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Abstract—Accurate cell segmentation in microscopic images is
a useful tool to analyze individual cell behavior, which helps to
diagnose human diseases and development of new treatments.
Cell segmentation of individual cells in a microscopic image with
many cells in view allows quantification of single cellular features,
such as shape or movement patterns, providing rich insight into
cellular heterogeneity. Most of the cell segmentation algorithms
up till now focus on segmenting cells in the images without
classifying the culture of the cell in the images. Discrimination
among cell types in microscopic images can lead to a new era
of high-throughput cell microscopy. Multiple cell types in co-
culture can be easily identified and studying the changes in
cell morphology can lead to many applications such as drug
treatment. To address this gap, DeepCIS is proposed to detect,
segment, and classify the culture of the cells and nucleus in the
microscopic images. We have used the EVICAN60 dataset which
contains microscopic images from a variety of microscopes having
numerous cell cultures, to evaluate the proposed pipeline. To
further demonstrate the utility of the DeepCIS, we have designed
various experimental settings to uncover its learning potential.
We have achieved a mean average precision score of 24.37%
for the segmentation task averaged over 30 classes for cell and
nucleus.

Index Terms—biomedical, healthcare, deep learning, cell-type
segmentation, nucleus-type segmentation, cell-type classification

I. INTRODUCTION

Segmenting individual cells enables detailed studies of
individual cell behavior, for instance, cell migration that is
a central process behind many physiological and pathological
processes like tissue maintenance, development, and healing.
Microscopic images suffer from certain challenges including
low contrast as well as irregularly shaped and overlapping
cells as compared to natural images, making the segmentation
process challenging. Convolutional neural network-based ap-
proaches are showing promising results in microscopic image
analysis [1]. Even with the great advancements in the field of
deep learning, there are no methods that classify the culture
of each cell in the image in addition to the task of detection
and segmentation. Chan et al. [2] proposed a deep learning

algorithm for cell segmentation. Ali et al. [3] proposed a
deep learning-based algorithm for nucleus segmentation in
brightfield cell microscopy images. These approaches don’t
differentiate between cell and nucleus types. Discrimination
among cell types can lead to distinguishing cells in a co-
culture environment. This can lead to studying morphological
changes among different cell cultures which can, in turn,
lead to drug treatment. Unlike other cell segmentation dataset
which doesn’t differentiate between different cell cultures,
EVICAN60 [4] dataset differentiates cells among 30 different
cell cultures.
In this study, we have proposed parameters for features ex-
traction and anchor sizes to detect, segment, and classify cells
and nucleus on the EVICAN60 [4] dataset. We propose a novel
pipeline DeepCIS – an end-to-end pipeline for Culture Depen-
dent Cell and Nucleus Segmentation. The main contribution
of this study is as follows:

• An end-to-end cell and nucleus segmentation and culture
classification pipeline based on Cascade Mask R-CNN
[5] with ResNeSt [6] backbone.

• Extensive evaluation of proposed method on EVICAN60
[4] dataset from different perspectives.

II. METHODOLOGY

Fig. 1 provides a system overview diagram of the proposed
pipeline. The proposed pipeline is divided into three blocks.

A. Backbone Network

The purpose of the backbone network is to extract feature
maps from the input image at different scales. The backbone
network of the proposed methodology is composed of Feature
Pyramid Network (FPN) [7] and ResNeSt-200 [6]. FPN oper-
ates on the bottom-up pathway, top-down pathway, and lateral
connection to combine the low resolution, semantically strong
features with high resolution semantically weak features. The
bottom-up pathway uses a normal feed-forward CNN archi-
tecture which computes the hierarchy of features consisting of
feature maps at various scales. As we move up the convolution
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Fig. 1: System overview diagram of DeepCIS. Input image is passed to the proposed pipeline and the output image with
detection and segmentation is produced.

layers, more high-level structures are detected. ResNeSt-200
[6] is used with deformable convolution [8] as a feed-forward
CNN architecture in the bottom-up pathway of our approach.
ResNeSt is composed of a modular split attention block
that enables attention across feature map groups which helps
different network branches to capture cross-feature interactions
and learn diverse representations. The blocks are then stacked
according to ResNet-style. Deformable convolution is being
used instead of conventional convolution because it suits best
for our application in terms of cell deformity [9]. The output
of each convolution layer of ResNeSt is used in the top-down
pathway which constructs a higher resolution layer from the
semantic rich layer.

B. Region Proposal Network

After the extraction of multi-scale features from the back-
bone network, these features are further passed onto a Regional
Proposal Network (RPN) [10]. The purpose of RPN is to detect
regions that contain objects and match them to the groundtruth.
This process is performed by generating anchor boxes on the
input image. The generated anchors are then matched to the
groundtruth by taking Intersection over Union (IoU) between
anchors and ground truth. If IoU is larger than the defined
threshold, i.e. 0.7, the anchor is linked to one of the ground
truth boxes and assigned to the foreground. If the IoU is greater
than 0.3, it is marked as background and ignored otherwise.

C. Prediction Head

After the successful generation of proposals, the next block
in our pipeline is the prediction head. At the prediction head,
we have groundtruth boxes, proposal boxes from RPN, and
feature maps from FPN. The job of the prediction head is
to predict the class, bounding box, and binary mask for each
region of interest. Cascade Mask R-CNN [5] is used as the
prediction head, which is an extension of Cascade R-CNN by
adding a mask branch to the cascade. The output of one stage
of cascade is used as input for training the next stage. In our
methodology, we are adding the segmentation branch at the
last stage of the Cascade R-CNN.

III. DATASET

We have used EVICAN60 [4] dataset in this study. The
EVICAN60 dataset consists of 60 classes (30 classes for cell
and nucleus each). A total of 52,959 instances are present in

the 4,640 partially annotated images in the training and vali-
dation dataset. The test set contains 1,057 instances in 98 fully
annotated images. Based on the image quality characteristics,
the test set is divided into three difficulty levels as defined in
[4]. A total of 374, 356, and 327 instances are presented in 33,
33, and 32 images for difficulty levels 1, 2, and 3 respectively.

IV. EXPERIMENTAL SETUPS

Three different experimental settings have been designed
and explained in this section to analyze the performance of the
proposed pipeline. These experimentations manifest the impact
and limitations of culture-dependent cell and nucleus detection
and segmentation when treated individually and collectively. In
the first two settings namely Culture-dependent cell segmen-
tation and Culture-dependent nucleus segmentation, cell and
nucleus detection and segmentation are performed separately,
whereas, in the third experimental setting, namely cell Culture-
dependent cell and nucleus segmentation, cell and nucleus
detection and segmentation are carried out collectively. We
leveraged transfer learning to train DeepCIS by using MS-
COCO pre-trained model [7] for all the settings. Training for
all the experiments is performed with a base learning rate of
0.02 and momentum of 0.9. The anchor sizes for each setting
were set after careful consideration of the cells and nucleus
pixel area in the images. Anchors aspect ratios were set to
0.25, 0.5, 1, 2, 4 for all the settings.
Evaluation Metrics: We are following the standard COCO
evaluation protocol [7] to evaluate the performance of the
proposed pipeline. Mean average precision (mAP) is reported
at different IoU thresholds i.e., mAP50 and mAP75, and
on three different area ranges i.e. mAPs (small), mAPm
(medium), and mAPl (large).

A. Experimental Setting 1: Culture-dependent cell segmenta-
tion

In this experimental setting, the objective is to detect and
segment only cells for the 30 different cell cultures in the
EVICAN60 [4] dataset. There are 21,106 cell instances in the
training dataset, 5,317 cell instances in the validation dataset,
and 525 cell instances in the test set. In the training dataset, the
most number of images are present in the cell type C2C12 i.e.,
264, and the most number of labeled instances for cell culture
HT29 i.e., 1,308, and only 30 cell instances are present for cell
cultures SK-BR-3 and Colo. For the validation set, there are



no labeled instances for cell cultures Hel299 and HCT116. In
the evaluation dataset, there are no images present for the cell
cultures Caco-2, hMSC, CAKI-2, MCC26, Colo, DLD-1, and
HT1080 for difficulty level 1. For difficulty level 2, there are
no images for cultures HeLa, 769p, RKO, T47D, PC-3, SH-
SY5Y, and SW-480. Cell cultures DU-145, MDA MB, CHO,
786-O, Colo, MCF-7, NIH-3T3, and SK-BR-3 don’t have any
images in the difficulty level 3 category of the evaluation data
set. The anchor sizes for this setting were set to 2, 6, 17, 31,
64, 127, 256, 512, 1024 pixels after analyzing the histogram
of cell pixel areas in the training set. The checkpoint at 1,500
iterations was chosen for evaluation. Table I shows the overall
evaluation results for this setting. The mAP here is the mean
of AP over all 30 classes of cells. The mAP for difficulty level
2 is nearly 0% for both detection and segmentation tasks for
this setting. For difficulty level 1, the mAP is around 30% for
both detection and segmentation tasks. For difficulty level 3,
the mAP is around 10% for both detection and segmentation
tasks.

B. Experimental Setting 2: Culture-dependent nucleus seg-
mentation

In this experimental setting, the objective is to detect and
segment the nucleus only for the 30 different cell cultures
in the EVICAN60 [4] dataset. There are 21,211 nucleus
instances in the training dataset, 5,325 nucleus instances in
the validation dataset, and 525 nucleus instances in the test
set. The evaluation set doesn’t have any images for 8, 7, and 9
classes for difficulty levels 1, 2, and 3 respectively. The anchor
sizes of 2, 6, 8, 12, 17, 24, 31, 64, 127, 256 pixels were chosen
for this experiment. The checkpoint at 2,000 iterations was
chosen for evaluation. The overall evaluation scores averaged
over 30 classes of the nucleus are given in Table I. The mAP
for the nucleus is very low as compared to that for cells.

C. Experimental Setting 3: Culture-dependent cell and nu-
cleus segmentation

In this experimental setting, 30 classes per cell and 30
classes per nucleus are present, which correspond to a total
of 60 classes. The anchor sizes used in experimental setting
1 suit well for this setting. The checkpoint at 3,500 iterations
was chosen for the evaluation. Table I shows the mean AP
scores for all 60 classes. For difficulty level 1, an mAP of
24.37% for both detection and segmentation tasks is achieved
which is almost 3 times the mAP we get for difficulty level
3.

V. ANALYSIS AND DISCUSSION

In experimental setting 1, segmentation mAP of 30.31% is
achieved for difficulty level 1. The per-class segmentation AP
scores for difficulty level 1 indicate that the highest score of
83.90% is recorded against the cell culture SW-480. The mAP
scores drop with the decline in image quality characteristics,
such as increased cell-cell contact and invisible cell outlines,
as mentioned in [4] for the difficulty levels 2 and 3. The
segmentation score for nucleus in experimental setting 2 is

nearly half of the cell segmentation score in experimental
setting 1. Similar to experimental setup 1, we get an AP score
of 0% for difficulty level 2. For experimental setting 3, an mAP
of 24.37% is achieved for both detection and segmentation
averaged over all the 60 classes. It was observed that the per
class score for cell and nucleus culture segmentation increases
for the experimental setting 3 where all the 30 cell and nucleus
classes are trained collectively which is due to more training
samples per class. The main reason behind these low scores is
the number of images and the number of instances per class in
all the difficulty levels. Difficulty level 1 doesn’t contain any
image or instances for 8 cell cultures, 11 classes with only 1
image, and the rest of 11 classes with just 2 images. The same
trend is seen across the other two difficulty levels too.
Fig. 2 shows the inference results on some samples where the
proposed pipeline performed adequately and inadequately. The
AP50 on top of every sub-image represents the segmentation
mAP score at IoU threshold of 0.5. The predictions with
detection scores above 0.5 are shown in the inference results.
The difficulty level of each sample is represented by the
glow of green, blue and red for difficulty levels 1, 2, and
3 respectively.
For the culture-dependent cell segmentation in the adequate
column, we get an AP50 score of 100% with the correct cell
culture predicted i.e., SW480. For the nucleus segmentation
experiment sample in the adequate column, we get an AP50
score of 100% with most of the nucleus instances correctly
predicted. A similar trend can be seen for the last sample in
the adequate column for the third experiment. All the cell and
nucleus instances are correctly segmented and classified as
belonging to PC-3 cell culture.
In the inadequate column results in Fig 2, our model failed to
predict 3 cell instances for the culture-dependent cell segmen-
tation. Similarly, for the second experiment, the model fails to
predict one nucleus instance but the rest of the instances are
correctly segmented with the correct cell culture. In the last
experimental setting, our model is successful in predicting just
two cell instances, with no nucleus instances detected. The
class of these two cell instances is predicted to be Hel299,
whereas in actual they belong to the cell culture FADU, hence
the AP50 score of 0%.

VI. CONCLUSION

In this study, we have proposed a novel pipeline for cell and
nucleus detection and segmentation alongside the identification
of the class for each cell and nucleus instance. The average
precision scores are still very low which is mostly because
the EVICAN60 dataset used for training is partially annotated,
where all the cells and nucleus instances are not labeled. In
addition to that, the distribution of the images in the evaluation
set doesn’t provide the best platform to judge the proposed
pipeline. Still, the proposed pipeline performs relatively well
for detecting and segmenting cell and nucleus instances. We
believe that with a more balanced dataset, the results can be
improved further.



TABLE I: Detection and segmentation results for the 3 experimental settings

Culture-Dependent Cell Segmentation
Difficulty mAP mAP50 mAP75 mAPs mAPm mAPl

Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.
1 29.83 30.31 41.09 41.09 33.51 33.38 15.15 15.15 27.89 27.91 36.34 37.17
2 0.04 0.07 0.18 0.18 0.00 0.00 0.27 0.12 0.08 0.12 0.00 0.00
3 9.34 9.67 16.70 17.39 8.48 9.80 0.00 0.00 12.39 11.23 17.63 18.09

Culture-Dependent Nucleus Segmentation
1 16.49 16.12 27.11 27.02 20.12 18.31 11.58 10.84 26.98 28.69 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 4.29 3.69 2.97 8.66 2.97 8.66 2.75 2.15 9.96 9.67 10.68 11.96

Culture-Dependent Cell and Nucleus Segmentation
1 24.37 24.37 37.56 37.37 25.63 26.50 11.99 11.36 30.66 30.37 33.79 35.31
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 8.97 8.11 14.68 14.61 9.64 8.47 3.60 3.64 10.51 8.96 24.07 21.57
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Fig. 2: Inference results of some samples where DeepCIS performed adequately and inadequately. The glow around the image
represents to which difficulty level the test image belongs to (green, blue and red for difficulty level 1, 2 and 3 respectively).
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