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Abstract—With the evolution of deep learning in the past
decade, more biomedical related problems that seemed strenuous,
are now feasible. The introduction of U-net and Mask R-
CNN architectures has paved a way for many object detection
and segmentation tasks in numerous applications ranging from
security to biomedical applications. In the cell biology domain,
light microscopy imaging provides a cheap and accessible source
of raw data to study biological phenomena. By leveraging such
data and deep learning techniques, human diseases can be easily
diagnosed and the process of treatment development can be
greatly expedited. In microscopic imaging, accurate segmentation
of individual cells is a crucial step to allow better insight into
cellular heterogeneity. To address the aforementioned challenges,
DeepCeNS is proposed in this paper to detect and segment cells
and nucleus in microscopic images. We have used EVICAN2
dataset which contains microscopic images from a variety of
microscopes having numerous cell cultures, to evaluate the
proposed pipeline. DeepCeNS outperforms EVICAN-MRCNN by
a significant margin on the EVICAN2 dataset.

Index Terms—biomedical, healthcare, deep learning, cell seg-
mentation, nucleus segmentation

I. INTRODUCTION

High-throughput microscopy is becoming widely used to
study biological phenomena due to its high spatial and tem-
poral resolution, which has led to its wider use in cell biology
research and the pharmaceutical industry. Thanks to advances
in instrumentation, vast amounts of raw image data can easily
be collected which allows computer vision techniques to ex-
tract biologically meaningful information at scale to help find
new insights. In particular, instance segmentation of individual
cells in a microscopic image with many cells in view allows
quantification of single cellular features, such as shape or
movement patterns, providing rich insight into cellular het-
erogeneity. Compared to natural images, microscopic images
suffer from certain challenges including low contrast as well as
irregularly shaped and overlapping cells, making segmentation
challenging. Convolutional neural network-based approaches
are showing promising results in microscopic image analysis

[1] and datasets to train instance segmentation models, such
as EVICAN2 [2], are now available to further explore deep
learning-based approaches for cell segmentation.

Unlike the MS-COCO dataset [3] which contains images of
everyday objects, the objects in the microscopic images are
comparatively difficult to segment, especially when cells are
densely packed. In our pipeline, we have proposed parameters
for features extraction and anchor sizes to detect and segment
cell and nucleus with improved precision on the EVICAN2
[2] dataset.

We propose a novel pipeline DeepCeNS — an end-to-end
pipeline for Cell and Nucleus Segmentation. The main contri-
bution of this study are as follows:

« An end-to-end cell and nucleus detection pipeline based
on Cascade Mask R-CNN [4] with ResNeSt [5] back-
bone.

« Extensive evaluation of existing and proposed method on
EVICAN [2] dataset from different perspectives. Eval-
uation results show the superiority of the DeepCeNS
with a significant margin of 21.8% (average precision at
Jaccard index above 50%) in comparison to state-of-the-
art (SotA). EVICAN-MRCNN [2].

II. LITERATURE REVIEW

There exists a lot of studies focusing on detection and
segmentation of cell and nucleus using traditional computer
vision algorithms [6]-[9] and deep learning approaches [2],
[4], [10]-[14].

In traditional computer vision approaches, procedures like
background subtraction, thresholding, and watershed algo-
rithm, etc. are extensively used for segmentation. Most com-
monly known online tools which utilize these methods are
CellProfiler [15] and FogBank [16]. Hu et al. (2004) [6]
proposed an algorithm in which they used improved snake
[17], also known as active contour models to segment cell
nucleus in microscopic images from esophageal cells. Saha et
al. (2016) [9] proposed an algorithm based on Fuzzy C-Means
(FCM) clustering to segment nucleus in pap smear images



which is crucial for early diagnosis of cervical cancer.

Deep Learning (DL) approaches for biomedical segmentation
have open doors to many applications mainly due to the fact
that it requires less domain knowledge as it is completely
driven by data [18]. In contrast to traditional computer vision
approaches, feature representations are automatically learned
by the DL models. U-net was proposed by Ronneberger et
al. [12] which outperformed all the other contestants in the
ISBI 2015 cell tracking and segmentation challenge despite
being trained on less than 50 images. The introduction of
U-net elucidated what we can achieve with the fusion of
biomedical imaging and Acrtificial Intelligence (AI). It opened
the doors to the biomedical image-based cellular research and
after that, other deep learning-based algorithms like DeepCell
[13] and Usiigaci [14] were introduced. Another DL approach
for automatic nucleus segmentation was presented by Johnson
(2018) [10]. Schwendy et al. (2020) [2] proposed an extension
of Mask R-CNN [19] named, EVICAN-MRCNN [2]. It was
trained on EVICAN2 dataset [2] including more than 3500
images for training. Stringer et al. (2020) [20] proposed a
generalist algorithm for cellular segmentation called Cellpose.
In that method, training set mask images were transformed to
vector flow representation that can be predicted by the neural
network. Cellpose was trained on the dataset containing over
70,000 segmented objects.

III. METHODOLOGY

Fig. 1 provides a system overview of the proposed pipeline.
For cell and nucleus detection and instance segmentation
we have a proposed a pipeline, DeepCeNS which is based
on Cascade Mask R-CNN [4], Feature Pyramid Network
[3], ResNeSt-200 [5] and Deformable Convolution [21]. The
proposed pipeline is divided into three blocks.

A. Backbone Network

Feature Pyramid Network (FPN) [3] along with ResNeSt [5]
defines the backbone network of our pipeline which extract
feature maps from the input image at different scales. FPN
uses bottom-up, top-down pathways and lateral connections
to combine low resolution highly semantic strong features
with high resolution semantically weak features. The bottom-
up pathway utilizes ResNeSt-200 to extract features from the
input image at different scales. As we go up the convolution
layers in the ResNeSt, the semantic value for each layer
increases and spatial resolution decreases. The output of each
convolution layer of ResNeSt is used in the top-down pathway
which constructs higher resolution layers from the semantic
rich layer. ResNeSt [5] is composed of a modular split at-
tention block that enables attention across feature-map groups
which help different network branches to capture cross-feature
interactions and learn diverse representations. These blocks
are then stacked according to ResNet-style [22]. Deformable
convolution is also being used in the ResNeSt. The deformable
convolution suits best for our application in terms of cell defor-
mity [23]. Unlike conventional convolution which operates on
a pre-defined grid for an input image, deformable convolution

has a deformable grid, so that each point on the grid is moved
by a learnable offset. The convolution then operates on these
moved grid points, hence the name deformable convolution.

B. Region Proposal Network

After the extraction of multi-scale features from the back-
bone network, these features are then passed onto a Regional
Proposal Network (RPN). The purpose of RPN is to detect
regions that contain objects and match them to the ground
truth. It does so by generating anchor boxes on the input
image. The anchor generator parameter used to detect and
segment objects in MS-COCO [3] dataset overlooks most
of the small cells and nucleus instances when transferred to
this task. Unlike MS-COCO and other commonly used image
datasets, the sizes of some cells and nucleus in the EVICAN2
[2] dataset are very small. After extensive experimentation,
the anchor sizes and anchor aspect ratios were selected that
fit adequately for the task at hand. The details of the anchor
sizes and aspect ratios are given in Section VI. The anchors
generated are then matched to the ground truth by taking
Intersection over Union (IoU) between anchors and ground
truth. If ToU is larger than the defined threshold, i.e. 0.7, the
anchor is linked to one of the ground truth boxes and assigned
to the foreground. If the IoU is greater than 0.3, it is marked
as background and ignored otherwise. In this way, a lot of
proposals are generated, but only 2000 proposals are selected
after applying non-maximum suppression [4].

C. Prediction Head

After the successful generation of proposals, the next block
in our pipeline is the prediction head. At the prediction head
we have the following 3 inputs:

a. Ground truth boxes
b. Proposal boxes from RPN
c. Feature maps from FPN

We have used Cascade Mask R-CNN [4] as our prediction
head which is an extension of Cascade R-CNN [4]. Cascade
R-CNN is an object detection architecture that is a multi-
stage extension of R-CNN [24]. It addresses the problem of
degrading performance with increased IoU thresholds. The
output of one stage of the cascade is used as input for training
the next stage. In this way, each stage aims to find a good
set of close false positives to train the next stage. By adding
mask head to the cascade, we get Cascade Mask R-CNN. The
Cascade R-CNN contains multiple detection branches unlike
Mask R-CNN [25], where we have a segmentation branch in
parallel to the detection branch. We have three strategies from
the authors [4] on where to add the segmentation branch and
how many branches to add. First two strategies suggest adding
a single mask prediction head at either the first or the last
stage of Cascade R-CNN. The third strategy suggests adding
a segmentation head to each stage of the Cascade R-CNN. For
our implementation, we are using three-stage Cascade Mask
R-CNN with a third strategy where the segmentation branch
is added at the final stage of Cascade R-CNN.

Proposal boxes from the RPN are first sampled by using a
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Fig. 1: System overview of DeepCeNS. Input image is passed to the proposed pipeline and the output image with detection

and segmentation is produced.

threshold of 0.5 at first stage, 0.6 at the second stage and 0.7
at the third stage of Cascade Mask R-CNN. The proposals
which have higher IoU scores than the threshold are regarded
as foreground and the rest as background. This process is done
during training only. After the sampling of the proposal boxes
in each stage, the next step in each stage is ROI pooling in
which the rectangle regions of the features maps are cropped
as specified by the proposal boxes. After the ROI pooling, the
cropped features are fed to the box and mask head of the final
stage of Cascade Mask-RCNN. The box head classifies the
object within the ROI and fine-tunes the shape and position
of the box.

The mask head is composed of a small Fully Convolutional
Network (FCN) applied to each ROI which predicts a segmen-
tation mask in a pixel-to-pixel manner [25] to achieve the task
of instance segmentation.

IV. DATASET

In this study, we have used EVICAN?2 [2] dataset. It consists
of images from multiple types of microscopes across 30
different cell cultures. Two variations of this dataset are de-
fined in [2] i.e. EVICAN2 and EVICANG60. In the EVICAN2
dataset, cell and nucleus instances are combined for all the
30 different cell cultures to form two generic classes i.e. cell
and nucleus. The EVICANG60 dataset consists of 60 classes
(30 classes for cell and nucleus each). In our study, we are
using the EVICAN2 dataset. A total of 52,959 instances are
present in the 4640 partially annotated images in the training
and validation dataset. The test set contains 1057 instances

in 98 fully annotated images. Based on the image quality

characteristics, the test set is divided into three difficulty levels
as done in [2]:

« Difficulty level 1 (Easy): Contains 33 images with 374

instances. 1084 instances are mistakenly reported in [2].

« Difficulty level 2 (Medium): Contains 33 images with 356

instances. 1036 instances are mistakenly reported in [2].

« Difficulty level 3 (Difficult): Contains 32 images with 327

instances. 1102 instances are mistakenly reported in [2].

With regard to heterogeneity, no other dataset like Allen Cell
Explorer [26], ISBI [12], Gurari [27], BBBC [28] achieves
heterogeneity greater than the EVICAN2 [2] dataset. The
annotations were exported as COCO annotation style [3], but
only included the segmentation annotation for the instances.
For our algorithm development, we calculated the bounding
box and pixel area for each instance so we can have a better
insight into the detection scores and different area ranges
scores alongside the segmentation score. For training and
validation, we only took into account the annotated images
and discarded the extra background images (750 images in
the train set and 250 images in the validation set) with no
instances.

V. EVALUATION METRICS

To evaluate the performance of the proposed pipeline we
are following the standard COCO evaluation protocol [3]. In
COCO evaluation metrics, mean average precision is reported
at different IoU thresholds and on different area ranges.
Average Precision (AP) is the precision averaged across all
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Fig. 2: Loss plots for experimental settings. First column (a) represents the training and validation loss of experimental
setting 1 (cell segmentation). Second column (b) represents the training and validation loss of experimental setting 2 (nucleus
segmentation). Third column (c) represents the training and validation loss of experimental setting 3 (cell and nucleus

segmentation).

unique recall levels. Mean Average Precision (mAP) is the
mean of average precision across all N classes.

YL AP
mAP = N

For the evaluation, we have reported mean average precision
for both object detection and segmentation tasks at different
IoU thresholds of 0.5 (mAP50), 0.75 (mAP75) and 0.5:0.95
in the steps of 0.05 (mAP). In order to identify performance
of model on objects of different sizes, we have also included
mAP for different area ranges. Objects with area less than 322
(1024 pixel®) belong to mAPs (small). mAPm (medium) is
for the objects in area ranges of 322 to 96> (9216 pixel?) and
mAPI (large) is for objects with area larger than 962,

6]

VI. EXPERIMENTAL SETUP

We have compared the DeepCeNS with EVICAN-MRCNN
[2] to analyze the performance of the proposed pipeline. Deep-
CeNS and EVICAN-MRCNN are evaluated in three different
experimental settings. Different experimentation manifests the
impact and limitations of cell and nucleus detection and
segmentation when treated individually and collectively. In
the first two settings namely Cell segmentation and Nucleus
segmentation, cell and nucleus detection and segmentation are
done separately, whereas in the third experimental setting,
namely Cell and Nucleus segmentation, cell and nucleus de-
tection and segmentation are carried out collectively. We have
retrained EVICAN-MRCNN using their publicly available
code!. The training for EVICAN-MRCNN and DeepCeNS are
done one NVIDIA GeForce GPU and four NVIDIA V-100
GPUs respectively.

We leveraged transfer learning to train DeepCeNS by using
MS-COCO pre-trained model [3] for all the settings. The pre-
trained model was fine-tuned on EVICAN2 dataset by using

'EVICAN-MRCNN code:
https://github.com/MischaSchwendy/EVICAN-MRCNN

Stochastic Gradient Descent (SGD) [29]. Training for all the
experiments is performed with a base learning rate of 0.02
and momentum of 0.9. 3x learning rate schedule is used with
learning rate reduced by the factor of 10 at 5,000 and then at
5,500 iterations. Linear learning rate warm-up of 0.001 is used
to train the first thousand iterations. The anchor sizes for each
setting (explained in Hyper-parameter and modeling for each
setting) were set after careful consideration of the objects (cell,
nucleus) pixel area in the images. Anchors aspect ratios were
set to 0.25, 0.5, 1, 2, 4 for all the settings. The checkpoints for
evaluation were chosen based on the lowest validation loss and
higher validation average precision. Fig. 2 shows the training
and validation loss of the DeepCeNS for each setting.
Synchronized batch normalization [30] is used to normalize
the images to center all the images in the dataset around
zero. For normalizing the input images, the pixel values are
subtracted by the global average pixel mean and then divided
by the global standard deviation. The pixel mean and pixel
standard deviation for the dataset were calculated as 114.83,
114.83, 114.83, and 15.455, 15.455, 15.455 respectively. For
data augmentation, images are flipped horizontally on a ran-
dom basis to reduce the risk of over-fitting. All the images are
re-scaled from their original size to (1024, 1024).

A. Experimental Setting 1: Cell segmentation

In this experimental setting, the objective is to detect and
segment only cells. There are 21,106 cell instances in 3,714
images of the training dataset, 5,317 cell instances in the 926
images of the validation dataset, and 525 cell instances in the
98 images of test set distributed among 3 difficulty levels.

1) Hyper-parameter and Modeling: The anchor sizes for
this setting were set to 2, 6, 17, 31, 64, 127, 256, 512, 1024
pixels after analyzing the histogram of cell pixel areas in the
train set. The checkpoint at 1,000 iterations was chosen for
evaluation.

2) Results: Table I shows the cell detection and segmen-
tation results of EVICAN-MRCNN and DeepCeNS on the



TABLE I: Evaluation results of setting 1 (cell segmentation). The best results are shown in bold. DeepCeNS outperforms
EVICAN-MRCNN comprehensively in all the metrics at different difficulty levels.

Model Difficulty mAP mAPS0 mAP75 mAPs mAPm mAPI

level Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.

EVICAN- 1 26.48 | 24.61 | 55.25 | 50.03 | 18.03 | 21.95 | 11.91 | 13.64 | 28.76 | 26.66 | 24.23 | 22.14
MRCNN [2] 2 4.28 3.19 11.14 | 7.63 4.02 2.38 856 | 7.35 1.83 0.82 6.63 5.34
3 5.92 4.70 14.82 | 12.89 | 331 1.74 0.00 | 0.00 6.14 | 5.03 6.75 5.30

Deep- 1 64.82 | 63.38 | 88.31 | 89.25 | 73.32 | 74.25 | 41.01 | 43.23 | 67.25 | 63.96 | 64.81 | 66.33

CeNS 2 3292 | 29.73 | 53.56 | 54.17 | 37.99 | 29.18 | 1895 | 18.89 | 32.46 | 26.51 | 38.62 | 37.98

3 23.61 | 21.64 | 40.48 | 40.99 | 24.08 | 24.06 | 0.69 | 0.47 26.08 | 21.85 | 2491 | 26.19

TABLE II: Evaluation results of setting 2 (nucleus segmentation). The best results are shown in bold. DeepCeNS outperforms
EVICAN-MRCNN on all counts.

Model Difficulty mAP mAPS0 mAP75 mAPs mAPm mAPI
level Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.
EVICAN- 1 1459 | 1395 | 34.53 | 3354 | 7.81 10.61 9.01 8.36 21.76 | 21.38 | 0.00 | 0.00
MRCNN [2] 2 4.89 451 13.36 | 11.15 1.25 1.52 5.07 | 4.62 533 3.81 5.94 8.17
3 1.01 1.15 2.68 2.32 0.11 0.99 0.69 | 0.89 1.72 1.58 0.00 | 0.00
Deep- 1 39.12 | 3646 | 77.05 | 74.43 | 32.56 | 30.56 | 31.79 | 27.81 | 48.56 | 46.44 | 23.20 | 42.53
CeNS 2 1948 | 1846 | 41.08 | 39.60 | 14.44 | 14.44 | 2037 | 20.11 | 17.76 | 16.52 | 37.67 | 33.74
3 8.87 8.86 | 23.57 | 23.28 | 6.62 5.36 10.13 | 9.46 7.88 | 8.95 10.64 | 11.56

EVICAN? dataset. In terms of segmentation mAP, DeepCeNS
outperforms EVICAN-MRCNN by 38.7% for the difficulty
level 1. It is observed that both models find it easy to detect and
segment cells for the difficulty level 1. There is a significant
drop in the scores for difficulty levels 2 and 3.

B. Experimental Setting 2: Nucleus segmentation

In this experimental setting, the objective is to detect and
segment the nucleus only. All the nucleus instances from 30
different cell cultures are combined to form one class i.e.
Nucleus. There are 21,211 nucleus instances in 3,714 images
of the training dataset, 5,325 nucleus instances in the 926
images of the validation dataset, and 525 nucleus instances
in the 98 images of test set.

1) Hyper-parameter and Modeling: It was noted that com-
pared to the cell instances, the nucleus instances are relatively
smaller in areas. The anchor sizes of 2, 6, 8, 12, 17, 24,
31, 64, 127, 256 pixels were chosen for this experiment after
analyzing the pixel areas of nucleus instances in the training
dataset. The checkpoint at 2,500 iterations was chosen for
evaluation.

2) Results: The results in Table II show that detecting and
segmenting the nucleus is difficult as compared to the cell. The
detection and segmentation score for DeepCeNS is 39.12%
and 36.46% respectively for the difficulty level 1. DeepCeNS
outperforms EVICAN-MRCNN in terms of both detection and
segmentation tasks for all the three difficulty levels by a vast
margin.

C. Experimental Setting 3: Cell and Nucleus segmentation

In this experimental setting, the objective is to detect and
segment both cell and nucleus collectively. All the cell and
nucleus instances over 30 cell cultures are taken as one class

each. 42,317 instances exist in 3,717 images for the train set,
10,642 instances in 926 images for the validation set, and
1,053 instances in 98 images for the test set.

1) Hyper-parameter and Modeling: The anchor sizes were
selected by observing the areas of both cell and nucleus in-
stances. It was noted that the anchor sizes used in experimental
setting 1 for cell detection and segmentation suit well for this
setting because it covers wide ranges of areas and the nucleus
instances also exist within that range. The checkpoint at 1,000
iteration was chosen for the evaluation.

2) Results: Table III shows the results of DeepCeNS and
EVICAN-MRCNN. mAP50 of EVICAN-MRCNN for the
difficulty level 1 is 61.58% and our model outperforms that by
more than 20%. In addition to the metrics reported in Table
III, we have also included AP for each class as well i.e APC
in the Table III represents AP for class cell and APN for class
nucleus. DeepCeNS outperforms the EVICAN-MRCNN on all
counts.

VII. ANALYSIS AND DISCUSSION

In this section, we discuss and compare the results of
EVICAN-MRCNN [2] (which is the current SotA at EVI-
CAN2 dataset) and DeepCeNS. In the experimental setting 1
(Cell segmentation), DeepCeNS achieves a superior mAP as
compared to SotA for both cell detection and segmentation
for the difficulty level 1. The mAP scores also drop with the
decline in image quality characteristics, such as increased cell-
cell contact (colony formations) and invisible cell outlines, as
mentioned in [2] for the difficulty levels 2 and 3. Analyzing
the area ranges scores for the experimental setting 1, both
implementations find it harder to detect and segment cells of
small area as compared to medium and large area cells, but
the proposed pipeline performs fairly better in detecting and



TABLE III: Evaluation results of setting 3 (cell and nucleus segmentation). The best results are shown in bold. DeepCeNS
performs better than EVICAN-MRCNN for all the difficulty levels.

Difficulty

mAP

Model mAP50 mAP75 mAPs mAPm mAPI mAPC mAPN

level Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.
EVICAN- 1 3223 | 3220 | 61.29 | 61.58 | 30.21 | 31.70 | 32.60 | 31.07 | 36.85 | 36.38 | 21.07 | 22.86 | 43.24 | 4337 | 21.21 | 21.04
MRCNN [2] 2 14.90 | 13.57 | 33.45 | 3095 | 11.64 | 1048 | 18.17 | 16.75 | 14.66 | 13.20 | 12.94 | 12.48 | 17.63 | 15.61 | 12.71 | 11.52

3 9.91 8.53 20.44 | 20.79 8.46 4.36 6.22 5.29 11.64 | 9.45 8.38 | 7.81 16.35 | 14.03 | 3.47 3.02
Deep- 1 53.80 | 52.56 | 83.41 | 83.40 | 58.31 | 57.31 | 46.64 | 48.83 | 58.98 | 57.32 | 55.54 | 55.52 | 68.27 | 65.39 | 39.34 | 39.74
CeNS 2 27.85 | 26.12 | 48.10 | 47.87 | 31.39 | 2891 | 22.89 | 20.72 | 28.69 | 24.29 | 32.58 | 36.72 | 35.57 | 32.25 | 20.14 | 19.98
3 17.02 | 16.92 | 34.56 | 33.81 | 16.84 | 15.79 | 8.83 7.89 | 1693 | 15.59 | 19.40 | 23.61 | 24.24 | 23.54 | 9.79 | 10.30
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Fig. 3: Inference results of DeepCeNS and EVIVAN-MRCNN (SotA) are shown on sample images. In this figure, we have
selected samples on which DeepCeNS performed adequately. The groundtruth masks are shown in solid yellow and orange
lines, while the predicted masks are shown in dotted red and blue lines for cell and nucleus respectively. The first three columns
show the results of DeepCeNS and the last three columns represent the results of EVICAN-MRCNN. Each row represents
different experimental settings. The glow around the image represents to which difficulty level the test image belongs (green,
blue and red for difficulty level 1, 2 and 3 respectively).

segmenting cells of small area.

The nucleus detection and segmentation score in experimental
setting 2 (Nucleus segmentation) is nearly half of the detection
and segmentation score of cell as in experimental setting 1
for both implementations. This could be because unlike cells,
there are no sharp boundaries for the nucleus because it is an
inner structure of a cell. Similar to experimental setup 1, as
we go up the difficulty level, the mAP scores drop to more

than half for difficulty level 2 and more than one third for the
difficulty level 3 as compared to the difficulty level 1.

For experimental setting 3 (Cell and Nucleus segmentation)
Table III, it is evident that the mAP for each category, i.e.
cell and nucleus improves when they are trained and tested
collectively rather than individually as in experimental setting
1 and 2. The increase in the number of training instances
causes the model to learn more diversity which is the reason
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Fig. 4: Inference results of some samples where DeepCeNS and EVICAN-MRCNN (SotA) performed inadequately.

for the improved performance for both classes.

Fig. 3 shows the inference results on some samples where
our proposed pipeline performed adequately. For comparison,
we have also added EVICAN-MRCNN inference results of
the same samples. The first three columns show the results of
DeepCeNS and the last three columns represent the results of
EVICAN-MRCNN. The groundtruth masks are shown in solid
yellow and orange lines, while the predicted masks are shown
in dotted red and blue lines for cell and nucleus respectively.
The AP50 on top of every sub-image represents the average
precision score at IoU threshold of 0.5. The predictions with
detection score above 0.5 are shown in the inference results.
The first row (cell segmentation) represents the results of
experimental setting 1, the second row (nucleus segmentation)
represents the results of the experimental setting 2 and the third
row (cell and nucleus segmentation) represents the results of
the experimental setting 3. The difficulty level of each sample
is represented by the glow of green, blue and red for difficulty
levels 1,2 and 3 respectively. In these samples, the cell
segmentation results of DeepCeNS have nearly 100% mAP50,
whereas EVICAN-MRCNN performs relatively poorly with
miss detections and false-positive detections. For the nucleus
segmentation, the EVICAN-MRCNN fails to predict many

nucleus instances, while DeepCeNS accurately predicts most
of the nucleus instances. The same trend can be seen for
both cell and nucleus segmentation in the third row where
DeepCeNS achieves higher scores and segments both cell and
nucleus instances, whereas EVICAN-MRCNN fails to detect
most of the cell and nucleus instances and there are also some
false predictions.

Fig. 4 shows the inference results on some of the samples
where both methods perform inadequately. The representation
is the same as in Fig. 4. For the cell segmentation, DeepCeNS
fails to predict one cell instance in the first image, and no
predictions are made for the third image. The performance of
EVICAN-MRCNN for cell segmentation is worse as compared
to DeepCeNS. Similarly, for the nucleus segmentation, there
are many missed predictions, but DeepCeNS performance is
relatively better. For the cell and nucleus segmentation, there
are some missed cell predictions and most of the nucleus in-
stances are left undetected. The reason for the bad performance
is the image quality characteristics. Most of the images where
we don’t have any predictions either belong to difficulty level
2 or 3. For these difficulty level images, we have many cell-
cell contacts where the cell outlines are not visible and the
nuclei of the cell are often invisible [2].



With the proposed approach in this study, we have outper-
formed the EVICAN-MRCNN [2] (SotA) method by a wide
margin of 21.80% in terms of mAP at Jaccard index above
50% for segmentation.

VIII. CONCLUSION

In this study, we have proposed a novel pipeline for cell
and nucleus detection and segmentation. DeepCeNS provides
an improved method to segment individual cells and nuclei
from microscopic images, which helps better quantification of
individual cell appearance and behavior. We have achieved
state-of-the-art results by outperforming EVICAN-MRCNN
[2] with an improvement of 21.80% in terms of mean average
precision at Jaccard index above 50% for segmentation. The
average precision score for the small instances is still low
as compared to large instances. EVICAN2 dataset used for
training is partially annotated, where all the cells and nucleus
instances are not labeled. Still, our pipeline performs relatively
well for detecting and segmenting cell and nucleus instances.
The results can further be improved with the availability
of a fully annotated dataset. In the future, we would like
to investigate a hybrid approach that incorporates traditional
computer vision approaches in conjunction with deep learning
to make the cell and nucleus segmentation process more
robust. Similarly, other augmentation techniques like zooming,
rotation, changing brightness, and contrast can be applied for
further gain.
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