tion system for processing of real-world German texts. The system is implemented based

on advanced finite state technology and uses sophisticated linguistic knowledge sources.

The system is very robust and efficient (at least from an application point of view) and

has a very good linguistic coverage for German.
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Our future work will concentrate on interleaved bi-lingual (German and English) as well

as cross-lingual text processing applications on basis of sppc’s uniform core technology,

and the exploration of integrated shallow and deep NL processing. Concerning the first

issue we have already implemented prototypes of sppc for English and Japanese up to the

recognition of (simple) fragments. Processing of complex phrases and clause patterns will

be realized through the compilation of stochastic lexicalized tree grammars (SLTG) into

cascades of WFST. An SLTG will be automatically extracted from existing tree banks

following our work described in (Neumann, 1998).

A further important research direction will be the integration of shallow and deep

processing so that a deep language processor might be called for those structures recognized

by the shallow processor as being of great importance. Consider (really) complex nominal

phrases, for example. In the case of information extraction (IE), nominal entities are

mostly used for filling slots of relational templates (e.g., filling the “company” slot in an

“management appointment” template). However, because of a shallow NP analysis, it is

often very difficult to decide which parts of an NP actually belong together. This problem

is even more complex if we consider free word languages like German. However, taking

advantage of sppc’s divide-and-conquer shallow parsing strategy, it would now be possible

to call a deep parser only to those separated field elements which correspond to sequences

of simple NPs and PPs (which could have been determined by the shallow parser, too).

From this point of view, the shallow parser is used as an efficient preprocessor for dividing

sentences into syntactically valid smaller units, where the deep parser’s task would be to

identify the exact constituent structure only on demand.
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