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Abstract

We propose a novel method that leverages human fixa-
tions to visually decode the image a person has in mind into
a photofit (facial composite). Our method combines three
neural networks: An encoder, a scoring network, and a de-
coder. The encoder extracts image features and predicts a
neural activation map for each face looked at by a human
observer. A neural scoring network compares the human
and neural attention and predicts a relevance score for each
extracted image feature. Finally, image features are aggre-
gated into a single feature vector as a linear combination
of all features weighted by relevance which a decoder de-
codes into the final photofit. We train the neural scoring
network on a novel dataset containing gaze data of 19 par-
ticipants looking at collages of synthetic faces. We show
that our method significantly outperforms a mean baseline
predictor and report on a human study that shows that we
can decode photofits that are visually plausible and close to
the observer’s mental image.

1. Introduction

Visually decoding images that only exist in peoples’
minds (also known as mental image reconstruction, MIR)
has recently started to attract increasing research inter-
est across a range of disciplines, including computational
neuroscience, computational biology, and computer vision.
MIR is profoundly challenging given that the informa-
tion required to succeed in this task is encoded in com-
plex neural dynamics in the brain and not easily accessi-
ble from the outside. The dominant approach for MIR has
been to reconstruct mental images directly from brain ac-
tivity recorded using functional magnetic resonance imag-
ing [2, 13, 17, 31, 34] or electroencephalography [7, 30].

Another recent line of work has explored other sensing
modalities, in particular human eye fixations. Although fix-
ations, in comparison, only provide an indirect measure of
a person’s mental image and as such complicate the recon-
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Figure 1. Overview of our method for gaze-based mental image
reconstruction. With an image in mind, users search for similar fa-
cial features in multiple auxiliary images while their gaze is being
recorded. An encoder extracts image features and corresponding
neural activation maps from these images. A scoring network pre-
dicts the relevance of each image feature by comparing the fixation
and neural activation maps. Image features are finally aggregated
and decoded into a photofit.



struction task further, they are promising because they are a
less obtrusive and more practically useful measure of visual
and cognitive processing, e.g., during scene perception [14]
or visual search [41]. While several methods have been pro-
posed to predict the target of visual search from fixations
and image features [1, 3, 26, 33, 40], only two previous
works have tried to also visually decode (reconstruct) the
search target [24, 25]. These works first predicted the ob-
ject class and attributes of the mental image from human
eye fixations and then synthesised random samples from the
predicted class.

We significantly go beyond this state of the art by
proposing a method that – for the first time – reconstructs
the specific instance of the mental image from eye fixations
and auxilary images, without the system having seen this
instance before. We specifically focus on reconstructing fa-
cial images given this has high practical value also beyond
criminology and is challenging given the large amount of fa-
cial appearance details. Our method encodes multiple facial
images looked at by an observer into separate feature vec-
tors using a Siamese CNN encoder, fuses these vectors into
a single feature vector using a novel scoring network, and
finally decodes the mental image from this representation.
The scoring network compares neural activation maps for
each output feature of the encoder with human fixations to
predict how important each feature is for reconstructing the
mental image. Our method addresses the scarcity of gaze
data at training time by allowing training of the encoder and
decoder on large image datasets and only requiring joint im-
age and gaze data for training the scoring network.

The specific contributions of our work are threefold:
First, we introduce an annotated dataset of human fixa-
tions on synthesised face images during face recognition
that lends itself to studying the task of gaze-based mental
image reconstruction. Second, we introduce a novel prob-
lem formulation and method that, for the first time, allows
us to synthesise a photofit – that is, a visual reconstruction
of the mental image of a face – from human eye fixations.
Third, using this dataset as well as through a human study,
we report on a series of experiments successfully demon-
strating gaze-based reconstruction of mental face images1.

2. Related Work
We review prior work on the related task of visual search

target prediction and on reconstructing mental images from
brain activity and eye gaze.

2.1. Visual Search Target Prediction

In a seminal work, Yarbus showed that gaze behaviour
of observers reflects their visual task when looking at an

1Code and other supporting material can be found at https://
perceptualui.org/publications/strohm21_iccv/

image [37]. Later, Wolfe proposed an influential model for
visual search behaviour that combined a parallel stage for
processing information about basic visual features with a
limited-capacity stage for more complex operations, such
as face recognition, reading, or object identification [36].
Advances in machine learning have spurred interest in pre-
dicting the target of visual search. That is, identifying the
specific instance an observer is looking for among a set of
potential target entities known a priori. Pioneering work
by Sattar et al. on natural images proposed a bag of vi-
sual words approach to search target prediction in an open-
world setting [26]. Stauden et al. improved their method by
using a pre-trained CNN for feature extraction [33]. Sim-
ilarly, Barz et al. used a pre-trained SegNet for encoding
the fixation sequence and an SVN to predict the class of the
image segment surrounding the likely search target [1]. In
later work, Sattar et al. proposed the first method to pre-
dict the target class and attributes instead of only the target
instance [24]. Work by Fang and Geman focused on an in-
teractive setting in which faces where iteratively shown to
the user and refined based on their feedback [10]. Finally,
Wang et al. studied a setting in which target prediction was
performed after showing the stimulus [35].

2.2. Mental Image Reconstruction

Mental image reconstruction is the significantly more
challenging task of not only predicting but visually decod-
ing a target that only resides in an observer’s mind and,
as such, is also unknown to the system a priori. Several
works have focused on reconstructing mental images from
brain activity, particularly using electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI).
While early work has, for example, relied on Gaussian
mixture models [27], advances in deep learning methods
have significantly improved reconstruction quality [30, 42].
Güçlütürk et al. used probabilistic inference with deep
learning based on EEG to reconstruct gender, skin colour,
and facial features [13]. To improve the signal-to-noise ra-
tio and thereby reconstruction quality, Date et al. instead
used electrocorticography (ECoG) – an invasive method in
which electrodes are directly attached to the human brain
– in combination with a conditional generative adversarial
network [7]. In a parallel line of work, fMRI-based re-
construction methods have been developed and improved
first using deep learning [13, 31] and most recently by us-
ing generative adversarial networks (GANs) [6, 17, 20, 29],
encoder-decoder architectures [2, 34], and a combination of
both [23] to address the scarcity problem of fMRI data.

Instead of a direct mapping from brain signals into pixel
space, Zaltron et al. [39] utilised iterative user feedback
to traverse the latent space of a pre-trained GAN. While
achieving promising results users have to provide explicit
feedback which can be demanding and difficult to provide.

https://perceptualui.org/publications/strohm21_iccv/
https://perceptualui.org/publications/strohm21_iccv/


Furthermore, the coarse feedback necessitates many itera-
tions to reach convergence.

Only one previous attempt has been made at the even
more challenging problem of reconstructing mental images
from human gaze. Sattar et al. proposed a Gaze Pooling
Layer that integrated fixation information and a pre-trained
deep convolutional image encoding into a semantic repre-
sentation [25]. This representation was then used with a
Conditional Variational Auto-Encoder (CVAE) to visually
decode random instances of the predicted category and at-
tributes of the search target [24, 25]. In stark contrast, our
method is the first to visually decode the specific instance
of the mental image from eye fixations.

3. Data Collection
There currently does not exist a dataset for mental im-

age reconstruction from eye fixations. Sattar et al. [26]
have released eye tracking data of participants performing
visual search but that data is not suitable for the reconstruc-
tion task: For one, they used image collages consisting of at
least 20 images and, thus, the dataset lacks fine-grained eye
tracking data within individual images that is required for
a detailed reconstruction of a specific mental image. Sec-
ond, their use of natural images makes it difficult to study
this novel task in a controlled fashion as well as – given that
perceptual metrics is an open research problem – to quantify
the reconstruction quality properly. We therefore collected
our own dataset and, as our first step, opted for a control-
lable image domain that allowed us to unveil the feasibility
of gaze-based mental image reconstruction.

Faces are an ideal starting point for studying the under-
explored mental image reconstruction task from fixations
because there exist tools to generate faces while systemat-
ically controlling their appearance. The software used in
our data collection is FaceMaker [28] – a tool that allows
creating human-like faces by manipulating key facial fea-
tures in a controlled fashion with 30 different sliders, such
as eyebrow shape, skin colour, or width of the mouth (see
supplementary material for a list of all sliders and example
usage of FaceMaker). To collect the dataset, we designed
an eye tracking study that involved participants in creating
and ranking face images using FaceMaker. Participants de-
signed their own target face based on a real face image to
encode the appearance of this face in their memory.

3.1. Participants and Apparatus

We recorded gaze data of 19 participants (seven female)
aged between 20 and 33 years (M=25.8, SD=3.4) whom we
recruited through university mailing lists. All participants
had normal or corrected-to-normal vision. We used a sta-
tionary EyeLink 1000 Plus eye tracker that provides binoc-
ular gaze estimates at 2,000Hz. Following best practices in
eye tracking, we used a chin rest mounted in front of the

Figure 2. Sample image collage that was shown to participants in
our data collection study. Two of the faces are fully random, while
the other four contain the eyes, the nose, the mouth and the jaw of
the participant’s mental image (i.e. target face).

participants to increase gaze estimation accuracy. The face
stimuli were shown on a 24.4-inch screen with a resolution
of 1920× 1080 pixels that was placed 90cm in front of the
participants. Each face was 14.3cm×14.3cm in size corre-
sponding to 8.9◦ degrees of visual angle.

3.2. Procedure

After giving their consent and completing a short de-
mographics questionnaire, we asked participants to sit on
the chair and place their head in the chin rest. We then
guided them through the following process twice – once
with a female and once with a male target face (random
order). We first showed them a real face from the celebA
dataset [18] that we handpicked for diversity (no image was
picked twice). Next, we asked them to recreate the face
using FaceMaker [28] within five minutes. The resulting
image was the Target Face. Based on the Target Face, we
generated eight sets of six images each that participants had
to compare to the target in eight trials. Each trial started
with an eye tracker calibration and validation. Afterwards,
we showed the Target Face again for ten seconds, asking
participants to memorise it. Then, participants were shown
the six generated images and they had 30 seconds to rank
them (see Figure 2 for an example stimulus). Participants
were still able to finish their ranking after 30 seconds with-
out seeing the stimulus. Then the next trial started. Af-
ter finishing the eight trials, participants were shown a new
celebA image to recreate and repeate the previous process.

We created the six images based on the following pro-
cedure. We generated six fully random FaceMaker images,
but set the image features Gender and Skin Colour to the
Target Image generated by the participant. These specific
features could easily be defined by a user before MIR and,
therefore, do not need to be reconstructed using fixations.
For four images, we set the image features to represent once
the eyes, once the nose, once the mouth and once the jaw of
the participants’ Target Image. See supplementary material



for detailed information about which FaceMaker slider was
assigned to these four groups. Summarising, we created six
Auxiliary Images shown to participants which always con-
sisted out of two fully random faces and four images repre-
senting the eyes, nose, mouth, or jaw of the Target Image.
We used these four facial regions because they are most im-
portant for face recognition [8, 9, 12, 32, 38].

4. Gaze-based Mental Image Reconstruction
The task of gaze-based mental image reconstruction in-

volves learning a mapping {(Ii, Gi)|i = 1...n} 7→ IM , i.e.,
given a set of auxiliary images {Ii|i = 1...n} observed by
a human yielding a set of fixations for each image {Gi|i =
1...n}, reconstruct the mental image IM the observer had in
mind. Training a generative model for mental image recon-
struction end-to-end would require large amounts of joint
fixation and image data {(Ii, Gi)|i = 1...n}, which is im-
practical [25]. To overcome this, our method consists of
three separately trained models: an encoder, a novel scor-
ing network and a decoder. This approach allows us to train
the encoder and decoder networks solely on image data,
while training of the scoring network only requires a small
amount of joint image and fixation data. Figure 1 provides
an overview of the architecture of our method.

Encoder. The encoder e is trained to learn a mapping
e : I 7→ F , where I is an image from the same domain as
the mental image, and F are features extracted from I . I is
passed through several convolution layers to extract spatial
features that are reduced to a vector using a global average
pooling (GAP) layer [16]. This vector is used to predict a set
of low dimensional generative parameters defining the im-
age. These parameters depend on the specific MIR setting
used. In addition to image features, the encoder produces
neural activation maps for each output feature that can be
interpreted as the attention of the encoder over the input im-
age. Following Zhou et al. [43], the neural activation map
Ma

f for a feature f ∈ F is given by:

Ma
f (x, y) =

∑
k

wf
k · fk(x, y), (1)

where wf
k is the weight between neuron f of the output

layer and activation k of the GAP layer, and fk(x, y) is the
activation of the k-th convolution kernel in the last convo-
lution layer at location (x, y). For this method to work, the
second to last layer should be a GAP layer, and the spatial
resolution of the last convolution layer defines the resolu-
tion of the activation maps. Therefore, the encoder is opti-
mised to extract meaningful image features while being able
to calculate activation maps with a sufficiently large spatial
resolution. It is used to extract features and corresponding
activation maps for each image {Ii|i = 1...n}.
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Figure 3. Architecture of our scoring network. Pairs of fixation and
activation maps over time are encoded into a joint feature space. A
subsequent recurrent layer with attention extracts time dependent
features which are used to predict whether the image feature cor-
responding to the activation map is relevant for the mental image.

Scoring Network. To reconstruct a mental image, we
have to visually combine a set of image features {Fi|i =
1...n} from the set of images {Ii|i = 1...n} observed by the
user. The core idea of our method is a scoring network that
compares ground-truth human fixations with trained neural
attention and predicts a score that indicates the relevance of
image features for the reconstruction (cf. Figure 3). The
scoring network takes a fixation map Mg

i and an activa-
tion map Ma

i,f as input and predicts whether the image fea-
ture f ∈ F of image Ii is relevant for the mental image
IM , P (frelevant|Mg

i ,M
a
i,f ). While the activation map is pre-

dicted by the encoder, the fixation map is created by plac-
ing 2D Gaussians at each fixation location weighted by the
duration. Similar to multi-duration saliency [11], instead
of creating one fixation map for each image using all fixa-
tions of a trial, we create multiple fixation maps over time,
as shown in Figure 3 (left). A Siamese CNN encoder is
applied to each of the input tuples and extracts joint fixa-
tion and activation map features. The encoder consists of
multiple convolution layers combining the information of
the fixation and activation maps and extract spatial feature
maps. A GAP layer combines the feature maps into a fea-
ture vector, resulting in one vector for each time step in the
input sequence. These feature vectors are passed into a re-
current layer with an attention mechanism, which enables
the model to focus on the most important time steps of the
input sequence. The resulting feature vector is used in the
output layer for binary classification. The features of the
mental image FM are then reconstructed as follows:

FM =

∑n
i=1 e(Ii) · score(e(Ii), Gi)∑n

i=1 score(e(Ii), Gi)
. (3)

That is, the final mental image features are a linear combi-
nation of the features of images shown to a user, with the
normalised predicted scores as the coefficients.



Decoder. The decoder d is trained to learn a mapping
d : FM 7→ IM , where FM are combined image features
given by the scoring network and IM is the mental image.
The input features FM are reshaped into a tensor, which is
subsequently passed through transposed convolution layers
to increase the resolution. A final transposed convolution
layer with three kernels, one for each image channel, pro-
duces the output image IM .

5. Experiments
5.1. Model Training

To train the encoder and decoder, we generated 100K
face images with a resolution of 128× 128 pixels using the
Facemaker synthesis software [28]. To this end, we ran-
domly sampled each slider value from a uniform distribu-
tion. We generated an additional 30K images for valida-
tion to determine the best hyper-parameters for our models.
Both models were trained to minimise the mean squared
error loss using the Adam optimiser [15] with default pa-
rameters and a batch size of 32.

To train the scoring network we split the collected
fixation-image data into a training, validation, and test set.
We randomised the trials of each participant and selected
12 trials for training, two for validation, and two for testing.
One participant finished only six trials, of which we used
five for training and one for validation. In total, this resulted
in 221 trials for training, 37 trials for validation, and 36 tri-
als for testing. Given that we know for each trial which face
contains relevant image features, together with the trained
encoder, we created the fixation and neural activation maps
for each face and feature. The ground-truth was set to one if
the feature corresponded to the mental image and zero oth-
erwise. Because most of the features are not relevant for the
mental image, this resulted in a class imbalance of 5 : 1. We
therefore augmented the training set by flipping the fixation
and activation maps, individually and jointly. This resulted
in a more balanced ratio of 5 : 4, providing us with about
45K train, 5K validation, and 5K test samples. We used the
Adam optimiser with default parameters [15] for training
using a binary cross-entropy loss and a batch size of 32.

5.2. Implementation Details

Encoder. The input image resolution for the encoder was
128×128 pixels with RGB channels. It was passed through
four convolution layers with 32, 64, 128, and 256 kernels
of size 4 × 4. After each convolution layer, we applied
a ReLU activation function and batch normalisation. The
first and third convolution layer convolved the kernels with
a stride of one in each dimension, while the second and
fourth layer used a stride of two. Therefore, the feature
maps of the last convolution layer were of dimensionality
32 × 32 × 256 and the spatial resolution of the activation

maps was 32 × 32. See supplementary material for exam-
ple activation maps of our model. These feature maps were
reduced to a 256-dimensional vector using global average
pooling (GAP) layer [16]. In this work, the generative pa-
rameters predicted by the encoder correspond to the thirty
slider values from Facemaker. Our final encoder model has
a total of about 700K trainable parameters.

Scoring Network. We used a temporal resolution of one
second for our final model. Given that the trials of our
dataset had a duration of 30 seconds, we input 30 fixation-
activation map pairs into the scoring network. The encoder
within the scoring network consisted of a 3D convolution
layer with 10 kernels of size 4 × 4 × 2 to combine the in-
formation of the fixation and activation maps. This was fol-
lowed by two 2D convolution layers with 14 and 16 kernels
of size 4× 4 to further refine the features as well as a ReLU
activation and batch normalisation. A GAP layer combined
the extracted spatial features and yielded a total of 16 fea-
tures per time step. Each of the resulting 16-dimensional
feature vectors was the input to a single GRU layer [5] with
30 hidden units and an attention mechanism, as described
by Zhou et al. [44]. The output of this layer was a 30-
dimensional feature vector used in a final dense layer for
binary classification. In total, the scoring network consisted
of about 10K trainable parameters.

Decoder. The input image features of the decoder were
passed through a dense layer with 4× 4× 256 neurons, fol-
lowed by a ReLU activation, and batch normalisation. The
resulting vector was reshaped into a 4 × 4 × 256 tensor
and was subsequently passed through four transposed con-
volution layers. The convolution layers had 128, 64, 32, 16
kernels of size 4 × 4, each with a stride of two in each di-
mension and were followed by a ReLU activation and batch
normalisation. A final transposed convolution layer with
three kernels, one for each image channel, and Sigmoid ac-
tivation decoded the output image FM . The final decoder
model consisted of about 840K trainable parameters. We
optimised all model parameters on the validation set and, in
the following, report results obtained on the left-out test set.

5.3. Evaluation Metric

To quantify the performance of our method, we define
the mean absolute slider distance (MASD):

MASD =
1

30

30∑
i=1

|spi − sti|, (4)

where spi is the predicted value and sti is the target value for
slider i. By changing the scoring function defined in Equa-
tion 3, we can evaluate our method in terms of accuracy:

FMf
= max

Ii,f
score(e(Ii)f , Gi). (5)
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Figure 4. Sample images reconstructed by our method (Ours) in comparison with the respective target and baseline. The colour-coded
labels for the different facial regions indicate reconstruction quality (high, medium, or low). We calculated these by assigning each feature
group to one of three equidistant bins according to their mean absolute slider distance (MASD). Columns A and B show two of the best,
while C and D show two of our worst mental image reconstructions.

Instead of defining FM as a linear combination of all fea-
tures, we select each feature from the face achieving the
highest score for f . We report micro-averages, i.e., we com-
pute them over the features not the feature groups. The re-
sults are compared to a mean baseline reconstruction that
was generated by averaging the six auxiliary faces. We ex-
perimented with more sophisticated baselines using a state-
of-the-art landmark detector [4] to segment faces and ac-
cumulated fixation durations on each segment for scoring.
Since the performance of this method was inferior we only
report the mean baseline in the following.

5.4. Reconstruction Results

Table 1 shows the performance of our method and dif-
ferent ablated versions in terms of MASD and accuracy.
As can be seen, our method achieves an average MASD of
23.37 on the test set, which corresponds to an average er-
ror of 12.8% compared to the baseline model that achieves
an average MASD of 30.26 (average error of 16.6%). The
average accuracy of our method is 61.9%, which is signifi-
cantly higher than chance level of 16.7%, i.e., selecting each
feature from a stimulus at random.

The 5s model only uses six fixation maps instead of 30,
each containing five seconds of fixation data. This model
performs worse overall which indicates that the higher tem-
poral resolution of one second per fixation map is benefi-
cial. The 30s model only uses one fixation map containing
all fixations within the 30 seconds trial. Even without tem-

poral information this model achieves a good overall perfor-
mance. Nevertheless, it performes worse in all cases except
for nose-related features, underlining the benefit of lever-
aging the temporal characteristics inherent in gaze data.
Even though our model achieves a lower accuracy for nose-
related features, it achieve the lowest MASD. This indicates
that, even if the highest relevance score is not assigned to the
face containing the correct feature, a linear combination of
that feature over all faces still results in a good reconstruc-
tion. To analyse the impact of the attention mechanism we
excluded it in the NoAtt model. This model achieves the
lowest overall performance, especially for the eyes, sug-
gesting that the attention-induced bias helps the model to
generalise and cope better with the little training data.

Figure 4 shows four sample target faces, reconstructions
generated by our method, and baseline reconstructions as
well as colour-coded indications of the reconstruction qual-
ity of the different facial regions (see supplementary ma-
terial for all test set reconstructions). We calculated these
by assigning each feature group to one of three equidistant
bins according to their MASD. Finally, Figure 5 shows our
model’s accuracy with the modified scoring function to cal-
culate accuracy for each image feature. The value in each
cell ci,j shows the percentage of how often the value for a
feature fi was selected from auxiliary face Ij .



Accuracy MASD

Model Eyes Nose Mouth Jaw All Eyes Nose Mouth Jaw All

Ours 77.0% 45.3% 58.9% 44.6% 61.9% 17.75 16.55 15.10 24.93 23.37
5s 73.2% 42.6% 49.7% 38.5% 56.8% 21.14 18.92 17.82 26.13 25.15
30s 67.3% 54.7% 53.5% 43.2% 57.9% 19.64 16.67 16.95 26.95 23.96
NoAtt 56.8% 50.7% 51.9% 42.6% 52.2% 25.87 19.25 19.65 25.06 26.35

Baseline 16.7% 16.7% 16.7% 16.7% 16.7% 31.2 23.36 23.98 29.96 30.26

Table 1. Performance of our method, several ablated versions, and the baseline for reconstructing different facial regions in terms of
accuracy and mean absolute slider distance (MASD).

Eyes Nose Mouth Jaw Rand1 Rand2

Eye Color
Eyes Shape

Eyes Opening
Eyes Size

Eyes Height
Eyes Distance
Eyes Rotation

Eyebrows Color
Eyebrows Shape

Eyebrows Line
Nose Shape

Nose Length
Nose Width
Nosebridge

Cheeks
Jaw Shape

Chin Shape
Chin Length
Lips Volume

Lip Size Ratio
Mouth Shape
Mouth Width

Mouth Height

89 3 0 5 3 0
79 0 8 3 5 5
77 5 5 5 5 3
90 5 5 0 0 0
67 14 5 8 3 3
68 8 8 8 3 5
73 14 0 5 5 3
78 8 5 3 3 3
70 11 3 5 8 3
81 5 3 5 3 3
8 58 5 16 5 8
14 38 8 14 11 16
3 46 5 8 8 30
8 41 8 8 14 22
11 11 19 49 8 3
11 11 5 35 22 16
8 8 5 51 14 14
8 16 14 43 14 5
11 3 56 8 11 11
14 5 60 8 5 8
11 5 62 8 11 3
8 5 73 0 11 3
11 16 43 5 3 22

0 10 20 30 40 50 60 70 80 90

Figure 5. Accuracy of our method for different facial features us-
ing a modified scoring function to form a classification objective.
Each cell ci,j indicates the percentage of cases in which feature fi
was extracted from auxiliary image Ij .

5.5. User Study

To assess the subjective quality of the reconstructions,
we conducted a 24-participant user study. In the study we
showed participants three faces: a target face from the test
set, the reconstruction from our method, and the face recon-
structed using the baseline method. For every face in the
test set, we asked participants which of the two reconstruc-
tions they thought resembled the target face more closely.
For a total of 36 faces in the test set, participants selected
our faces 79% of the time on average (chance level 50%). If
we consider the majority vote, the face reconstructed with
our method was selected 32 out of 36 times.

6. Discussion

Reconstruction Performance. In this work, we intro-
duced the task of reconstructing the mental image from hu-
man fixations. Our results showed that we could recon-
struct the mental image significantly better than the base-
line method, with accuracy ranging from 45% to 77% and
a MASD ranging from about 25 to 15 (see Table 1). We
further showed that our method performs better at recon-
structing important facial features (such as the eyes, nose,
mouth, and jaw) than the baseline and overall was able to
generate plausible photofits that show high similarity to the
mental image (see Figure 4). Although researchers have in-
vestigated the influence of mental image retrieval on visual
search behaviour, it was unclear whether mental image re-
construction from fixations was possible [21, 22, 19]. As
such, our results are promising and underline the effective-
ness of the proposed method. We also noticed, however,
that our method often fails to reconstruct the correct hair
colour. We observed that participants rarely fixated on the
hair of the auxiliary faces and hypothesise that they instead
were able to identify this feature in their peripheral vision.

In the confusion matrix in Figure 5, four groups can be
identified, each corresponding to a set of sliders for the eyes,
nose, jaw, and mouth regions. Each slider’s values were
selected most often from the auxiliary face that contained
the correct value. There is no strong confusion between
auxiliary faces for any feature; misclassifications are rather
equally distributed across the faces.

Analysis of Feature Groups. Table 1 also shows that the
accuracy of our method is the highest for eye-related fea-
tures, followed by mouth, nose, and jaw. This reflects the
average rank participants assigned to auxiliary faces con-
taining these features during data collection. Figure 6 shows
how often the participants assigned a specific rank to each
image with labels on the y-axis indicating the type of aux-
iliary face. The order of the average rank is in line with
previous findings in psychology [8, 9, 12, 32, 38] showing
that eyes are the most important feature for face recognition
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Figure 6. Percentage of ranks for each face given by the partici-
pants over the whole dataset.

(average rank 2.34), followed by mouth (average rank 3.31)
and nose (average rank 3.73). Furthermore, we can observe
that, as expected, the two distractor faces follow a similar
rank distribution and are ranked the lowest on average (av-
erage ranks of 4.14 and 4.02, respectively).

Fixation Duration over the Auxiliary Faces. Figure 7
shows a stacked graph representing the relative fixation du-
ration for each face accumulated over time. For each time
step, we subtracted the graph with the lowest accumulated
fixation duration from all graphs to better highlight changes
in fixation distribution over time. Interestingly, participants
mostly focused on the images containing features relevant
to the mental image within the first 15 seconds of viewing
time. Since participants attribute more attention to features
known to be more relevant for identification, our model re-
ceives more information for these features to infer the rel-
evance score of a feature. This attention distribution cor-
relates with the average ranking of the faces and with the
facial feature importance for face perception, as discussed
above. After around ten seconds, participants’ attention
shifts to increasingly focus on the distractor faces, which
gain the highest attention during the last ten seconds of the
trial. Since the distractor faces are ranked low on average,
participants rank them later within a trial, resulting in higher
fixation durations at that time.

Analysis of the Attention Mechanism. Our scoring net-
work contains a recurrent layer with an attention mecha-
nism (see Figure 3), allowing us to analyse how the network
distributes its attention over the temporal input sequence.
By extracting the average attention distribution over the test
set, we observe that the model assigns a higher weight to
features between the fifth and tenth second. This window
overlaps with the time period where participants focused on
auxiliary images containing relevant features (see Figure 7).
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Figure 7. Accumulated fixation duration over time for the six aux-
iliary faces. For each time step we subtracted the lowest accumu-
lated fixation to better highlight the change in attention over time.
During the intial 15 seconds, there is more attention on images
containing relevant features (Jaw, Mouth, Nose, Eye), while atten-
tion subsequently shifts to the random images (Rand1, Rand2).

7. Conclusion

In this work, we introduced the first method to visually
reconstruct the facial image a person has in mind only from
their eye fixations. Gaze-based mental image reconstruction
is profoundly challenging given that gaze is only an indirect
measure of mental imagery and subject to significant vari-
ability caused by parallel cognitive processing. In addition,
joint gaze and image data is scarce, preventing the applica-
tion of existing large-scale methods. In stark contrast, key
components of our method can be trained solely on image
data and it requires only a small amount of gaze-augmented
image data. A second key contribution of our work is to
formulate the reconstruction as a similarity scoring task be-
tween human fixation and neural attention maps. Through
quantitative evaluation and a human study, we showed that
our method significantly outperforms a baseline method and
can generate photofits that are visually similar to the mental
image. These significant advances point the way to future
methods that can reconstruct mental images from gaze in
other domains, including real human faces.
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