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Abstract. In practical applications where high-precision reconstructions are re-
quired, whether for quality control or damage assessment, structured light recon-
struction is often the method of choice. It allows to achieve dense point corre-
spondences over the entire scene independently of any object texture. The opti-
mal matches between images with respect to an encoded surface point are usually
not on pixel but on sub-pixel level. Common matching techniques that look for
pixel-to-pixel correspondences between camera and projector often lead to noisy
results that must be subsequently smoothed. The method presented here allows to
find optimal sub-pixel positions for each projector pixel in a single pass and thus
requires minimal computational effort. For this purpose, the quadrilateral regions
containing the sub-pixels are extracted. The convexity of these quads and their
consistency in terms of topological properties can be guaranteed during runtime.
Subsequently, an explicit formulation of the optimal sub-pixel position within
each quad is derived, using bilinear interpolation, and the permanent existence
of a valid solution is proven. In this way, an easy-to-use procedure arises that
matches any number of cameras in a structured light setup with high accuracy and
low complexity. Due to the ensured topological properties, exceptionally smooth,
highly precise, uniformly sampled matches with almost no outliers are achieved.
The point correspondences obtained do not only have an enormously positive ef-
fect on the accuracy of reconstructed point clouds and resulting meshes, but are
also extremely valuable for auto-calibrations calculated from them.
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1 Introduction

Structured light enables the determination of precise and dense point correspondences
between a camera and a projector view. No features are required, making it applicable
to a wide range of different object types. Often, sinusoidal patterns are projected to
encode the scene in two directions. With the help of the deformed patterns, horizontal
and vertical phase images are calculated for each camera view, that theoretically lead
to a direct correspondence between each projector pixel and its position in the camera
image. From these point correspondences, cameras and projector can be calibrated and
a dense point cloud can be triangulated using the obtained camera matrices.
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(a) Camera 1

(b) Horizontal phases

(c) Vertical phases (d) Camera 2

Fig. 1: Illustration of projector-driven matching
of two cameras and a projector. Red lines visu-
alize the encoding of a point by its phases.

(a) (b) (c)

Fig. 2: Resulting point clouds of
FPDM with (b,c) and without (a)
TCC and in addition with ECC (c).

In theory, a setup consisting of a projector as active device, holding the perfect
phase, and a camera is sufficient for depth estimation. However, in many practical ar-
rangements, several cameras, at least two, are used in addition to the projector. This is
due to a much cleaner projective behavior of high quality cameras compared to most
projectors. Since higher quality lenses are available, usually less distortions are caused.
Also, most industrial cameras allow gamma correction to be disabled, which has a sig-
nificant impact on assumptions in computer vision applications. Since this is not pos-
sible with affordable projectors, it is of considerable advantage to triangulate the point
cloud with the camera information only. To cover the general case of any number of
cameras, in this paper the situation with two cameras and one projector is considered.
Thus, the procedure can be trivially extended to an arbitrary number of cameras.

The idea of projector-driven matching is to find suitable correspondences in the
camera images for each projector pixel. In this way, the camera positions are transitively
matched via the projector pixels. Figure 1 illustrates this procedure. (a) and (d) show the
texture images of the two camera views. (b) and (c) show the corresponding horizontal
and vertical phase images of the cameras and in the center of the projector. The red lines
illustrate the unique encoding process of a pixel through the two phases. In the exact
execution of dense matching a number of difficulties arises:

– Phase images are discrete samples of continuous functions. Therefore, there is usu-
ally no exact pixel-to-pixel mapping. Instead, it is very likely that matches lie be-
tween certain camera pixels.

– The topology of the pixels remains locally preserved during the projection process.
Thus, certain conditions can be defined which must be fulfilled by the phases and
met during the matching process in order to avoid noisy results.

– Matching is only a sub-step in 3D reconstruction and auto-calibration and should
therefore be fast. The trivial procedure of searching optimal matches between all
images is not practical at all. The procedure would be of quadratic complexity in
terms of resolution, and with increasing camera resolutions this is very poor.

In the following, we develop a procedure that is extremely fast and can match any
number of devices stably and consistently with sub-pixel accuracy. Each image pixel
must be passed through exactly once resulting in a linear complexity.
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2 Related Work

Matching is one of the main components in the field of 3D reconstruction. The goal is
to find point correspondences as dense and precise as possible across the entire scene.
Standard approaches search for suitable candidates along the epipolar lines and evaluate
them according to their neighbors using suitable region descriptors [7]. This is a com-
mon approach, but requires a calibrated setup and can fail in many cases, as in uniform
areas of the scene. If it is, in contrast, possible to create very precise matches without
prior calibration information (e.g. [6]), modern auto-calibration methods, such as [4]
and [5] allow to perform an exact calibration of the system directly from these matches,
which makes such a computer vision system much more user-friendly and flexible. It
also makes it suitable for a variety of other applications where pre-calibration is not
possible, extremely tedious or problematic, since the setup may de-calibrate over time.

Common matching procedures without pre-calibration are based on SIFT features
[8], which provide robust matches if sufficient object texture is available. Also, there are
methods that do not only include appearance but also object geometry into the search
[9]. However, both of them most likely fail in the case of very smooth uniform objects,
which limits the applicability. To reconstruct untextured objects the structured light ap-
proach is a common tool. In [11] the authors use structured light information to handle
large disparities in binocular matching. Similarly, in [12] the wrapped phase is used to
refine the stereo matches. [14] shows how to get accurate dense matches using only the
reconstructed phase. [3] introduces a sub-pixel matching for unsynchronized structured
light, while for each match an energy is minimized by gradient descent. Matching based
on peak calculation [15] and [1] also achieves sub-pixel accuracy but requires higher
computational effort than the method presented.

In [2] a deep learning approach for structured light matching was proposed recently.
It uses a Siamese network trained on a synthetic data set that expects rectified images,
which is not suitable for arbitrary uncalibrated systems and auto-calibration. Also in
[10] structured light and deep learning are combined to achieve good and exact matches.
In [13] matching is even skipped and depth is directly calculated using deep learning.

3 Fast Projector Driven Matching (FPDM)

The task of fast projector-driven matching is to find corresponding positions in the
camera phases for each integer projector pixel. Since this is usually not again an integer
position, it must be estimated with sub-pixel accuracy. Figure 3 (a) illustrates this for
the projector in the middle and camera images left and right. Everything at the sub-pixel
level can only be described by the pixels in its environment, since no smaller informa-
tion is available in an image. In order to compute the sub-pixel matches, it is therefore
necessary to find integer camera pixels that span a quadrilateral (Figure 3, green pix-
els) that encloses the optimal sub-pixel match as closely as possible. From this quad,
the sub-pixel match can then be interpolated in a subsequent step. The quadrilateral
does not necessarily have to be square or rectangular, but should at least be convex.
This constraint is fulfilled in the general case and only violated at regions with depth
discontinuities. It ensures that the enclosed area can be described smoothly through its
corners. In addition, there are certain consistency characteristics that should be met.
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3.1 Matching Integer Pixel Quads

In a first step, best possible convex quads enclosing the sub-pixel match for each projec-
tor pixel are found in each camera image. Each camera pixel should only be processed
once in order to maintain linear complexity. Therefore, for each projector pixel, we store
the four corner points whose quadrilateral contains the optimal camera correspondence.
An array four times the size of the projector resolution is needed as a buffer. Note that
the projector image can be selected in any resolution as it is completely imaginary. The
resulting density of the point cloud can be precisely controlled in this way. Practice has
shown that the projector resolution should be selected in approximately the same order
as the camera resolutions, since usually both cover about the same area of the scene.

In the following we assume horizontal and vertical phase images ΦH and ΦV of
a camera with values in the interval [0, 1]. The phases run from left to right and from
bottom to top according to the common coordinate axes. Similarly, the optimal projector
phases run from 0 to 1 at a selected resolution (wP , hP ). This is depicted in Figure 1.

For each camera pixel (x, y), the theoretical corresponding position in the projec-
tor image is uniquely given by the vertical and horizontal phase values ΦH(x, y) and
ΦV (x, y). Therefore, a camera pixel (x, y) would theoretically match projector pixel

(x̂P , ŷP ) =
(
ΦH(x, y)wP ,ΦV (x, y)hP

)
, (1)

which is not an integer value, as sought. Nevertheless, it is an approximate position and
likely a lower and upper corner of the next integer projector pixels, which is the basic
idea of the presented fast (linear) method.

For each integer projector pixel (xP , yP ) the vertices of the spanned matching quad
in the camera image are noted as indicated in Figure 4 (right). So (x00, y00), (x10, y10),
(x01, y01) and (x11, y11) denote the pixels of the quad around sub-pixel match (x̂, ŷ)
with respect to (xP , yP ). Using the notations b·c and d·e for floor and ceil integer round-
ing, a camera pixel (x, y) would be a feasible corner point of four adjacent quadrilaterals
containing sub-pixel camera matches with respect to four projector pixels. Thereby, it
would be exactly one bottom left, one bottom right, one top left and one top right corner
of the four corresponding quadrilaterals. The buffers for the projector pixels are filled
by traversing the image and assigning each image pixel as:

(x, y) −→

(
dx̂P e00, dŷP e00

)(
bx̂P c10, dŷP e10

)(
dx̂P e01, bŷP c01

)(
bx̂P c11, bŷP c11

) (2)

Since phases in arbitrary real scenes are usually sampled non-uniformly, it may be pos-
sible that several camera pixels are feasible corner points of a specific quadrilateral.
Using the example of a lower left corner point, the quality of the corner point can be
calculated by its distance to the optimal sub-pixel value:

E =
∣∣∣x̂P − dx̂P e00∣∣∣+ ∣∣∣ŷP − dŷP e00∣∣∣ (3)

If a corner point is already occupied when running through the image, it is only replaced
if this error is less than that of the previously stored pixel. This ensures that the enclosing
quadrilateral becomes minimal.
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(a) (b) (c)

Fig. 3: (a) Visualization of optimal sub-pixel matches (red) between projector (center)
and two cameras (left and right). Example of a corner point update (b) (Consistency
properties stay fulfilled). Quad, that would be removed by diagonal check (b).

3.2 Topological Consistency Check (TCC)

An important property of a projection is that the topology of the projected points re-
mains consistent. Therefore, also surface points that have been encoded using structured
light must remain consistent in the corresponding phase images. Some tests are intro-
duced, that enforce the topology preservation property. Most importantly, they remain
valid for non-minimal quads, allowing their application on non-final temporal stores of
corner points. This way, incorrect and noisy phase values are excluded from matching,
resulting in smoother and more accurate matches with way less outliers.

Before saving any image pixel to a corner point (x00, y00), (x10, y10), (x01, y01) or
(x11, y11) with respect to a projector pixel (xP , yP ), it is ensured that a lower left pixel
in the camera phase is also a lower left pixel in the projector phase and so on. In this
way, many faulty matches can be detected and avoided. Moreover, it ensures that the
resulting quads are convex. The following simple checks have to be fulfilled:

(x01, y01)
x01≤x11−−−−−−→ (x11, y11)

y
0
0
≤
y
0
1

−−
−−
−−
→

y
1
0
≤
y
1
1

−−
−−
−−
→

(x00, y00)
x00≤x10−−−−−−→ (x10, y10)

(4)

The tests are applied to the pixels during the storing process while looping through
the images. Naturally, therefore, during the storing process, one vertex is checked for
consistency with respect to other vertices that are not final and that may be part of non-
minimal representations of a quad around a sub-pixel match. As already mentioned
these tests are also valid for non-minimal quads as long as they do not represent severe
outliers, which moreover would simply lead to finding no match for the projector rather
than an outlier. Figure 3 (b) illustrates an update of a corner point to a closer representa-
tion. It is easy to see that the convexity properties are fulfilled throughout by all points,
while converging to the minimal representation.

Diagonal Check for Weak Quads Theoretically, the quadrilaterals can take a wide vari-
ety of shapes and still satisfy the desired topology and convexity. But the more unusual
the shape, the worse its content is determined by bilinear interpolation. An additional
optional test avoids unnatural quads by checking the diagonal values:

|x00 − x11|+ |y00 − y11| < τ, |x10 − x01|+ |y10 − y01| < τ (5)



6 T. Fetzer et al.

The quads should not be of arbitrary size just because they might theoretically be fea-
sible. Usually they will not provide an accurate measurement if the corners are above a
certain distance, which can be generously set to τ = 5 pixels for most applications.

For illustration, Figure 3 (c) shows an example of an unfavorable quad that would
be removed. Note that this check should only be done after the entire quad matching,
otherwise some quads may be removed due to non-minimal representations that may
have improved over time.

Epipolar Consistency Check (ECC) In many practical scenarios a rough calibration of
the setup is already available. This can be extremely advantageous and easily involved
into the scheme. In this case a camera point should only be mapped to a corner if the
symmetric epipolar error is below a certain threshold.

In order to illustrate the effect of the checks on calculated matches, Figure 2 shows
the resulting point cloud of FPDM without (a) and with TCC (b). There are signif-
icantly fewer outliers, resulting in less flying points. (c) shows how the matches can
be further improved by ECC by avoiding faulty assignments, especially in discontinu-
ities of the scene. False matches can also occur due to incorrect but permissible phase
regions, caused by (inter-)reflections.

4 Bilinear Sub-Pixel Matching

After the quad matching, for each permissible projector pixel a consistent convex quadri-
lateral is given per camera image. Under certain assumptions it is possible to determine
the sub-pixel position of the optimal match from the corners of the quad and their phase
values. The optimal sub-pixel position is calculated in the unit patch using bilinear in-
terpolation assumption and then mapped to the convex region as shown in Figure 4.

4.1 Sub-Pixel Position in Unit Patch

Given a unitary patch, with horizontal phase values φH00, φH10, φH01 and φH11 of the
corner points as depicted in Figure 4, the bilinear interpolated value φH(x̃, ỹ) for any
position (x̃, ỹ) ∈ [0, 1]2 is given by

φH(x̃, ỹ) = a0 + a1x̃+ a2ỹ + a3x̃ỹ,

a0 = φH00

a1 = φH10 − φH00

a2 = φH01 − φH00

a3 = φH11 + φH00 − φH10 − φH01

(6)

and analoguesly for the vertical phase by φV (x̃, ỹ) = b0 + b1x̃ + b2ỹ + b3x̃ỹ. Fig-
ure 5 (a) illustrates how two bilinearly interpolated phases on the unit patch can look
like. Task is to find the optimal sub-pixel position inside the patch meeting the phase
values (φ̂H , φ̂V ). The patch that interpolates the horizontal phase values defines a two-
dimensional curve on which the value φ̂H is assumed. The same applies to the patch of
the vertical phase values, which describes a curve for φ̂V . Such curves are visualized by
red lines in Figure 5 (a) and in a top view (b). The intersection of the curves within the
patch is the optimal position of the sought sub-pixel match and marked by green dots.



Fast Proj.-Driven Structured Light Matching in Sub-Pixel Acc. using Bil. Int. Assump. 7

In order to find optimal positions x̃ ∈ [0, 1] and ỹ ∈ [0, 1] at which the bilinear in-
terpolated patches meet the sought values φ̂H and φ̂V we explicitly solve:

φ̂H = a0 + a1x̃+ a2ỹ + a3x̃ỹ

φ̂V = b0 + b1x̃+ b2ỹ + b3x̃ỹ
→ x̃ =

{
− v

2u ±
√(

v
2u

)2 − w
u , u 6= 0

−wv , u = 0
(7)

with
u = b1a3 − b3a1
v = b1a2 + (b0 − φ̂V )a3 − b2a1 − b3(a0 − φ̂H)

w = (b0 − φ̂V )a2 − b2(a0 − φ̂H)

The vertical position ỹ can then be computed from Eq. (7). Note that the properties of
the quads received in Sec. 3 ensure the existence of intersection within each patch.

Existence of Solution The interpolated value φ̂H is by construction achieved inside the
patch and moreover the following holds true due to the consistency checks:

φH00, φH01 ≤ φ̂H ≤ φH10, φH11 (8)

Of course for any convex combination with ỹ ∈ [0, 1], we also have:

(1− ỹ)φH00 + ỹφH01 ≤ φ̂H ≤ (1− ỹ)φH10 + ỹφH11 (9)

Therefore the curve, defined by the first equation of (7), that maps feasible positions x̃
to any value ỹ ∈ [0, 1] has the following property:

x̃ =
φ̂H − a0 − a2ỹ
a1 + a3ỹ

=

=(i)≥0 (9),︷ ︸︸ ︷
φ̂H − (1− ỹ)φH00 − ỹφH01

(1− ỹ)(φH10 − φH00︸ ︷︷ ︸
>0 (8)

) + ỹ(φH11 − φH01︸ ︷︷ ︸
>0 (8)

)

︸ ︷︷ ︸
=(ii)>0 (9)

≥ 0 (10)

Thereby, we neglect the situation in which all corner points carry the same value. In this
case division by zero would not be defined. Nevertheless, in this case an optimal integer
pixel match exists and interpolation is not necessary.

Additionally, the denominator (ii) in this fraction is greater or equal than the nu-
merator (i), which limits the fraction to 1:

(ii)− (i) = (1− ỹ)φH10 + ỹφH11 − φ̂H
(9)

≥ 0 (11)

Similar for the vertical phase we obtain for the curves of equations (7) the properties:

x̃ = φ̂H−a0−a2ỹ
a1+a3ỹ

∈ [0, 1] for ỹ ∈ [0, 1], ỹ = φ̂V −b0−b1x̃
b2+b3x̃

∈ [0, 1] for x̃ ∈ [0, 1]

Therefore, the curves are defined for all ỹ, x̃ ∈ [0, 1] and map to values x̃, ỹ ∈ [0, 1].
This proves that the continuous curves describe continuous connections between the top
and bottom of the patch (for x̃ ∈ [0, 1]) and from left side to right side (for ỹ ∈ [0, 1])
that both run inside the patch. These curves must therefore intersect at least once within
the patch. This guarantees a solution, which can be explicitly computed by solving the
resulting quadratic equation (7) and choosing the feasible one inside the patch. ut
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Fig. 4: Procedure of bilinear sub-pixel
matching. The position is computed in the
unit patch and mapped to the convex quad.

(a) (b)

Fig. 5: Unit patch with interpol. phases
(a). Red curves are possible solutions, the
intersection (green) solves the problem.

4.2 Mapping to Convex Quad

In general, the corner points around a sub-pixel match will not span a square region.
However, for convex quads, the method can be applied by assuming an additional bilin-
ear interpolation scheme. With corresponding corner points in the image given by

(x01, y01)↔ (0, 1) (x11, y11)↔ (1, 1)

(x00, y00)↔ (0, 0) (x10, y10)↔ (1, 0)
(12)

a point (x̃, ỹ) ∈ [0, 1]2 in the unit square can be mapped to the convex quadrilateral by:

(
x̂
ŷ

)
=

(
x00 x10 x01 x11
y00 y10 y01 y11

)
1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1




1
x̃
ỹ
x̃ỹ

 (13)

5 Results

Figure 6 shows the reconstructed point clouds of different scenes as a qualitative illus-
tration of the reconstructions obtained. For each scene, the left reconstruction shows the
result of the matches obtained with best-pixel correspondences. The right point cloud
shows the result of the Fast Projector Driven Consistent Sub-Pixel Matching (FPCSM)
presented in this work. For (a-d) the images on the far right show in addition the back-
projections of the points onto the projector image, with in- and outliers marked in green
and red. The reconstructions are significantly smoother and contain almost no outliers.
Of particular note is the Monkey data, which was taken from a highly specular metal-
lic brushed monkey statue, which clearly shows the influence and improvements of the
consistency checks. Of course there are methods to smooth out noisy results and to re-
move flying points in post processings, but the method presented here removes outliers
during the matching process without any additional computational effort. Also, in con-
trast to smoothing, erroneous measures are removed and not smeared over the entire
point cloud. Especially, if the correspondences are used for auto-calibration procedures
this can be a huge advantage. Figure 7 (b) and (c) shows the enlargement of two re-
gions in the reconstructed Buddha statue (a). Due to the optimal sub-pixel matching,
the surface is much more uniformly sampled and less noisy. Especially for subsequent
meshing and highly precise depth measurement this may have a significant influence.
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(a) Buddha dataset (b) Monkey dataset

(c) Totem dataset

(d) Bird dataset

(e) Scene dataset

Fig. 6: Results of FPCSM (right) applied to exemplary scenes in comparison to point
clouds obtained by standard best-pixel matching (left). Each set shows the point clouds
and for (a-d) their backprojection to the projector image with labeled in- and outliers.

(a) (b) (c)

Fig. 7: Reconstr. point clouds using
best-pixel matches (b) and FPCSM (c).

Set Best-Pixel Matches FPCSM Matches
Cam 1 Cam 2 Cam 1 Cam 2

Buddha 0.35447 0.35486 0.25326 0.25401
Bird 0.37116 0.37248 0.26199 0.26130
Totem 0.32996 0.33831 0.25896 0.26139
Monkey 0.37887 0.37552 0.27757 0.27818
Scene 0.26731 0.27925 0.17088 0.17866

Table 1: Median backprojection errors for
best-pixel matching and FPCSM.

Finally, Table 1 shows the reduction of the median backprojection errors on the cam-
era images from which they were triangulated. The median error was chosen to avoid
overweighting extreme outliers of the standard approach without consistency checks.

6 Conclusions

In this work a matching strategy has been presented which generates high-precision
correspondences for structured light systems with any number of cameras. The matches
are estimated in sub-pixel accuracy. Therefore, an explicit formula has been derived,

This work was partially funded by the projects MARMORBILD (03VP00293) and VIDETE
(01W18002) of the German Federal Ministry of Education and Research (BMBF).
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which provides matches under the assumption of bilinearly interpolated patches. The
existence of such matches has been mathematically investigated and proven. An impor-
tant contribution is that this is achieved with linear complexity, while simultaneously
ensuring topological consistency over the views. This results in high quality matches
with nearly no outliers, that are uniformly sampled over the scene. Overall, a method
has been developed which reaches extremely high accuracy with extremely low (linear)
computational effort, that may be applicable to many active reconstruction applications.
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