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Abstract

We present SProUT, a platform for the development of multilingual shallow text processing
systems. A grammar in SProUT consists of a set of rules, where the left-hand side is a regular
expression over typed feature structures (TFSs), representing the recognition pattern, and
the right-hand side is a sequence of TFSs, specifying how the output structure looks like. The
reusable core components of SProUT are a finite-state machine toolkit, a regular compiler,
a typed feature structure package, and a finite-state machine interpreter.

1 Introduction

In the last decade, an ever-growing trend of deploying lightweight linguistic analysis for solving prob-
lems that deal with the conversion of raw textual information into structured and valuable knowledge
can be observed. Recent advances in the areas of information extraction, text mining, and textual
question answering demonstrate the benefit of applying shallow text processing (STP) techniques,
which are assumed to be considerably less time-consuming and more robust than deep processing
systems, but are still sufficient to cover a broad range of linguistic phenomena.

This paper centers around SProUT (Shallow Processing with Unification and Typed feature struc-
tures), a platform for the development of multilingual STP systems. It consists of several linguistic
processing resources and provides a grammar development and testing environment. Additionally, it
can be used for building higher-level linguistic components by flexibly combining existing resources.
The motivation for developing SProUT comes from the need to have a system that (i) allows a flex-
ible integration of different processing modules and (ii) to find a good trade-off between processing
efficiency and expressiveness of the formalism. On the one hand, we can find here very efficient finite
state (FS) devices which have been successfully applied to real-world applications. On the other hand,
unification-based grammars (UBGs) are designed to capture fine-grained syntactic and semantic con-
straints, resulting in better descriptions of natural language phenomena. In contrast to FS devices,
unification-based grammars are also assumed to be more transparent and more easily modifiable. Our
idea now is to take the best of these two worlds, having a FS machine that operates on typed feature
structures (TFSs). lLe., transduction rules in SProUT do not rely on simple atomic symbols, but



instead on TFSs, where the left-hand side (LHS) of a rule is a regular expression over TFSs, repre-
senting the recognition pattern, and the right-hand side (RHS) is a sequence of TFSs, specifying the
output structure. Consequently, equality of atomic symbols is replaced by wunifiability of TFSs and
the output is constructed using TFS unification w.r.t. a type hierarchy.

This paper is structured as follows. Section 2 presents related work, viz., (extended) FS devices and
unification-based grammars. After that, section 3 describes the formalism, starting with the building
blocks (TFS, type definition, type hierarchy) and ending in regular expressions over TFSs. We then
discuss the architectural framework and core components (section 4). In section 5, we focus on the
current system instances and its peculiarities. Finally, section 6 describes the status of our work and
addresses future development directions.

2 Related Work

Finite-state devices and unification-based grammars have influenced the shallow TFS formalism pre-
sented in section 3.

2.1 Finite-State Devices

The pure finite-state based STP approaches proved to be very efficient in terms of processing speed.
[Piskorski and Neumann, 2000] present SPPC, a highly efficient system, which uses cascades of sim-
ple finite-state grammars, based on a small number of basic predicates. Complex constraints can not
be encoded in the FS device. The idea of using more complex annotations on the transitions of FS
automata has been considered in SMES [Neumann et al., 1997] which uses regular grammars with
predicates over morphologically analyzed tokens. These predicates inspect arbitrary properties of the
input tokens, like part-of-speech or inflectional information. [van Noord and Gerdemann, 2001] intro-
duce arbitrary predicates over symbols and discuss various operations on finite state acceptors and
transducers. They observe that automata with predicates generally have fewer states and transitions.
However, the discussed automata only operate on symbols of a finite input alphabet.

In the last few years, several cascaded FSM-based systems have been developed for information ex-
traction tasks. The most successful systems provide high-level specification languages for grammar
writing. The pioneering FASTUS system [Appelt, 1996; Hobbs et al., 1997] uses CPSL (Common
Pattern Specification Language). The more recent GATE system (General Architecture for Text
Engineering) [Cunningham et al., 2000] provides JAPE (Java Annotation Patterns Engine), which
is similar in spirit to CPSL and admittedly borrows its main features from CPSL. A CPSL/JAPE
grammar contains pattern/action rules. The LHS of a rule is a regular expression over atomic feature-
value constraints for pattern matching, while the RHS is a so-called annotation manipulation state-
ment for output production, which calls native code (e.g., C or Java), making rule writing difficult
for non-programmers. Furthermore, even though there is a mechanism for variable binding which is
responsible for copying values into the RHS, this mechanism is not capable of declaratively describing
coreferences among the rule elements.

2.2 TUnification-Based Grammars

Since the late seventies, UBG formalisms have become an important paradigm in NLP and CL. In
the beginning, unification was employed as the primary constraint solving mechanism, hence the term
unification-based grammars. Nowadays, this family of formalisms is often characterized through the



more general notion constraint-based.

Their success stems from the fact that they can be seen as a monotonic, high-level representation
language on which a parser/generator or a uniform type deduction mechanism acts as the inference
engine. One of the main advantages of such formalisms is that they provide a declarative (as opposed
to procedural) representation of linguistic knowledge, i.e., one must only specify the knowledge which
participates in the constraint solving process, instead of anticipating the order in which the constraints
are applied.

The representation of as much linguistic knowledge as possible through a unique data type called
feature structure allows the integration of different description levels, spanning phonology, syntax,
and semantics. Here, the feature structure itself serves as the abstract interface between the different
strata which can thus be accessed and constrained at the same time. Central to feature structures is
an operation which combines the information from two feature structures into a single structure, but
also determines the satisfiability of the resulting description: unification.

Informally, a feature structure can be seen as a collection of feature-value pairs, where a feature
expresses a functional property and the value of a feature might again be a feature structure (or
an atom), thus we allow for recursive embeddings. An important characteristic of feature structures
is that they allow for coreference constraints, meaning that two features share exactly one common
value. This concept allows for the transport of information and is exhaustively used in the grammar
rules, where features on the LHS share values with other features on the RHS.

Feature structures can also be given a type which ultimately leads to a typed feature structure. First of
all, a type can be seen as a compact abbreviation for a TFS, supporting clarity and easy modifiability
of descriptions (type definition). Furthermore, types can be arranged in a type hierarchy, allowing
multiple inheritance of information from all supertypes. The next section will give examples.

3 XTDL—The Formalism

XTDL combines two well-known frameworks: typed feature structures and regular expressions. XTDL
is defined on top of TDL, a definition language for TFSs [Krieger and Schéfer, 1994] that is used as a
descriptive device in several grammar systems (LKB, PAGE, PET). We use the following fragment of
TDL, including coreferences and functional application.

type-def — type { avm-def | sub-def } [fun-op] "."
type — identifier

sub-def — ":<" type

avm-def — ":=" qum

avm — term { "&" term }*

term — type | fterm | string | coref

fterm  —"[" [attr-val {"," attr-val}*] "1"
attr-val — attribute avm

attribute — identifier

coref  — "#"identifier

fun-op — "where" {coref "=" fun-app}*
fun-app — identifier " (" term {"," term}* ")"

Apart from the integration into the rule definitions, we also employ this fragment in SProUT for the
establishment of a type hierarchy of linguistic entities. In the example definition below, the morph
type inherits from sign and introduces three more morphologically motivated attributes with the



corresponding typed values.

morph := sign & [ POS atom,
STEM atom,
INFL infl ].

The next figure depicts a fragment of the type hierarchy used in the example.
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A rule in XTDL is straightforwardly defined as a production part on the LHS, written as a regular
expression, and an output description on the RHS.! A named label serves as a handle to the rule.
Regular expressions over feature structures describe sequential successions of linguistic signs. We pro-
vide a couple of standard operators; see the EBNF below. Concatenation is expressed by consecutive
items. Disjunction, Kleene star, Kleene plus, and optionality are represented by the operators |, *,
+, and 7, resp. {n} after an expression denotes an n-fold repetition. ({m,n} repeats at least m times
and at most n times.)

rule  — identifier ":>" regexp "->" {fterm}* "."
regezp — avm | " (" regezp ")" | regexp {regexp}t | regexp {"|" regexp}t |
regerp {n*u | ngn | u?n} | regexp n{n int [ n,u mt] n}n |

The XTDL grammar rule below may illustrate the syntax. It describes a sequence of morphologically
analyzed tokens (of type morph). The first TFS matches one or zero items (?) with part-of-speech
Determiner. Then, zero or more Adjective items are matched (*). Finally, one or two Noun items
({1,2}) are consumed. The use of a variable (e.g., #1) in different places establishes a coreference
between features. This example enforces, e.g., agreement in case, number, and gender for the matched
items. Le., all adjectives must have compatible values for these features. Eventually, the description
on the RHS creates a feature structure of type phrase, where the category is coreferent with the
category Noun of the right-most token(s) and the agreement features result from the unification of the
agreement features of the morph tokens.

(1) np :> morph & [POS Determiner,
INFL [CASE #1, NUMBER #2, GENDER #3 ]] ?
(morph & [POS Adjective,
INFL [CASE #1, NUMBER #2, GENDER #3 1] ) =*
morph & [POS Noun & #4,
INFL [CASE #1, NUMBER #2, GENDER #3 1] {1,2}

11t is worth noting that X7DL rules are related to lerical rules in UBGs, devices developed for expressing
lexical generalizations; see section 4.4.



-> phrase & [CAT #4,
AGR agr & [CASE #1, NUMBER #2, GENDER #3 1].

In the future, we foresee to have weaker, unidirectional coreferences under Kleene star (even under
restricted iteration). The idea here is that the values under such coreferences are collected in a list
which is given to the RHS of a rule (we indicate this behavior by using the percent sign). Consider
the above rule and assume that adjectives also have a relation attribute RELN. We would now like to
collect all the relations and to have them grouped in a list on the RHS:

[POS Det, ...l ([POS Adj, ..., RELN %51)* [POS Noun, ...] -> [..., RELN %5]

The choice of TDL has a couple of advantages. TFSs as such provide a rich descriptive language over
linguistic structures (as opposed to atomic symbols) and allow for a fine-grained inspection of input
items. They represent a generalization over pure atomic symbols. Unifiability as a test criterion,
whether a transition is viable, can be seen as a generalization over symbol equality. Coreferences
in feature structures express structural identity. Their properties are exploited in two ways. They
provide a stronger expressiveness since they create dynamic value assignments on the automaton tran-
sitions and thus exceed the strict locality of constraints in an atomic symbol approach. Furthermore,
coreferences serve as a means of information transport into the output description on the RHS of the
rule. Finally, the choice of feature structures as primary citizens of the information domain makes
composition of modules very simple, since input and output are all of the same abstract data type. In
[Crysmann et al., 2002], we presented an integrated architecture for shallow and deep text processing,
which further demonstrates the benefits of using TFSs as a representation and interchange format.
It is worth noting that regular expressions in SProUT are quite different from those in LFG which were
introduced under the notion of functional uncertainty [Kaplan and Maxwell ITI, 1988] In our frame-
work, regular expressions are defined over typed feature structures; in LFG, they are constructed from
features, allowing to specify regular path patterns.

Furthermore, we note here (again) that SProUT grammars do not have the generative capacity of
UBGs. This is due to the fact that output produced by the RHS of a SProUT rule is not available
on the same cascade stage from which the rule was applied. Hence the output, which hopefully has
grouped chunks into larger units, can only serve as input to rules on later cascade stages. Since
the RHS of a SProUT rule might compute a sequence of output structures which is longer or equal
than the input, one can even not compute a priori the number of cascade stages needed to simulate
unification-based parsing behavior (viz., finding a completely spanning analysis). Thus, if we would
disallow SProUT rules to produce such output (and if we would prohibit functional application), the
number of cascade stages is bounded by the length of the input. This is the analogue to the offline
parsability constraint for UBGs, originally formulated for DCG and LFG. However, a single cascade
that is fed by its own output will realize such an unbounded number of stages (see also section 6).

4 Architecture

The SProUT system has been realized on top of four major core components: a finite state machine
toolkit, a regular compiler, a Java typed feature structure package, and a XTDL interpreter.

4.1 Finite-State Machine Toolkit

The FS machine toolkit is a generic toolkit for building, combining, and optimizing FS devices [Pisko-
rski, 2002]. In order to cover all STP-relevant types of FS devices and to allow for a parameterizable



weight interpretation, we use the finite-state machine (FSM) as the underlying model for our toolkit.
A FSM is a generalization of the more familiar finite-state automaton (FSA), finite-state transducer
(FST), and their weighted counterparts [Mohri, 1997]. Contrary to weighted FSTs which are tailored
to a specific semiring for weight interpretation, the FSMs are more general in that they admit the
use of arbitrary real-valued semirings (e.g., we use the tropical semiring for regular pattern prioritiza-
tion). The toolkit provides all state-of-the-art operations on FSMs [Mohri, 1997; Mohri et al., 1996;
Roche and Schabes, 1995] which are relevant to the realization of the different levels of STP (ranging
from tokenization to parsing) in a uniform way. The architecture and functionality of this toolkit is
mainly based on the tools developed by AT&T [Mohri et al., 1996]. In contrast to the latter package,
we provide some new crucial operations relevant to STP, including weighted local extension [Roche
and Schabes, 1995] and an efficient algorithm for incremental construction of minimal, deterministic,
and acyclic FSAs from a list of words [Daciuk, 1998]. Furthermore, we improved the general algorithm
for removing e-moves [Mohri et al., 1996] in terms of efficiency, which is an essential operation in the
process of determinization.

4.2 Regular Compiler

Since regular expressions are regarded as the adequate level of abstraction for thinking about finite-
state languages [Karttunen et al., 1996], we developed a flexible XML-based and Unicode-compatible
regular compiler for converting regular patterns into their corresponding compressed finite-state rep-
resentation [Piskorski et al., 2002]. The compiler provides an extendible set of circa 20 standard
regular operators. Both the definition and configuration of the transformation process is done via
XML which allows for easy and straightforward extensions. The compiler provides an option which
allows to decide whether the input data will be interpreted as scanner definitions (e.g., token class
definitions) or general regular expressions (e.g., regular expressions over TFSs). The grammar writer
may flexibly define the way in which the FS devices are merged together and bias the optimization
process. For instance, there are two alternative ways in which ambiguities are handled. The first
option is to resolve ambiguities by assigning weights to the patterns which represent their priorities
(e.g., in the tokenizer of SProUT). In the process of pattern merging, the tropical semiring is applied in
order to resolve potential ambiguities [Mohri, 1997]. The second option is to preserve all ambiguities
by introducing appropriate final emissions, representing pattern identifiers in the corresponding FS
devices (e.g., in shallow grammars in SProUT).

The compilation of XTDL grammars is straightforward. The TFSs of the production part in the LHS
of each rule are replaced by symbols representing references to these structures, since FSM arcs may
be only labeled with symbolic values. The regular compiler transforms all such modified LHS into a
corresponding FS network. Since fully specified TFSs usually do not allow for minimization of the re-
sulting network, the compiler might apply a restrictor [Shieber, 1985] while constructing the mapping
from TFSs to symbols. Note that through the use of final emissions mentioned above, the information
concerning association of LHSs with their corresponding RHSs and original rules, is preserved in the
resulting FS network.

4.3 Typed Feature Structure Package

The JTFS package is a Java implementation of TFSs. JTFS reads in a binary representation of a
typed UBG, including type hierarchy and lexicon, and builds up the object in main memory. The
lazy-copying unifier is a variant of [Emele, 1991], together with an efficient type unification operation
(bit vector unification plus caching). JTFS supports a dynamic extension of the type hierarchy at run



time in order to allow for the incorporation of unknown words. Other operations, such as subsumption,
deep copying, path selection, feature iteration, and different printers are available.

4.4 XTDL Interpreter

The challenge for the SProUT interpreter is to combine regular expression matching with unification
of TFSs. Since the regular operators such as Kleene star can not be expressed by a TFS, we are faced
with the problem of mapping a regular expression to a corresponding sequence of TFS, so that the
coreference information among the elements in a rule can be preserved. Our solution is to separate
the matching of regular patterns using unifiability (LHS of rules) from the construction of the output
structure through unification (RHS). The positive side effect of this decision is that the matching
step filters the potential candidates for the space-consuming unification. After a compatible pattern
is identified, we embed the sequence of input TFSs (encoded as a list) into a new TFS; see the IN
value in Fig. 1. Subsequently, a rule with an instantiated LHS pattern is constructed; see Fig. 2 as an

SURFACE nice SURFACE clever SURFACE girls
STEM nice STEM clever STEM girl
POS Adjective POS Adjective POS Noun
IN CASE nom ’ CASE nom ’ CASE nom
INFL NUMBER plural INFL NUMBER plural INFL NUMBER plural
. GENDER fem . GENDER fem . GENDER fem
infl infl infl

rnorph morph morph

rule
Figure 1: Matched input sequence.

example and note, that the instantiated LHS matches the pattern from the XTDL rule in example (1).
A TFS representation of a rule contains the two attributes IN and OUT. In contrast to the IN value in

POS  Adjective POS  Adjective POS [4] Noun T
CASE CASE CASE
IN INFL lNUMBER ’ INFL lNUMBER ’ INFL |NUMBER
_ _| GENDER _ | GENDER . | GENDER
morph fl morph nfl morph infl

CAT

CASE
NUMBER [2]
GENDER

Figure 2: Rule with an instantiated pattern on the LHS.

ouT AGR

L phrase agr
rule

the matched input TFS representation, the IN value of the rule contains coreference information. The
value of ouT is the TFS definition of the RHS of the rule. Given the input TFS and the uninstantiated
rule TFS, the unification of the two structures yields the final output result; see Fig. 3.

We note that the use of coreferences between the LHS and the RHS of a SProUT rule shares great
similarities to lexical rules in PATR-II [Shieber et al., 1983] and HPSG [Pollard and Sag, 1994]. The
technique of embedding an instantiated LHS pattern and a RHS via the metafeatures IN and oUT also
reminds us of the PATR-II system. The current implementation employs a longest match strategy. In
case of match ambiguities, the result is a disjunction of RHSs. Since the output of the interpreter are



SURFACE nice SURFACE clever SURFACE girls

STEM nice STEM clever STEM girl

POS Adjective POS Adjective POS Noun
IN CASE nom CASE CASE

INFL NUMBER [2] plural INFL NUMBER [2] INFL NUMBER [2]

. _| GENDER fem __| GENDER . _| GENDER
morph nfl morph infl morph
CAT
CASE

OUT({ | AGR |NUMBER

GENDER

;

again TFSs, the result can be used as input for further (higher-level) linguistic processing components.
In this way, SProUT supports cascaded architectures straightforwardly (see section 5).

L phrase agr

rule

Figure 3: Unified result.

5 Current System Instance

Currently the pool of linguistic processing resources contains a tokenizer, a gazetteer, and a morphol-
ogy component. The tokenizer maps character sequences of the input text into word-like units called
tokens and performs fine-grained multiple token classification: each token is firstly classified according
to the main token type and secondly, depending on its main type, it undergoes additional domain and
language specific subclassification. Since we aim at defining clear-cut components of linguistic analy-
sis, the context information is disregarded during token classification. Therefore, sentence boundary
detection constitutes a stand-alone module. The task of the gazetteer is recognition of named entities
based on a stored list of static named entities. Finally, the morphology component provides lexical
resources for English, German, French, Italian, and Spanish which were obtained from the full form
lexica of MMorph [Petitpierre and Russell, 1995]. For asian languages, we integrated Chasen [Asa-
hara and Matsumoto, 2000] for Japanese and Shanxi [Liu, 2001] for Chinese. All linguistic processing
modules output their results uniformly as TFSs. The following table presents information on the size
of grammars for four languages and the resulting automata.

English | Japanese | Chinese | German
Frules 113 94 125 91
#nodes 387 353 706 230
#edges 2,769 4,831 6,985 1,157

6 Future Work

This section briefly outlines the areas of future work. We intend to conduct some experiments using
the restrictor in the process of converting X7DL grammars into FS representations. As indicated in
section 4.2, one should be able to find a reasonable trade-off between optimization of the FS network
and the amount of potential pattern candidates for expensive unification.

The current implementation applies a longest match strategy to input tokens. We plan to replace
this tie by a priority-driven agenda, allowing us to play with different search strategies, even all-path
parsing.



In the current system, components are arranged in a strictly sequential fashion. We like to overcome
this inflexible behavior by the following idea: since we use TFSs as the sole data interchange format
between processing modules, it is likely that the construction of a concrete system instance can be
reduced to a definition of a regular expression of module specifications. We foresee that the following
operators needs to be available in a system description language: o (concatenation), * (iteration), and
| (concurrency).

The use of o should be clear, e.g., Ao B expresses the fact that the output of module A serves as the
input to B. This is the usual flow of information in a sequential cascaded shallow architecture. The *
operator over a module has the following interpretation: the module feeds its output back into itself
until no more changes occur, thus implementing a fixpoint computation. It is clear that such a fixpoint
might not be reached in finite time, i.e., the computation must not stop. A possible application was
envisaged in [Braun, 1999]. His system was capable of parsing German clause sentential structures,
where an iterative application of the base clause module was necessary to model recursive embedding
of subordinate clauses. The third operator, |, denotes a quasi-parallel computation of independent
modules, where the final output of each module serves as the input to a subsequent module.
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