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ABSTRACT

In this paper, we compare AR glasses and head pose estimation
performance. We train different pose estimation approaches for head
pose estimation with the generated head pose labels to compare
them to their AR glasses estimation accuracy. These include the
state-of-art GlassPoseRN and P2P networks, as well as our novel
CapsPose algorithm. We show that estimating the AR glasses pose
is more accurate than the head pose in general. In a first analysis,
we show the general regression performance of the models when the
AR glasses and faces are both known to the network during training.
We then analyze the driver generalization performance, where all
glasses are known, but part of the drivers are unknown to the Neural
Networks. There, the estimation of AR glasses pose again exceeds
the head pose. Only in our third analysis, head pose estimation
performs better than AR glasses pose estimation. In this case, a new
glasses model is added, which was unknown to the Neural Network
yet. In addition, we introduce a novel pose estimation network called
CapsPose, which is the first network deploying Capsule Networks
for 6-DoF pose estimation. We outperform the current state-of-the-
art method GlassPoseRN on the HMDPose dataset by reducing the
error by 46% for orientation and 51% for translation.

Index Terms: Computing methodologies—Artificial intelligence—
Computer vision—Tracking; Computing methodologies—Machine
learning—Machine learning approaches—Neural networks

1 INTRODUCTION

AR glasses steadily matured over the years and are currently be-
ing used in the industry. In the future, consumer adaptation of AR
glasses is highly likely. This comprises the usage while driving a car
to enable use cases like AR navigation or Point of Interest highlight-
ing. For this purpose, it is necessary to predict the 6-DoF pose of the
AR glasses inside a moving vehicle for an accurate superimposition
of virtual elements on top of the real world. Various AR glasses con-
duct inside-out tracking in static environments, which is not scalable
for the in-car use case. This would require identical sets of sensors
and computation capacities for all AR glasses models of different
manufacturers. In addition, inside-out tracking is challenging in the
car, as the optical sensors inside Head-Mounted Displays register
parts of the outside world and deliver a limited set of features of
the car interior for tracking. The problem is solvable by outside-in
tracking, which enables generalization and ensures the capturing of
features of the car interior only.

Head pose estimation has been in the focus of the Computer Vi-
sion community for many years. Different data sources and methods
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for this purpose exist. The data sources range from RGB [13, 15] to
infrared (IR) images [7] to depth images [2], as well as combinations
like RGB-D information [19]. Before the Deep Learning era, this
was done mainly based on feature extraction from the images, match-
ing them with predefined features, and conducting pose estimation
of the head. Recent methods incorporate Deep Learning, using Deep
Neural Networks to estimate the 6-DoF head pose.

Similar algorithms can be deployed for AR glasses pose estima-
tion as done for head pose estimation. In general, the pose of the
AR glasses can be obtained using different approaches: first, one
can consider the AR glasses as one rigid object and use object pose
estimation algorithms to compute the pose. Second, we can consider
the head of the person wearing the glasses as the entity to track, and
apply head pose estimation algorithms. Theoretically, the head pose
is different from the AR glasses, as the relation between head and
glasses differs from user to user. This relation can change with slight
glasses movement on the wearer’s head. Still, for the real-world
deployment, the question remains if head pose estimation can deliver
more accurate pose results, making it a more stable alternative than
AR glasses pose estimation. To answer this question, a comparison
of both estimation methods on the same data source is required.

Thus, in this paper, we first generate head pose ground truth
from an AR glasses dataset called HMDPose. Then, we benchmark
two existing algorithms on the head pose, which were previously
trained on the same dataset with the target of AR glasses pose
estimation. We introduce a novel pose estimation method called
CapsPose, which is based on Capsules. We benchmark this on head
and AR glasses pose estimation. We then compare and evaluate the
performance of the approaches, showing that the estimation of AR
glasses results in a mostly better performance.
In detail, our contributions are:

• We train and benchmark two existing state-of-the-art AR
glasses pose estimators on generated head pose labels for fur-
ther head and AR glasses comparison, one being a point cloud-
based CNN called P2P [8] and the other an image-based CNN
named GlassPoseRN [6].

• We introduce a pose estimation network called CapsPose re-
lying on Capsules. To the best of our knowledge, Capsule
Networks haven’t been used for 6-DoF pose estimation before.
We outperform the current state-of-art method GlassPoseRN
on the HMDPose dataset by reducing the error by 46% for
orientation and 51% for position.

• We show that AR glasses pose estimation exceeds head pose
estimation performance in most cases. Pose estimation of AR
glasses outperforms the head if the head and glasses are both
known, or the glasses are known, but the head is unknown
to the trained network. The head pose is only more accurate
if the head is known, but the AR glasses are unknown to the
networks.

In the remainder of the paper, we present our head pose computation
pipeline based on the HMDPose dataset and the Head and AR glasses
pose estimation algorithms in Section 2. In Section 3, we discuss



our evaluation on the HMDPose dataset, comparing the Head and
AR glasses pose performance of the methods.

2 METHODS

2.1 AR Glasses Dataset

We use the HMDPose dataset [5] to generate our head pose label
to train and test the two existing methods. In addition, we train and
evaluate our CapsPose algorithm with the AR glasses labels given by
the HMDPose dataset and head pose labels we generate. HMDPose
is a large-scale data glasses dataset, containing 3 million 1280×752
pixel images. It consists of IR images from 3 different perspectives
of 4 different AR glasses, worn by 14 different subjects.

2.2 Head Pose Label Generation

Since the head pose labels are not included in the HMDPose
dataset, we propose a pipeline for measuring head orientation and
position using the triple images of HMDPose to further train head
pose estimation methods. The extrinsic and intrinsic parameters of
the cameras are known. In the head pose annotation pipeline, we
extract facial landmarks and compute their 3D positions in the ref-
erence frame. Subsequently, we define the head coordinate system.
Finally, we post-process the measured head poses.

2.2.1 Facial Landmarks Extraction

In this step, we first detect the head and localize its 2D bounding
box in all cameras. We use the BlazeFace model [1], which extracts
image features. Then, a regressor is used to obtain the final bound-
ing box coordinates. After cropping the head using the predicted
bounding box, we use the Face Alignment Network (FAN) [4] to
extract 69 facial landmarks in total (Figure 1).

(a) Left View (b) Middle View (c) Right View

Figure 1: Visualization of the extracted facial landmarks. The blue
box depicts the predicted bounding box by the head detector.

2.2.2 Landmarks Reconstruction

After extracting a set of facial landmarks per image in the image
triples, we determine the coordinates of 2D landmarks in the 3D
space. As the projection of a 3D point onto the pixel plane Pi of the
camera i is non-linear, we solve the triangulation problem using the
Bundle Adjustment (BA) technique. We re-project the estimated 3D
points onto the pixel coordinates of all cameras and minimize the re-
projection error. A Levenberg–Marquardt non-linear optimizer [12]
estimates the 3D point PiPiPi by minimizing a non-linear cost function:

P̂PPi = argmin
PPPi

3

∑
k=1

∥∥∥pppk
i − fff k(PPPi)

∥∥∥2

2
, (1)

pppk
i are the 2D coordinates of the landmark i in the pixel frame k and

fff k is the non-linear projection of 3D points onto the pixel frame
k. We stack all N landmark points and all 3 cameras into a single
vector to perform a joint optimization, where the re-projection errors
are minimized in all pixel frames. The bundled error vector norm
is minimized by a non-linear least square estimation. The solver
iteratively obtains the optimal 3D facial landmarks.

2.2.3 Head Pose Computation

We define the head coordinate system center and its orthonormal
basis based on the 3D facial landmarks as shown in Figure 2.
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Figure 2: Definition of the head coordinate system shown from two
different views.

We use points of a rigid region of the head. Inspired by Breitenstein
et al. [3], we choose the nose as our region of interest. We define
the subnasale key-point f0 as the center of the head. We define the
Y-axis as the normalized vector pointing from the left alare f1 to
the right alare f2 feature. The Z-axis is defined by the normalized
vector linking the nose tip f3 and the mid-endocanthion point f4 of
the face. The X-axis is given by the cross product of the two other
axes.

2.2.4 Post Processing

We eliminate outliers using the Median Absolute Deviation based
outlier detector [10] by computing the MAD scores for every single
pose in all pose dimensions. We replace anomalies by averaging the
pose of the previous and next frame. Subsequently, we use a first
order Butterworth filter to smooth the poses. We give more insight
on the rotation values of the HMDPose dataset and our HeadPose
annotations in the supplementary material.

2.3 Data Split Strategies

The HMDPose and HeadPose datasets are acquired from various
subjects wearing different glasses yielding a large inter-class varia-
tion. Therefore, we define different types of data splits (Figure 3).

IntraAll
-RND

InterSubjects
-RND

InterGlasses
-RND

Train Val Test

Glasses model 1 Glasses model 3 Glasses model 4 (1. half) Glasses model 4 (2. half)

Subject 10Subject 1

Glasses and subjects mixed 

Frames for model 1 - 3 mixed

Frames for subject 1 - 12 mixed

Glasses and subjects mixed 

Subject 11 & 12 mixed Subject 13 & 14 mixed

Glasses and subjects mixed 

Figure 3: An overview of the different split strategies IntraAll-RND,
InterGlasses-RND and InterSubjects-RND.

IntraALL-RND shuffles all acquired frames and randomly se-
lects portions of 94%, 3% and 3% for training, validation and testing
sets. In that strategy, all types of glasses and all subjects are present
in all sets, showing the general pose prediction performance of a
NN when trained on this split. This split has been used by other
publications on the HMDPose dataset [6, 8].

InterGlasses-RND uses three types of glasses for the training set
and one type of glasses for the validation and testing sets. This split
is interesting to test the ability of NNs in generalizing glasses. This



type of evaluation is needed when a new type of glasses is used, on
which the NN was not trained.

InterSubjects-RND split technique is similar to InterGlasses-
RND, where the split is according to the class of subjects. Only
10 subjects are included in the training set and two other different
subjects for each of the validation and test sets. The evaluation
results show the performance of the NNs in generalizing the subjects,
and thus, its performance on an arbitrary person.

2.4 Feed-Forward Pose Estimation Architectures

We benchmark two existing networks and our new network called
CapsPose on the HMDPose and HeadPose datasets to evaluate the
difference between glasses and head pose estimation. This results in
six models in total. The networks are called ”GlassPoseRN-HMD”,
”GlassPoseRN-HEAD”, ”P2P-HMD”, ”P2P-HEAD”, ”CapsPose-
HMD” and ”CapsPose-Head”. The additions ”-HMD” and ”-HEAD”
refer to the used dataset, being either the HMDPose or our generated
HeadPose based on the HMDPose dataset.

2.4.1 GlassPoseRN-HMD & GlassPoseRN-HEAD

Firintepe et al. presented in [7] an approach for glasses pose esti-
mation called GlassPoseRN, which is based on a Residual Network.
In this work, we call this network GlassPoseRN-HMD, while we
name the retrained version on the head pose GlassPoseRN-HEAD.

Both networks use ResNet-18 [9] as backbone for feature extrac-
tion. The backbone is followed by three fully connected layers with
256, 64 and 7 neurons, respectively. While rotations are represented
by 4D quaternions, translations are represented by Euclidean 3D
positions of the AR glasses.

2.4.2 P2P-HMD & P2P-HEAD

We additionally utilize the Points to Pose (P2P) estimation ap-
proach benchmarked on the HMDPose dataset [8]. A point cloud
estimator first generates point clouds from the triple infrared im-
ages. A PointNet++ [14] backbone sub-samples the full point cloud
and learns point cloud features. The selected points are called seed
points, where each point provides a vote for predefined key points.
A proposal module aggregates the key points to regress the pose.
For the sake of comparison, we select cloud points of either the
HMD or the head. The point selection is a deterministic process
that follows predefined steps. We assume that the represented tar-
get point cloud PCT = {1cT , . . . ,NcT } is the result of an Euclidean
transformation TTT T

S embodying the rotation R and the translation t
applied on a source point cloud PCS = {1cS, . . . ,NcS}.

A source point cloud PCS represents a centered head wearing the
glasses. Hence, the translation t is given by the mean of the target
point cloud. By subtracting the measured translation t from the
target point cloud and multiplying the result by the inverse rotation
RT obtained from the HMDPose dataset, we get the source point
cloud. We divide the cloud points into points of the head and points
of the glasses. The first 20% of the source point cloud starting
by counting from the top are elements of the head. We label the
next 450 points elements of the glasses. The rest of the points are
assigned to the head class, which results in 1550 head points. Then,
we back-transform the selected point clouds to the target space. As
a consequence, we obtain two disjoint point cloud datasets PCHMD

and PCHead respectively corresponding to the glasses and the head,
where PCT = PCHMD∪PCHead .

We adapt the network P2P proposed in [8] by changing the input
shape. We call the original model P2P-F-HMD as the network using
all points of the cloud for glasses pose estimation. The corresponding
model for head pose estimation is called P2P-F-HEAD. We denote

the models that use a subset of the cloud by P2P-P-HMD and P2P-
P-HEAD for glasses and head pose estimation, respectively.

2.5 Capsule Pose Network

2.5.1 Capsule Networks

Despite their success in various domains, CNNs suffer from cer-
tain limitations. One key property of CNNs is the translation in-
variance, which is achieved by dropping the location information,
negatively affecting the generalization performance of pose estima-
tors. Capsule Networks (CapsNet) [16] were designed to address the
weaknesses of traditional CNNs. The elemental entities of CapsNet
are called Capsules, which represent a small group of neurons that
encapsulate their outputs in an activity vector. This vector represents
the instantiation parameters of specific entity types, such as objects
or object parts. Instantiation parameters include properties such
as pose or texture. The entity’s existence is either learned as an
instantiation parameter or encoded by the magnitude of the activity
vector as done in CapsNet. A visual system should learn the exis-
tence of an object based on its relevant features and the relationship
between them and the high-level features. The association between
the simple entity represented by a low-level Capsule, the complex
entity represented by a high-level Capsule, and the instantiation pa-
rameters of the Capsules are obtained through the routing algorithm.
CapsNet [16] consists of a convolutional layer used to extract very
low-level features. Multiple convolutional operators are used in
parallel to construct the first Capsule layer named Primary Capsule
layer (PrimCaps), followed by the Digit Capsule layer (DigitCaps)
consisting of 10 Digit Capsules, each representing the existence
of a single digit. The digit existence probability is encoded in the
magnitude of the activity vector of the Digit Capsule.

We use the CapsNet architecture as a baseline for our network
called Capsule Pose (CapsPose), performing 6-DoF pose estimation.
Our network is the first to solve the 6-DoF pose estimation problem
using Capsules to the best of our knowledge.

2.5.2 CapsPose Network Architecture

CapsPose consists of 4 layers: two convolutional layers Con-
vReLU and ConvReLU2, PrimaryCaps and an output Capsule layer
PoseCaps. Figure 4 shows an overview of the CapsPose architecture.

ConvReLU layer detects basic features in the input. It in-
puts down-sampled triple images in form of inputs tensor of size
320×188×3 pixels. The given pixel data is converted to the activity
of local feature detectors, extracting low-level feature maps. The
layer ConvReLU generates 64 feature maps over 32×32 filters with
a stride of 8×8 and no padding, containing of a ReLU activation.
The second layer is also a convolutional layer with 64 filters of size
8×16 and a unit stride. The third layer is a convolutional Capsule
layer, which can be viewed as a convolutional layer with 256 filters
of size 16× 16, 8× 8 stride and no padding, including a squash-
ing activation function [16]. Rearranging the result produces 96
8-dimensional primary Capsules. The next layer is the PoseCaps
layer, consisting of 7 Capsules including 16 instantiation parameters.
Each pose Capsule receives the 8-D input of all 96 primary Capsules.
Each of these input vectors receives its own 8×16 weight matrix,
which maps the 8-D input space to the 16-D Capsule output space.
The routing-by-agreement takes place only between the Prima-
ryCaps and PoseCaps layers. The activity vector of the correspond-
ing Capsules describe the local position of these features in the Pri-
maryCaps. The dynamic routing and thus, the routing-by-agreement
between the PrimaryCaps and PoseCaps defines a trainable trans-
formation matrix. It transforms the orientation and position of the
features from their local coordinate systems to the coordinate sys-
tem of the higher-level pose Capsule. According to the coupling
coefficients, its activity vector is computed. It embodies the pose of
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Figure 4: Our CapsPose architecture. The ConvReLU layer extracts low-level features. The parallel convolutional layers form the primary
Capsules represent low-level entities. A high-level pose prediction step and the Dynamic Routing algorithm transmit the information to the
pose Capsules. A pose projector projects the activity vector of pose Capsules onto the pose space. A Decoder reconstructs one image.

the target object represented in its own Capsule space.
We add a projector module, which maps elements from the instan-
tiation parameter space of the Capsules to the 7-dimensional pose
space. Three values represent the position Euclidean space, while
four values regress the quaternion for the orientation. The following
equation describes the projection operation:

ppp =ΠΠΠvvv+bbb , (2)

where v is a vector stacking the activity vectors of all Capsules v j
with j = 1, . . . ,7. The pose vector ppp contains predicted pose values
consisting of the translational and rotational poses.
To enhance the feature learning, we build a decoding module, which
reproduces one input image given the values of all activity vectors
stacked in v. The vector v encapsulates the information for the pose
prediction and reconstruction. This addition is inspired by [16]. The
decoder consists of two fully connected ReLU layers with 512 and
1024 neurons and one fully connected Sigmoid output layer.

We use the Adam optimizer with the learning rate α = 0.0001 to
train the CapsPose networks for 180 epochs. We train the network
using the following loss function introduced by Kedall et al. [11]:

Loss = ‖ttt− t̂tt‖2 +

∥∥∥∥qqq− q̂qq
‖q̂qq‖2

∥∥∥∥
2
. (3)

qqq is the ground truth label, while q̂qq is the estimated quaternion.
Equally, ttt and t̂tt define the translation. The predicted quaternion is
normalized and the Euclidean distance to the ground truth quaternion
is computed. Regression of unit quaternions on the positive w scale
ensures unambiguous estimations for the orientation.

3 EVALUATION

3.1 Evaluation metrics

To compare the head and AR glasses models of the GlassPoseRN
and P2P methods as well as our CapsPose algorithm, we use the
metrics as already used on previous HMDPose benchmarks [6, 8].
Thus, we use the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE) and Balanced Mean Angular Error (BMAE). The
BMAE introduces the definition of sections to consider the unbal-

anced amount of different head orientations [7, 17, 18]:

BMAE :=
d
k ∑

i=1
φi,i+d , i ∈ dN∩ [0,k], (4)

The metric divides the range of movement k into sections i with sizes
d. By this, extreme and rare poses are being weighted equally to
frequent and regular poses. φi,i+d is defined as the average angular
error. The section size d is set to 5 degrees and the range size k
to 180 degrees as done in previous benchmarks. For the position
estimation evaluation, we use the MAE for the individual axes and
the L2 error for the axes combined for the position error.

3.2 Results

To compare the head and glasses pose estimation performance,
we first investigate the estimation accuracy of networks trained
on the HMD and head labels. For the sake of fairness, the same
input frames are fed to the head and glasses pose estimators in
the training and the evaluation phases. Moreover, we evaluate a
network using the splits on samples of a seen driver and seen glasses
named InterSubjects-RND and InterGlasses-RND to investigate the
generalization performance regarding the driver and the glasses.

3.2.1 Pose Estimation Analysis

Table 1 summarizes the models’ orientation estimation results
trained on HMD and head labels, respectively. Table 2 2 illustrates
the position estimation results.

GlassPoseRN-HMD improves over GlassPoseRN-HEAD by re-
ducing the rotational MAE of up to 65% and the rotational RMSE
of up to 55% (Table 1). The translational error also improves by
up to 48%. There are multiple explanations for this. The pixels
brightness of the glasses in an IR image is significantly higher than
that of the head. This facilitates the search of the target object by
the network. Furthermore, the shape of the glasses is not uniform.
Many edges could be extracted from the glasses, which may improve
the quality of the extracted feature map. Moreover, glasses have
a roughly rectangular form, and extracting the orientation is thus
simpler. On the contrary, the head is oval-shaped, making estimating
its pose based on 2D images challenging. Therefore, the network
relies on the head’s general form and other parts such as the nose and
the mouth. The BMAE of GlassPoseRN-HMD is lower than that of



Model
MAE RMSE BMAE

Roll Pitch Yaw Avg Roll Pitch Yaw Avg Roll Pitch Yaw Avg
GlassPoseRN-HMD [6] 0.06 0.10 0.14 0.10 0.09 0.25 0.22 0.19 0.29 0.12 0.31 0.24
GlassPoseRN-HEAD 0.20 0.20 0.47 0.29 0.28 0.29 0.73 0.43 0.71 0.43 0.50 0.55

P2P-P-HMD 0.39 0.43 0.75 0.52 0.55 0.57 1.09 0.74 0.72 0.55 2.14 1.14
P2P-P-HEAD 0.44 0.51 1.58 0.84 0.60 0.67 2.14 1.14 1.07 1.27 1.80 1.38
P2P-F-HMD [8] 0.53 0.47 0.61 0.53 0.73 0.68 0.88 0.76 1.81 0.56 1.26 1.21
P2P-F-HEAD 2.70 5.32 4.93 4.31 3.66 6.54 6.53 5.58 5.42 8.46 7.48 7.12

CapsPose-HMD (ours) 0.05 0.09 0.12 0.09 0.08 0.24 0.21 0.18 0.09 0.09 0.21 0.13
CapsPose-HEAD (ours) 0.22 0.23 0.54 0.33 0.22 0.23 0.54 0.33 0.35 0.28 0.50 0.38

Table 1: Orientation results of all models for head and glasses pose estimation trained and evaluated on HMD and head labels, respectively.
Feed-forward models follow the IntraALL-RND data split. The evaluation results are conducted in the Euler space and expressed in degrees.

Model
MAE

L2X Y Z

GlassPoseRN-HMD [6] 0.49 0.50 0.44 0.90
GlassPoseRN-HEAD 0.86 1.12 0.57 1.74

P2P-P-HMD 10.98 6.55 17.99 25.72
P2P-P-HEAD 4.21 4.26 4.90 9.01
P2P-F-HMD [8] 3.24 2.39 2.96 5.75
P2P-F-HEAD 33.39 31.02 65.87 89.02

CapsPose-HMD (ours) 0.25 0.26 0.13 0.44
CapsPose-HEAD (ours) 0.68 0.99 0.34 1.40

Table 2: Position results of all models for head and glasses pose
estimation trained and evaluated on the HMD and head labels, re-
spectively. Feed-forward models follow the IntraALL-RND data
split. The evaluation results are expressed in millimeters.

GlassPoseRN-HEAD. GlassPoseRN-HMD produces better transla-
tion estimation performance compared to GlassPoseRN-HEAD with
an error reduction of 48%. We especially observe a high error of the
GlassPoseRN-HEAD on the Y-axis.
The P2P results for head and glasses pose estimation depend on
the type of point clouds fed to the network. When using partial
point clouds, either including the points of the head or the glasses,
P2P-P-HEAD reduces the translation error by around 65% over
P2P-P-HMD. Meanwhile, the rotation performance of the head pose
estimator is worse than the glasses pose estimator. One reason for
this inconsistency is the use of fewer points for the glasses pose esti-
mation. These few points of the glasses are enough to result in lower
rotation error. When using the whole point cloud, the findings align
with the results reported by the previous methods. On the one hand,
P2P-F-HEAD shows a low translation performance, which may be
related to the points on the face being very similar. On the other
hand, P2P-F-HMD reduces the translation error by 93% compared
to P2P-F-HEAD, as the few points of the glasses are distinguishable
from the rest of the cloud.
We make a similar observation evaluating for CapsPose. The
CapsPose-HMD rotation and translation performance improve com-
pared to CapsPose-HEAD with an error reduction of up to 73% and
69%, respectively. The MAE and the BMAE for yaw of CapsPose-
HEAD are high and close, showing low performance for yaw for
extreme and normal poses. The drop of performance is only notice-
able for CapsPose-HMD in the case of extreme poses.
Generally, the glasses pose estimation methods outperform the head
pose estimation methods in the case of known glasses and drivers.

When comparing glasses pose estimators trained on all types of
glasses, we observe worse performance of P2P-P-HMD and P2P-F-
HMD models than the other models. Furthermore, the reason for
the high RMSE may be caused by outliers. The high MAE error
shows that predictions are not close to the ground truth, which may
cause unstable and non-smooth predictions. Also, the effectiveness
of CapsPose-HMD is clear. It outperforms all other methods and

reduces the GlassPoseRN-HMD errors by up to 46% and 51% for
rotation and translation, respectively. The BMAE along the roll axis
is also considerably reduced by 68%. As the roll range in the dataset
is small, it is a notable advantage to use this model. This finding
tallies with our expectations that Capsules are better in capturing
variations in a relatively narrow range. The same pattern was ob-
served for the head pose estimators when comparing the models.
Overall, our CapsPose method has demonstrated a marked improve-
ment in the quality of pose estimation.

3.2.2 Generalization Analysis

We use the InterSubjects-RND data split strategy to inspect the
driver generalization performance, as it includes two unseen subjects
in the validation set and two persons in the test set. This gives us an
insight into the network performances in estimating the pose of the
glasses and the head of an unknown person. We further analyze the
glasses generalization performance. Tables 3 and 4 list the results
of CapsPose trained for head and glasses pose estimation using
InterSubjects-RND and InterGlasses-RND data split strategies.

On the InterSubjects-RND split, CapsPose-HMD outperforms
CapsPose-HEAD for the orientation estimation with an error reduc-
tion of 56%. Although the glasses are known, the position estimation
performance of CapsPose-HMD is still low. This indicates that the
network relies on some head features for the glasses position esti-
mation. Also, CapsPose-HEAD shows high errors as the network
regresses the pose from unseen heads. CapsPose-HEAD predictions
seem to be unstable, as shown by the RMSE. Relatively high errors
are also observed for extreme poses compared to CapsPose-HMD.
This is caused by the network strongly relying on head features for
the head pose estimation. CapsPose-HMD and CapsPose-HEAD
result in comparable performance for head and glasses translation
regression i.e. the networks use a similar pool of features mainly
consisting of head features due to the observed high errors.

Concerning the InterGlasses-RND split, CapsPose-HMD and
CapsPose-HEAD show a difference in the orientation performance.
CapsPose-HMD produces less accurate results since the network
uses unseen features of the glasses to predict the pose. CapsPose-
HEAD also shows relatively high errors, although the driver’s head
is known. This indicates that the head pose estimator relies on the
head features and some glasses features. However, CapsPose-HMD
strongly uses glasses features and some head features, yielding
acceptable rotation results. As the glasses are unknown, the RMSE
demonstrates unstable predictions, especially for extreme poses,
as proven by the high BMAE. In total, CapsPose-HEAD is more
unstable in general and more stable in extreme poses than CapsPose-
HMD. The translation errors drop for head pose estimation by 74%.

4 CONCLUSION

In this paper, we compared AR glasses pose and head pose esti-
mation performance based on the same dataset and algorithms. We



Data Split InterSubjects-RND InterGlasses-RND

Model
MAE RMSE BMAE MAE RMSE BMAE

Roll Pitch Yaw Avg Roll Pitch Yaw Avg Roll Pitch Yaw Avg Roll Pitch Yaw Avg Roll Pitch Yaw Avg Roll Pitch Yaw Avg

CapsPose-HMD 1.76 2.70 3.38 2.61 1.76 2.70 3.38 2.61 2.72 2.85 4.16 3.24 1.60 4.66 3.41 3.22 2.11 5.28 4.02 3.80 3.43 6.53 3.77 4.58
CapsPose-HEAD 2.69 8.93 6.41 6.01 3.42 9.94 8.88 7.41 3.22 7.85 8.53 6.53 2.14 3.02 3.67 2.94 2.75 4.21 4.82 3.93 2.59 4.17 4.36 3.70

Table 3: Orientation results of CapsPose model for head and glasses pose estimation trained on HMD and Head labels, respectively, following
the InterSubjects-RND and InterGlasses-RND data splits. The evaluation results are conducted in the Euler space and expressed in degrees.

Data Split InterSubjects-RND InterGlasses-RND

Model X Y Z L2 X Y Z L2

CapsPose-HMD 10.93 9.14 3.69 16.88 15.03 37.54 8.59 42.75
CapsPose-HEAD 3.22 7.85 8.53 16.94 7.16 5.33 3.56 10.89

Table 4: Position results of CapsPose for head and glasses pose estimation trained on HMD and head labels, respectively, following the
InterSubjects-RND and InterGlasses-RND data splits. The evaluation results are conducted in the Euclidean space and expressed in millimeters.

presented a pipeline for head pose annotation generation using the
triple images given in the HMDPose dataset. Then, we benchmarked
pose estimation approaches like the state-of-art GlassPoseRN and
P2P networks, as well as our novel CapsPose algorithm on head pose
labels. In a comparison with three analysis levels, we showed that
estimating the HMD pose is generally more accurate than the head
pose. The first analysis showed the general regression performance
of the models when AR glasses and faces are both known to the net-
works during training, in which case HMD pose estimation performs
better than head pose estimation. In a second analysis for testing
the driver generalization, AR glasses pose estimation exceeded head
pose estimation. The driver was unknown, but AR glasses were
known to the networks. The third analysis focused on the glasses’
generalization ability. Only in this case, the head pose estimation
performance is better than the HMD pose. Therefore, AR glasses
pose estimation is more accurate but can be supported by head pose
estimation. One case would be introducing new AR glasses in a pose
estimation system when the networks have not been trained with the
new glasses model yet. In this case, directly estimating the head pose
and combining the poses can be beneficial. Finally, our novel pose
estimation network called CapsPose is the first network to deploy
Capsule Networks for 6-DoF pose estimation. It outperforms the
state-of-the-art method GlassPoseRN on the HMDPose dataset by
reducing the error by 46% for orientation and 51% for translation.
Future work will consist of occlusion analysis, where the HMDs
or heads are occluded to further analyze their differences for more
difficult cases.
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