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Abstract: We developed a new mobile ultrasound device for long-term and automated bladder
monitoring without user interaction consisting of 32 transmit and receive electronics as well as a
32-element phased array 3 MHz transducer. The device architecture is based on data digitization and
rapid transfer to a consumer electronics device (e.g., a tablet) for signal reconstruction (e.g., by means
of plane wave compounding algorithms) and further image processing. All reconstruction algorithms
are implemented in the GPU, allowing real-time reconstruction and imaging. The system and the
beamforming algorithms were evaluated with respect to the imaging performance on standard
sonographical phantoms (CIRS multipurpose ultrasound phantom) by analyzing the resolution, the
SNR and the CNR. Furthermore, ML-based segmentation algorithms were developed and assessed
with respect to their ability to reliably segment human bladders with different filling levels. A
corresponding CNN was trained with 253 B-mode data sets and 20 B-mode images were evaluated.
The quantitative and qualitative results of the bladder segmentation are presented and compared to
the ground truth obtained by manual segmentation.

Keywords: POCUS; multichannel system; channel data; bladder monitoring; POUR; machine-
learning; segmentation

1. Introduction

Ultrasound imaging is a frequently used method for postoperative monitoring of
the urinary bladder. Depending on the surgical context, different clinical conditions that
need close monitoring can occur. Post-operative urinary retention (POUR) is a frequent
problem for various reasons (e.g., intravesical blood clotting) that can lead to bladder
overdistension and needs rapid detection and medical intervention. On the other hand,
invasive procedures such as catheterization present significant discomfort for patients and
can lead to infections or even trauma of the urinary tract. In contrast, ultrasound imaging
is fully non-invasive and has already shown its potential for bladder monitoring [1–3].
Accurate bladder volumes can be extracted from 3D ultrasound data; however, reliable
qualitative information about potential bladder overdistension can already be derived from
2D B-mode (brightness mode) ultrasound images.

In order to efficiently prevent POUR and directly initiate therapeutic measures if an
increased amount of urine or blood is detected in the urinary bladder, the bladder should
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be monitored at frequent intervals, which is not possible in a clinical environment where
ultrasound investigations are mostly performed using standard sonography equipment
based on hand-held probes. Accordingly, when defining a tool for ideal postoperative
follow-up and the prevention of related complications in the 24–48 h period after surgery,
different challenges and requirements arise. First, the system must be portable, such that
the mobility of the patient is ensured. Second, the probe must be self-adhesive or pad-like
(in contrast to hand-held probes that require the presence of a sonographer). Third, (image
or signal) data must be automatically analyzed to retrieve diagnostic features that are
relevant for the identification of a potential complication (e.g., a bladder volume above
a defined threshold in the context of POUR monitoring or specific scattering properties
as a result of blood clots in the bladder). In a research context, where the optimal signal
and image processing still needs to be defined, this results in a need for RF or even better
pre-beamformed channel data access. In particular, the third requirement allows the use of
analysis methods beyond pure image-based segmentation and classification. We recently
showed in other applications that machine learning approaches can be applied to raw
radio-frequent ultrasound data prior to image formation for classification tasks with a
high accuracy [4]. Radio-frequent data with a high dynamic range (16-bit amplitude
quantization) and ultrasonic wave phase information at high digitalization rates of up to
50 MHz contain a lot more informational content than scan-converted ultrasound images.
During scan conversion, typically more than 90% of the raw ultrasound wave information
is lost during image formation and cannot be used in image-based processing.

To the best of our knowledge, there are no systems available that fulfil the above
defined requirements. The use of advanced classification approaches is not possible with
classical clinical sonography systems, as they do not provide access to radio frequent
ultrasound data. Ultrasound systems for research applications such as the Vantage Ultra-
sound System (Verasonics, Inc. Redmond, WA, USA), the ULA-OP [5], the systems from
the Technical University of Denmark [6] or the DiPhAS by Fraunhofer IBMT (Sulzbach,
Germany) [7] provide access to this type of data, but are mostly not certified for clinical use,
and more importantly, they are complex, bulky and costly devices. The latest generation
of point of care ultrasound (POCUS) devices, such as the Butterfly iQ or Vscan [8] by GE
has decreased the costs by an order of magnitude when compared to high-end sonography
machines, and can be used in bedside settings due to their miniaturization. However, the
availability of care staff still represents a limiting factor when it comes to frequent moni-
toring postoperatively. Finally, dedicated devices for bladder monitoring such as DFree
(Triple W, Tokyo, Japan) or SENS-U [9] (Novioscan, Nijmegen, The Netherlands) have a
particular focus on incontinence management. These systems directly generate bladder
filling level-related parameters and do not provide access to the underlying ultrasound sig-
nals. Other ultrasound systems optimized for urological applications such as BladderScan
(Verathon, WA, USA) measure the bladder volume, but are based on hand-held probes,
which limits their suitability for continuous monitoring.

In summary, all these devices optimized for the daily clinical routine (or for home-care
settings in the case of DFree or SENS-U) are difficult to utilize in research applications,
where customized signal and image processing algorithms need to be applied to the data.
In particular, machine-learning based approaches have been shown to have tremendous
potential for automated segmentation of ultrasound data [10], and have been reported
in particular for breast imaging [11], coronary arteries [12], and thyroid [13] or different
tumors [14]. In comparison to these applications, where the anatomy is more complex
and the contrast difference is reduced, bladder segmentation represents an ideal use case
for ML-based approaches due to the low echogenity and the resulting high contrast to
surrounding tissue. Multiple ultrasound imaging devices, including mobile ones like
Butterfly iQ+ (Butterfly Network Inc, Guilford, CT, USA), already include automated
bladder segmentation and volume estimation, but the shape of the hand-held transducer
does not allow long-time monitoring as a wearable.
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In light of the somewhat contrary requirements of an ideal urinary bladder mon-
itoring system that also provides full data access, and thereby can be flexibly used in
research applications, we developed a new portable ultrasound system (mobile ultrasound
equipment—MoUsE). Despite being validated in this first application in the context of
bladder monitoring, the MoUsE can also be used as a general-purpose ultrasound research
system since full access to the transmit and receive pipeline is provided.

2. Materials and Methods
2.1. Portable Multichannel Electronics with Research Interface

The MoUsE is a compact ultrasound system integrated into a 3D printed housing
(Figure 1) with dimensions of 184 mm × 123 mm × 33 mm and a total weight of 610 g, thus
ensuring its portability. It is driven by a 12V medical power supply which can be replaced
by lithium-ion battery packs for future fully mobile applications. Detailed specifications
are given in Table 1. All system functionalities, including generation of transmit signals,
amplification and digitization of receive signals, storage and communication (via USB 3.0)
to a PC/tablet controlling the device are implemented on the same main printed circuit
board (PCB). Data management, communication and sequence control are handled in the
integrated ZYNQ-7 FPGA. An on-board low voltage (LV) power supply generates the
required power levels for the logic components.

Table 1. MoUsE system performance and features.

Dimensions 184 mm × 123 mm × 33 mm

Weight 610 g

Power consumption 12 W

Power supply 12 V DC, medical certified power supply, lithium-ion battery packs
for future fully mobile applications

Transmitter 32 channels, Tri-state pulser, max voltage ± 100 V

Receiver

32 channels
Bandwidth: 100 kHz–10 MHz

Gain: up to 44.3 dB
Up to 50 MHz sampling rate with a resolution of 12 Bit per sample

Interface USB 3.0

RAM 8 GBit internal RAM

Imaging Plane wave compounding, custom algorithms can be implemented

Software Clinical type user interface USPilot, SDK for programming system
from 3rd party applications in C#/C++/Matlab

Transducer
specifications

32 elements
Pitch = 500 µm

Centre F\frequency = 3 MHz

A compact high voltage (HV) power supply that generates the ± 100 V of transmit
voltage for each of the octal (8-channel) transmit receive ICs was implemented on a second
PCB mounted on the main PCB. A frequency range of 100 kHz–10 MHz was defined as the
transmit bandwidth.

In principle, transmit signals can be freely defined within the limits of the tri-state
programmable ICs, for instance, using pulse width modulation (PWM); however, only
rectangular bursts with adjustable length and frequency have been implemented in the
software so far. The internal system clock of 160 MHz is used for the definition of the
transmit signals. Receive signals are digitized with up to 50 MSa/s with a resolution of
12 bit and are transferred as pre-beamformed channel data via USB 3.0 to a PC/tablet for
image reconstruction. The receive data can be amplified by up to 44.3 dB with different
linear or customized TGC settings. No analog preprocessing is performed on-board
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beyond bandpass filtering and (optional) data accumulation (corresponding to averaging)
for improvement of the signal to noise ratio (SNR). Interfaces for wireless (IEEE 802.11
b/g/n (1 × 1)) communication and the transfer of pre-beamformed channel data are
foreseen in the hardware design but not yet implemented. The system uses a sleep mode
to switch off the transceiver ICs for stand-by between long-term measurements to reduce
power consumption.
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Figure 1. MoUsE system overview with close up of 32 element transducer housing (a), transducer
with cable, custom connector PCB and disposable patch (b), MoUsE PCB tested on phantoms prior
to integration (c), and the final system integrated with passive cooling in a 3D printed housing (d).

2.2. Transducer Design and Manufacturing

The MoUsE can be driven with all kinds of 32-element transducers using the given
pinout or via transducer connection adapter. However, in the context of the first application
being used for automated bladder monitoring, a 32-element phased array transducer was
developed. The transducer properties were defined in a sound field simulation study
using the in-house developed sound field simulation software tool SCALP based on point
source synthesis (Figure 2). A pitch of 500 µm with a kerf of 50 µm and element sub-
dicing were chosen as a compromise between sensitivity (profiting from larger element
size) and beam steering capabilities (decreasing with larger element size). To improve the
elevational resolution, a focusing silicon lens was applied to the element of elevational size
of 11.5 mm. The array was manufactured from a soft PZT material (3203 HD), the center
frequency was adjusted to 3 MHz and two matching layers were applied for improved
bandwidth. Connection to the MoUsE electronics was achieved by two 16-core micro-coax
cables directly soldered to the customized connector PCB, which was preferred over a
solution involving a commercial connector for the sake of compactness. The acoustic block
was finally integrated into a 3D printed cylindrical housing of 40 mm in diameter and a
height of 17.5 mm. For long-term monitoring applications, a fixation concept involving an
acoustically transparent adhesive tape could optionally be used.
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2.3. Beamforming and Software

Image reconstruction is performed in real-time using a GPU (OpenCL, Khronos Group,
Beaverton, OR, USA)-based implementation of plane wave compounding [15] approach in
the in-house developed clinical style user interface USPilot (Figure 3). Other reconstruction
methods can easily be implemented via an SDK. The number of plane wave angles, as well
as the increment can be freely selected by the user. Other transmit parameters such as the
frequency, the burst count or the voltage can be adjusted as well. On the receive side, the
data sampling rate, averaging factor and TGC can be selected.
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The reconstruction can be adjusted in terms of the size and resolution of the recon-
struction grid (lateral and axial pixel/sample count), the speed of sound and apodization.
Furthermore, customized algorithms (e.g., bandpass filtering or alternative beamforming
approaches) can be inserted into the (real-time) reconstruction pipeline. The software
allows the visualization of reconstructed (compounded) B-scan images as well as the
pre-beamformed channel data (in time or frequency) domain, which makes it ideal not
only for clinical research, but also for educational purposes or research on reconstruction
algorithms. In addition to controlling the system via the USPilot, an open programming
interface (C#/C++/Matlab with SDK) is made available, which provides access to the
same transmit, receive and beamforming parameters as in the case of the UI. A custom but
open binary data format (*.orb) is chosen for storage of the pre-beamformed and recon-
structed ultrasound data. Meta-data such as transmit and receive parameters are stored
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with the actual ultrasound data by default and import tools for Matlab/Python/C/C++
are made available.

2.4. ML-Based Segmentation Algorithm

We trained a neural network to segment the bladder into abdominal ultrasound
images and encountered two main challenges when implementing the network. On the
one hand, the limited space and computational resources available at inference time and
on the other hand, the quality of abdominal ultrasound images can be very challenging.
Figure 4 shows an example: in the left sub-figure, a (partially filled) bladder appears mainly
as a dark region in the image since little sound is reflected by the fluid. In addition, the
bladder is only partially imaged and merges seamlessly into the black area outside the
ultrasound fan. This situation is usually the case in corpulent patients. As can be seen in
the upper part of the segment, weak echoes might occur in cases where the side lobes of
the ultrasound beam intersect with the bladder tissue. A very different situation is shown
in the middle sub-figure. Here, the (almost empty) bladder is located in the middle of
the ultrasound fan. Lastly, the right sub-figure depicts a situation where other anatomical
structures, e.g., the pubic bone or the colon, generate a large dark region that might fuse
with the bladder. Please note that the appearance of different anatomical parts can be very
similar in the images.
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bone shadow or colon.

We started development using a Mask-R-CNN architecture [16,17] to segment the
bladder. However, we found that the model size of approximately 0.5 GByte was way too
large for the intended purpose. A second drawback was that the network tended to overfit
to the data, since only very few images (253) were available for training. We therefore
decided to use a U-Net architecture [18] in a minimal configuration. We set the network up
to compute a 2-class segmentation (bladder, non-bladder). The original ultrasound images
(1056 × 720) were down-sampled to a resolution of 528 × 352 and reduced to a single
color channel. In total, we acquired 253 data sets (each consisting of one B-mode image),
which were acquired from 20 human volunteers as training data for the CNN. For both the
contracting and expanding paths, we used 5 successive blocks. We started with 6 channels
for the first layer and doubled the channel number with each successive layer, resulting in
a total of 96 channels at the bottleneck. For expansion we used up-sampling followed by
convolution. Training was performed using a batch size of 4 with a learning rate of 0.00002.
Using these parameters, the network converged within 400 epochs. The resulting network
was less prone to overfitting than the original attempt. We found however that the amount
of data was still too low. More importantly, we found that the network had issues in
detecting the virtual border of a scan in the image. In particular, if the ultrasound response
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for a partially imaged bladder was very weak, the resulting segment often extended into
the illegal region of the image, i.e., outside the ultrasound fan. Additionally, we often
found cases where other dark regions were segmented as bladder.

To this end, we extended the dataset by re-sampling the images so that one of the fan
sides coincided with one of the image borders. Furthermore, we flipped images and ground
truth on the vertical as well as the horizontal axis. This way we increased the number
of images by a factor of 20. Training the network using the augmented data effectively
prevented overfitting. Furthermore, and probably much more importantly, the network
learned how artifacts and the bladder differ.

For the trained network, we computed an IoU above 0.75 but below 0.9 for all images.
We checked segmentations and ground truth and found, interestingly, that the computed
segmentations were consistently tighter (smaller) than the ground truth provided by
medical experts. The ground truth segmentation was performed by one experienced
urologist using the VIA annotation tool [19]. A second experienced urologist performed
the validation of the ground truth. Consulting with the experts revealed that the network
only segmented the interior of the bladder while the experts partially included the bladder
tissue. This unintended result proved to be beneficial for the application at hand. Since we
want to estimate the bladder volume, including the tissue would lead to a systematic error
that, in particular, depends on the volume itself.

We are working on a further reduction in the network size. The original network size
was 340 MBytes. We were able to reduce its size with various pruning strategies [20] to
under 300 MBytes without significantly sacrificing the quality of the results. This size is still
too large to be run efficiently on a mobile device. Additionally, the inference times need to
be decreased significantly. Currently, the network does inference on the target device at
approximately 6.4 s per frame. Although this would be more than sufficient for a regular
check of the bladder volume, the system would not be able to perform any other tasks in
the meanwhile. In the use-case of regular checks of the bladder volume and content, such
an inference frame rate might still be acceptable for long-time monitoring. The integration
of such a model in the processing pipeline will be implemented by supporting the ONNX
model format with the C# runtime using Microsoft ML.NET in the future.

3. Results
3.1. Characterization of Electronics

The transmit and receive paths of the electronics were characterized with respect to
the bandwidth. First, for the assessment of the transmit bandwidth, an 80 mVpp sinus
signal of varying frequency from a signal generator was digitized by the electronics and
the amplitude of the digitized signal was characterized (Figure 5a). As can be seen, the
input bandwidths significantly decrease below 100 kHz and above 10 MHz. Furthermore,
we evaluated the signal fidelity by generating rectangular bursts of 3 cycles at different
frequencies (Figure 5b,c). The electrical signals were measured on the connector PCB with
an oscilloscope and minor overshooting was observed.

3.2. Transducer Characterization

For the assessment of the transducer performance, echo signals from a steel reflector
generated by excitation of individual transducer elements with a rectangular burst 1 were
evaluated. Figure 6a shows a typical time domain echo signal of one of the transducer
elements with the corresponding spectrum in Figure 6b. Each of the signals was analyzed
with respect to the maximum signal amplitude in order to compare the transmit-receive
sensitivity of the transducer elements. As can be seen in Figure 6c, the element sensitivity
is very homogeneous with a relative standard deviation of only 5.6%.

For all elements, the maximum frequency is around 2.3 MHz with a standard deviation
of 1% (Figure 6d). The center frequency and the −6 dB bandwidth seem to vary more
strongly (Figure 6e,f); however, this is an artifact due to a frequency dip around 3 MHz
just below the −6 dB line in the spectrum (red line in Figure 6b). If we neglect this minor
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dip, the average center frequency of the transducer is 2.9 MHz with a −6 dB bandwidth of
approximately 60%.
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3.3. System Characterization/Standards

In view of using the system on probands in the context of an exploratory clinical
study, the system’s compliance with respect to medical device standards was verified by
certified laboratories. In particular, the acoustic output was characterized according to IEC
60601-2-37, where the maximum pressure, the mechanical and thermal index as well as the
intensity were assessed. All parameters remain well below the threshold for diagnostic
ultrasound (e.g., MI < 0.5 and ISPTA < 5 mW/cm2). Furthermore, the electrical safety was
tested according to IEC 60601-1 and the electromagnetic compatibility (e.g., immunity and
emission) was tested according to IEC 60601-1-2. The system complied with the standards
in both tests.
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3.4. Imaging Performance
3.4.1. Reconstruction Speed

When considering the achievable reconstruction speed and the system frame rate, the
data transfer from the electronics to the PC/tablet, where the GPU-based reconstruction
is implemented, represents a bottleneck, rather than the reconstruction itself. With the
used setup (Surface Pro 7 with Intel Core i7-7660U, 16GB RAM, Intel Iris Plus Graphic
640, Microsoft, Redmond, WA, USA), up to 300 frames of pre-beamformed channel data
could be transferred when a sampling rate of 40 MSa/s and an image depth of 8 cm were
chosen. Both parameters have a direct impact on the number of transferred frames per
second; however, this is not totally linear due to some communication overhead. Since
less time is needed for GPU-reconstruction than for data transfer, plane wave imaging can
be performed with 300 frames/s for the above-described parameters with 23 B-scans per
second and using compounding with 13 angles.

3.4.2. Resolution

The image resolution was characterized using wires with a diameter of 150 µm
in a water tank at different depths. Pre-beamformed channel data were acquired after
transmitting 21 plane waves in an angle range of ± 16◦. Reconstruction was performed
offline in Matlab (The MathWorks, Inc., Natick, MA, USA) with the highest resolution to
allow better assessment of the lateral extent of the point spread function (PSF).

The FWHM (Full Width Half Maximum) was characterized as a function of depth
(wires in distances between 1 cm and 10 cm from the transducer aperture) and as a
function of the number of compounding angles (from 1 to 21). Furthermore, different
beamforming approaches were investigated from conventional delay and sum (DAS) to
coherence beamforming (COH) [21,22] or non-linear filter approaches based on signal
statistics (STD) [23].

The lateral FWHM ranges between 300–800 µm depending on the chosen algorithm
for the targets closest to the aperture and between 1300–2800 µm for those that are 10 cm
away. In all cases, the STD reconstruction significantly improves the lateral resolution
when compared with simple DAS. Furthermore, Figure 7 shows that increasing the number
of compounding angles does not always lead to an improved resolution. In fact, depending
on the depth, an ideal resolution is achieved with 5–10 compounding angles. This can
be explained by trailing wave artifacts, which are not taken into account in the DAS
beamforming.
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Figure 7. Lateral PSF of the MoUsE system equipped with our 32-element 3 MHz phased array
probe. (Left) FWHM as a function of plane wave compounding angle count for a constant depth, as
a function of depth for constant plane wave compounding angle count and FWHM obtained with
different reconstruction approaches. (Right) 2D plot of FWHM as a function of angle count and
depth for conventional DAS beamforming.
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3.4.3. Signal to Noise Ratio

The depth-dependent system’s SNR was characterized using data from a CIRS multi-
purpose phantom. One hundred consecutive image acquisitions were performed with the
CIRS phantom in the same position and the reconstructed, compounded and enveloped
filtered data were analyzed (prior to logarithmic compression). Each depth mean values µ
and standard deviation values σ along a central image line in the yellow frame in Figure 8
were used to calculate the depth-dependent SNR as suggested in [24].

SNR(z) = 20·log10(µ(z)/σ(z)) (1)

To achieve the ideal SNR, the data were acquired in a compounding mode with
21 angles in the range of ± 16◦. Conventional delays-and-sum beamforming without
additional contrast-enhancing filter was used to reconstruct the data.
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3.4.4. Contrast

Assessment of the image contrast was performed by scanning lesions in a standard
ultrasound imaging phantom (CIRS multipurpose phantom Model 040GSE, CIRS, Norfolk,
VA, USA). The contrast ratio (CR) and the contrast to noise ratio (CNR) as defined in [25]
were taken as metrics for quantification of the image contrast behavior:

CR = 20·log10(µlesion/µbck) (2)

CNR =
|µbck − µlesion|√
σbck

2 − σlesion
2

(3)

Plane wave compounding data were acquired with a varying number of angles
between 1 and 21. The metrics were then assessed as a function of the number of com-
pounding angles. For this purpose, the mean values µ and the standard deviation σ inside
defined image regions (red circle: lesion; yellow circle: background in Figure 9a) were
calculated.
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Figure 9. B-mode image of CIRS phantom (a) taken for assessment of CNR and CR by analysis of
lesion (red ROI) and background (yellow ROI). The x-dimension is in the lateral dimension of the
ultrasound array and the z-dimension is in the axial direction (ultrasound propagation direction).
CNR and CR (b,c) are calculated as metrics based on the mean values and standard deviations inside
the ROIs.

3.5. Segmentation

To validate the quality of the trained CNN, ultrasound B-mode images from human
bladders with different filling levels were acquired from four male volunteers with the
MoUsE system. In this first study, 20 data sets (each consisting of one reconstructed B-
mode image) were collected. None of these data sets is included in the 253 data sets used
for training of the CNN. For image acquisition, an ideal position for the probe on the
abdomen was identified based on the real-time feedback of the MoUsE system. Images
of the bladder at different filling levels were then acquired with the probe at this position.
When it comes to the beamforming approach, plane wave compounding with 21 angles
was chosen. Examples of different bladder images can be seen in Figure 10a–d. In a second
step, the images were automatically segmented using the above-described CNN. Examples
of the segmentation for four different data sets are given in Figure 10e–h, where different
situations can be identified. In Figure 10e, the upper part of the bladder, which is closest to
the probe, is not identified as part of the bladder by the CNN. This might be due to clutter
signals in this part of the image. In Figure 10f, the bladder is correctly segmented; however,
an additional surface, which does not correspond to the bladder, was identified as bladder
tissue. Figure 10g represents an ideal case with a high correlation between the ground truth
and the CNN-segmentation. Finally, Figure 10h shows a case where the bladder was not
found by the algorithm due to the really low contrast between the (compressed and almost
empty) bladder and the surrounding tissue, as can be seen in Figure 10d. Examples of the
ground truth segmentation for the cases presented above are given in Figure 10i–l.

For a qualitative analysis of the segmentation quality, the percentage of the bladder
surface that has not been identified as bladder by the CNN was assessed. Furthermore, the
image fraction that was falsely identified as bladder tissue by the algorithm was assessed
as well. Both parameters are expressed in relation to the bladder surface in the ground
truth segmentation. The process of automated analysis is shown in Figure 11. First, the
ground truth data were binarized for easy comparison with the CNN-segmentation, which
provides binarized data by default. By comparing both images, missing bladder tissue
and tissue falsely identified as bladder are identified. Finally, simple pixel counting was
used to quantify the missing and false bladder surface. The analysis shows that only a very
small tissue fraction (corresponding to 1.4% of the bladder surface) was falsely identified
as bladder tissue. On the other side, significant parts of the bladder (median of 33%) were
not recognized as such by the algorithm. As can be seen in Figure 10, this is mostly the
case where clutter artifacts appear, leading to low contrast between bladder tissue and
the background.
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tation highlighting the differences between the expert ground truth and the CNN segmentation.
Areas not recognized as bladder by the CNN are marked as “missing bladder”, areas erroneously
segmented as bladder by the CNN are marked as “false bladder”. The relative fractions of “missing”
and “false” bladder in the different segmented data sets are shown as histogram in the right column.

4. Discussion

We developed a new portable low-cost ultrasound research system designed for
continuous bladder imaging and characterized its (hard- and software) components in first
phantom and proband experiments to assess its potential for later use in post-operative
bladder monitoring. With dimensions of 18 × 12 × 3 cm3 and a weight of 610 g, the
system is compact enough for applications where portability is required. The ultrasound
probe was integrated into compact housing (diameter of 40 mm, height of 17.5 mm)
and equipped with a self-adhesive foil, which allows long-term use without manual
probe positioning. The system was designed, manufactured, assembled and tested in the
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ultrasound department of Fraunhofer IBMT. In the design process, the focus was set not
only on the performance but also on cost efficiency and limiting the total material cost
for the electronics to approximately €1000. The system was designed to be as flexible as
possible, and therefore it provides full control to the transmit parameters and full access to
the receive data pipeline, where receive and beamforming parameters can be selected and
custom filters and reconstruction algorithms can be integrated into the real-time pipeline.
Full data access to the receive pipeline and in particular real-time availability of the pre-
beamformed channel data (up to 300 frames/s in our study) is not provided by clinical
sonography systems and makes the system future-proof for other types of applications
such as raw radio-frequent signal processing and ML modeling. On the other hand, most
research systems are not certified for medical use. Accordingly, the combination of low-cost
and the above-described flexibility makes the MoUsE system an ideal tool for research
and educational purposes in ultrasound imaging. In order to ease the transfer of new
ultrasound imaging approaches into clinics, the technical prerequisites such as data access
must be provided and regulatory constraints must be respected as well. For this reason,
we performed various tests according to safety standards for medical devices, such as
electrical safety, electromagnetic compatibility and acoustic safety. Compliance to these
standards was shown and the corresponding test protocols are available; this is of great
value when seeking an ethics clearance for exploratory clinical studies.

In order to cover most of the clinical applications of diagnostic ultrasound, we chose
a frequency range of 100 kHz–10 MHz as the target specification and validated the band-
width in our study. The imaging performance of the MoUsE is mainly dependent on the
transducer that is used. Our phased array probe with 32 elements represents a compromise
between opening angle and sensitivity. A smaller pitch would have been preferred since a
larger opening would have resulted, which is crucial for effective plane wave compounding.
On the other hand, given the demonstrated image depth of more than 10 cm in the standard
CIRS phantom and more than 15 cm in the human abdomen, imaging of the entire bladder
would have been difficult to achieve with a smaller aperture size generating less acoustic
energy output. The comparison of the image metrics obtained with different beamforming
approaches underlines the potential of software-based reconstruction methods, and thereby,
the need to have access to pre-beamformed channel data.

Having high-contrast image data is particularly needed when subsequent image
processing steps are performed for automated analysis of the data, such as in our first
application of bladder segmentation. We demonstrated the general functionality of our
CNN for segmentation in abdominal ultrasound images. However, the analysis showed
that a high contrast is crucial to prevent segmentation artifacts. This is underlined by
the comparison with earlier work on the use of CNNs for bladder segmentation from
ultrasound data [26,27], where a higher correlation between the automatically determined
and the manually segmented bladder volumes was obtained. However, it should be
mentioned, that the cited work was based on the use of high-end clinical ultrasound
devices, which provide higher contrast, and two orthogonal B-mode images were acquired
for obtaining quantitative values for the bladder volume [26]. The assessment of the actual
bladder volume can hardly be achieved with high accuracy using single cross-sectional
B-mode images, and therefore it is beyond the scope of the presented work. However,
the impact of the lower SNR when compared to ultrasound data acquired with high-end
clinical ultrasound machines needs to be closely investigated, particularly since the bladder
cross-sectional surface was systematically underestimated. This was due to clutter signals
occurring at the bladder border that were recognized as background tissue by the CNN.
On the other hand, background tissue was very reliably identified with very few “false
positive” areas (background tissue falsely identified as bladder).

Despite the first proof-of-concept, further investigation is needed to enhance the
performance of the overall approach. In particular, the network size needs to be improved
in order to allow better use on mobile devices with limited computing capabilities. Since
the analysis has shown the importance of SNR for the accurate segmentation and the



Sensors 2021, 21, 6481 14 of 15

potential of more sophisticated beamforming approaches for contrast improvement, the
optimization of image CR and CNR will be the focus of our future work. Furthermore, we
will investigate if training the algorithm with more diverse data (different, and in particular,
lower contrast levels) will yield higher accuracy. In summary, in applications such as the
monitoring of POUR, where a significant or even dramatic and thereby potentially harmful
increase in bladder volume can occur, the proposed approach provides sufficient sensitivity.
However, for applications where a precise quantitative assessment of the bladder volume
is needed, further enhancement of the performance is needed and will be investigated
using refined beamforming approaches and improved training of the CNN.

Finally, beyond this first study on bladder monitoring, we will seek to use MoUsE
and its unique combination of device mobility, flexibility and data access in other medical
ultrasound applications. Although the number of transmit/receive channels is currently
limited to 32, a synchronization scheme that combines several MoUsE systems for a
higher total channel count is currently under development. A wireless interface is already
available on the hardware, but is not implemented in software, which is also a work in
progress and would allow easier use in future mobile ultrasound applications. A battery-
powered version of MoUsE is in development as well. The possibility of transferring
existing classification tasks using machine learning on radio-frequent data in addition to
the image-based approach will also be investigated.
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