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Abstract 
Finite-state devices are widely used to compactly model linguistic phenomena, whereas regular expressions are regarded as the 
adequate level of abstraction for thinking about finite-state languages. In this paper we present a flexible XML-based and Unicode-
compatible regular compiler for creating, and integrating existing linguistic resources. Our tool provides user-friendly graphical 
interface which enables the transparent  control of the compilation process and allows for testing generated finite-state grammars with 
several diagnostic tools. Through the direct database connection, existing linguistic resources can be converted into user-definable 
finite-state representations. 
 

1. Introduction  
 
Finite-state devices are widely used to compactly 

model interesting linguistic phenomena because of their 
expressiveness and computational power. Regular 
expressions are regarded as the adequate level of 
abstraction for thinking about finite-state languages 
(Karttunen et al., 1996). They are usually used to encode 
linguistic resources like, for instance, definitions of token 
classes, context-dependent rewrite rules (e.g., part-of-
speech filtering rules), grammars for the recognition of 
small-scale structures (e.g., nominal phrases, verb groups, 
named entities) and even high-level clausal patterns. 
Regular compilers are tools for converting regular 
expressions into their corresponding compressed finite-
state representation. A variety of regular compilers based 
on advanced finite-state optimization toolkits have been 
presented in (Noord and Gerdemann, 1999; Karttunen et. 
al., 1997, Silberztein, 1997; Sproat, 1996) and has been 
successfully applied for the creation of linguistic resources 
in various domains of natural language processing, 
including phonology, morphology, part-of-speech 
filtering, shallow parsing and speech recognition. 

In this paper we present a flexible XML-based regular 
compiler for creation, conversion and integration of 
existing linguistic resources. Both the definition of regular 
expressions and the configuration of the transformation 
process is done via XML which can be edited 
transparently in a user-friendly graphical editor. This 
allows for easy and straightforward extension (e.g., 
introduction of new operators and compilation options) 
and rapid processing by emerging technologies (e.g., 
XML parsers). The language resources engineer may 
flexibly define the way, in which the finite-state devices 
are merged together, and bias the optimization process. 
Further, distributed work is possible, since the compiler 
provides direct database access, which allows to convert 
existing linguistic resources stored in miscellaneous 
databases into user-definable finite-state representation in 
various formats. Additionally, diagnostic tools can be used 
to provide a deeper insight into the characteristics of the 
generated finite-state networks. Last but not least the 
compiler supports the Unicode encoding standard.  

2. Regular Compiler 

2.1. Architecture  
 

The regular compiler consists of four main modules: 
(a) Graphical User Interface (GUI), (b) Compiler for 
regular expressions, (c) Finite-State Machine Toolbox, 
and (d) Driver for finite-state devices. The coarse-grained 
architecture of the tool is presented in figure 1. 
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Figure 1. A coarse-grained architecture of the 

regular compiler. 
 
Grammar development is done by simply encoding the 

regular patterns via XML, where the first part of the XML 
code contains compilation and transformation options, and 
the second part consists solely of pattern definitions. The 
user creates or modifies pattern definitions via the GUI, 
which is equipped with a kind of visual XML editor. 
Contrary to solely DTD or XML-schemata based editors, 
it has additional features helping the user to create valid 
XML. 

Subsequently, the grammar is compiled. This invokes 
the Compiler module that takes the XML file generated 
by the GUI and validates it for consistency (e.g., the type 
of predicates in a certain scenario may be constrained). In 



the next step, the patterns are converted into 
corresponding, optimized finite-state devices according to 
the defined compilation settings (e.g., type and output 
format of the generated finite-state devices, various 
optimization options). This task is fulfilled by an 
interaction with the Finite-State Machine Toolbox which 
is tightly coupled with the compiler. They exchange 
information in form of FSM objects or descriptions of 
them. Most of the regular operations are therefore realized 
as direct calls of the corresponding operations (or 
sequences of operations) of the FSM toolbox. Some of the 
compilation steps are done by the compiler. The result of 
the pattern transformation is then stored in one or more 
FSM files. Since FSM Toolbox constitutes the core 
component of the system, we describe it in some more 
detail in section 2.2. 

Finally, the compilation results can be directly tested 
and explored via the Driver module. This includes testing 
the resulting FSMs on data provided by the user, and 
viewing their graphical representation and related 
statistical information. All results and information are 
uniformly visualized in the GUI. 

The main advantage of the presented architecture is its 
modularity, since basic and important functionality is 
encapsulated as single modules. The FSM toolbox has a 
clear interface (FSM) and can be used as a standalone 
application or within other frameworks. The compiler 
takes XML files as input and can therefore be used 
without the GUI. Moreover, it can be combined with 
another finite-state package, since its interface is only 
based on an FSM model. Analogously, the driver can also 
be seen as a standalone component, since its interfaces are 
clear and well defined. Finally, the GUI may be deployed 
as a standalone component, because its XML processing is 
controled by a XML-based description and is not hard 
encoded. This allows for adapting its functionality very 
easily and quickly. 

2.2. Finite-State Machine Toolkit 
 
The Regular Compiler is based on the advanced Finite-

State Machine Toolkit developed at DFKI (Piskorski, 
2002), which provides efficiency-oriented implementation 
of state-of-the-art operations for constructing, combining 
and optimizing weighted finite-state machines which are 
generalizations of weighted finite-state automata and 
weighted finite-state transducers. The architecture and 
functionality of this toolkit is mainly based on tools 
developed by AT&T (Mohri, Pereira, and Riley, 1996). 
Analogously to the AT&T tools, the underlying finite-
state machine model allows only single alphabet symbols 
as transition labels, since most of finite-state operations 
and transformations require this feature and therefore time 
consuming conversions may be avoided. The realization 
of most of the operations including equivalence 
transformations (e.g., determinization, removal of ε - 
transitions, minimization, and trimming) and combination 
operations (e.g., composition, intersection, union, 
difference, complement etc.) is based on the recent 
approaches proposed in (Mohri, 1997; Mohri, Pereira, and 
Riley, 1996; Roche and Schabes, 1996). Most of the 
provided operations work with arbitrary real-valued 
semirings. 

In contrast to the AT&T tools, we provide some new 
operations relevant to NLP. For instance, the algorithm for 
local extension, which is crucial for merging part-of-
speech filtering rules into a single finite-state transducer 
has been realized and adopted for the case of weighted 
finite-state transducers. Further, the toolkit provides an 
efficient operation for incremental construction of 
minimal deterministic acyclic finite-state automata from 
word lists proposed in (Daciuk, 1998), which is heavily 
used by the regular compiler. Finally, we also improved 
the general algorithm for removing ε - transitions (Mohri, 
Pereira and Riley, 1996) which is based on the 
computation of the transitive closure of the entire graph 
representing ε - moves. Instead of computing the 
transitive closure of the entire graph, we firstly remove all 
simple ε - transitions (a transition is considered simple if 
its target state does not have any outgoing ε -arcs) and 
then compute the transitive closure for each connected 
component in the graph representing the remaining ε - 
transitions.   

The FSM Tools are divided into two levels: an user-
program level consisting of a stand-alone application that 
manipulates FSMs by reading from and writing to files, 
and a C++-library level consisting of a library of C++ 
classes and functions which implement the user-program 
level operations. The latter level allows for an easy 
embedding of single elements of the toolkit into any other 
applications. Currently, the FSM Tools run on UNIX, MS 
Windows and Linux platform. Detailed information 
concerning the tools can be found in (Piskorski, 2002). 

2.3. Features 

2.3.1. Regular Operators 
 
The compiler provides circa 20 standard regular operators 
(Noord and Gerdemann, 1999). Some of the major regular 
operators are listed in figure 2. For the sake of clarity, we 
explain the semantics of the range, n-times and prefix 
operators. The operator n-times(E,num) corresponds to 
num concatenations of the regular expression E (Enum), 
whereas range(E,min,max) corresponds to the disjunction 
of  Emin, Emin+1, …, and Emax. The operator prefix(E) 
corresponds to the concatenation of E with Σ*, where Σ 
denotes the alphabet used in the given set of patterns 
(suffix and infix are defined in an analogous way). 
 

union(E1,E2,…,En) concatenation(E1,E2,…,En) 
star(E) plus(E) 
zero-one(E) intersection(E1,E2) 
complement(E) difference(E1,E2) 
range(E,min,max) n-times(E,num)  
prefix(E) suffix(E) 
infix(E) sigma() 
char-set(first,last)  

Figure 2. Basic regular operators. 
 
New regular operators may be defined in terms of the 

existing ones, where such new operators are called 
functions. Let us consider as an example the definition of 
a simple regular-expression pattern for the recognition of 
date expressions in free-text document:  

 



[0…9]1-2
WS

+
>µJanuary’,…,’December’] WS

+
>�«�@

4,  
 
where WS denotes any whitespace. Since only month 
names have to be modified if one switches from one 
language to another, it would be convenient to define a 
generic parametrizable pattern which takes as an argument 
a list of month names. The XML definition of a 
corresponding general regular expression operator is 
presented in figure 3. The tag <ARG> denotes the 
argument of the operator, which is expected to be a 
regular expression representing names of the months, 
whereas the tag <PRE-DEF> denotes a call to a macro (e.g., 
‘Digit’ is a macro representing a regular expression for 
recognition of digits). 
 
<FUNCTION> 
 <NAME> General Date Expression </NAME> 
 <PARAM_COUNT> 1 </PARAM_COUNT> 
 <REG-EXP> 
  <CONCAT> 
   <PRE-DEF>Digit</PRE-DEF> 

 <ZERO-ONE><PRE-DEF>Digit</PRE-DEF></ZERO-ONE> 
   <PLUS><PRE-DEF>WhiteSpace</PRE-DEF></PLUS> 
   <ARG id=”1”> 
   <PLUS><PRE-DEF>WhiteSpace</PRE-DEF></PLUS> 
   <N-TIMES> 
    <END> 4 </END>  
    <REG-EXP> 
     <PRE-DEF>Digit</PRE-DEF> 
    </REG-EXP> 
   </N-TIMES> 
  </CONCAT> 
 </REG-EXP> 
</FUNCTION> 

Figure 3. A one-argument regular operator representing a 
family of simple patterns for the recognition 

of date expressions 

2.3.2. Importing Data from External Sources 
 
External linguistic resources stored in databases or 

simple text files may be easily imported and converted 
into corresponding optimized finite-state devices. For 
instance, figure 4 shows a pattern for the recognition of 
date expressions in English, which is defined in terms of 
the general pattern for date expressions defined previously 
(see figure 3), where the list of the month names is 
imported from a textual file (the <INCLUDE> tag). In order 
to speed up the compilation process our tool also allows 
for importing regular expressions, which have previously 
been converted into optimized finite-state devices.  
 

<PATTERN> 
  <NAME> English Date Expression <NAME> 
  <ID> 2 </ID> 
  <REG-EXP> 
   <FUNCTION> 
    <NAME> General Date Expression </NAME> 
    <ARGS> 
     <INCLUDE> 
      <FILE> month_names_English.txt </FILE > 
     </INCLUDE> 
    </ARGS> 
   </FUNCTION> 
  </REG-EXP> 
</PATTERN> 

Figure 4.A simple pattern for the recognition 
of English date expression  

In order to import data from a database, an SQL-query 
must be formulated, where an additional user-defined 
pattern (combination pattern) determines how different 
fields of the database entries should be combined together 
into a desired format. In this sense, the tool may be used 
for merging existing linguistic data from miscellaneous 
sources into uniform compressed finite-state 
representations. An example of importing lexical entries 
from a database is presented in figure 5. The SQL-query is 
defined within the <SQL QUERY> tag (select all nouns with 
their corresponding stem and inflection information), 
whereas the code fragment tagged with 
<ROW_STRUCTURE> represents the combination pattern. 

 
<INCLUDE> 
 <DATABASE_ENTRY> 
  <DB_WORD_LIST> 
   <DB_NAME> VarLex </DB_NAME> 
   <USER_NAME> UserName </USER_NAME> 
   <SQL_QUERY> 

   SELECT  surface, stem, infl 
    FROM  lexicon1 
     WHERE  POS='noun' 

   </SQL_QUERY> 
   <ROW_STRUCTURE> 
    <DB_FIELD> surface </DB_FIELD> 
    <SEPARATOR> : </SEPARATOR> 
    <DB_FIELD> stem </DB_FIELD> 
    <SEPARATOR> : </SEPARATOR> 
    <DB_FIELD> infl </DB_FIELD> 
   </ROW_STRUCTURE> 
  </DB_WORD_LIST> 
 </DATABASE_ENTRY> 
</INCLUDE>  

Figure 5. A fragment of a pattern definition for importing 
lexical entries from a database. 

2.4. Compilation Settings 
 
The compiler provides several options which 

determine the compilation process. First of all, the user 
may switch between ASCII or Unicode mode, which 
determines what character set may be used in the grammar 
writing process and simultaneously specifies the encoding 
style for the generated finite-state devices. Further, the 
user may decide whether the input data will be interpreted 
as scanner definitions (e.g., token class definitions) or 
general regular expressions. The finite-state devices 
generated by the compiler may be returned in various 
formats, including XML, compressed binary format 
optimized for processing, database entry or simple textual 
format, which enables to use the result in an arbitrary 
finite-state framework. Furthermore, there is an option of 
merging all patterns into a single optimized finite-state 
network instead of producing single finite-state devices 
for each defined pattern. The way in which patterns are 
merged may also be configured. For instance, the 
intermediate finite-state devices generated by the compiler 
may be optimized on demand (local optimization) in order 
to simplify global optimization.  

Additionally, there are two alternative ways in which 
the ambiguities are handled. The first option is to resolve 
the ambiguities by assigning weights (<ID> tag in figure 
4) to the patterns which represent their priorities (pattern 
prioritization). In the process of pattern merging, the 



tropical semiring (Mohri, 1997) is applied in order to 
resolve potential ambiguities (i.e., the identifier of the 
matching pattern can be computed by combining the 
weight on the accepting path). The second option is to 
preserve all ambiguities by introducing appropriate final 
emissions representing pattern identifiers in the 
corresponding finite-state devices. The usage of the latter 
option is illustrated in figure 6 (the arcs labeled with the 
symbols “#1” and “#2” encode the pattern identifier). 

 

 
(a) pattern for matching two-digit numbers 

 
(b) pattern for matching all natural numbers 

 
(c) automaton resulting by merging the  

automata in (a) and (b) 

Figure 6. Merging finite-state devices representing 
ambiguous patterns.  

 
A simplified example of compiler settings encoded in 
XML is illustrated in figure 7. 
 

<COMPILER_SETTINGS> 
 <UNICODE> true </UNICODE > 
 <INPUT_SETTINGS>  
  <INPUT_TYPE> scanner </INPUT_TYPE> 

   </INPUT_SETTINGS> 
   <OUTPUT_SETTINGS> 
    <FILE> 
     <FILE_FORMAT> xml </FILE_FORMAT> 
     <OUTPUT_DIR> d:\tmp </OUTPUT_DIR> 
     <EPSILON_CODE> EPS </EPSILON_CODE> 
     </FILE> 
    <SEPARATED_FSM> false </SEPARATED_FSM> 
    <AMBIGUITIES> true </AMBIGUITIES> 
   </OUTPUT_SETTINGS> 
   <OPTIMIZATION_SETTINGS> 
    <LOCAL_OPT> true </LOCAL_OPT> 
   </OPTIMIZATION_SETTINGS> 
  <COMPILER_SETTINGS> 

Figure 7. Compiler Settings 

2.5. Graphical User Interface 
 
Our tool is equipped with a graphical user interface 

shown in figure 8, which provides an intelligent XML 
editor. The user can switch between pure XML code view 
and tree view for defining patterns and configuration 
purposes. Both of the views can be modified. In the tree 
view no manual XML code writing is necessary, since the 
XML code is automatically generated by clicking buttons 
which correspond to all supported regular operators (user-
defined operators too). Even for accessing special hard-to-
find symbols, which have to be included in regular 

expressions, simple drag-and-drop mechanisms are 
provided (Unicode tables). At any point in the input 
window the user can choose new tags from a list of valid 
tags which obviously reduces potential mismatch errors. 

The AT&T dot-Tool (Koustofios, 1996) was 
integrated in the GUI for the visualization of generated 
finite-state devices corresponding to single or merged set 
of patterns. Moreover, the patterns may be tested in a 
diagnostic window by using a simple finite-state driver 
and a text sample provided by the user (either ASCII or 
Unicode). The test results are displayed in an user-friendly 
way by the GUI, i.e., the part of the input that matches 
some pattern is highlighted and the list of all patterns that 
match with any prefix of the highlighted text passage may 
be displayed by simply clicking the mouse pointing at this 
marked passage (see figure 9). In this way, the user can 
easily and directly validate his pattern definitions, which 
facilitates grammar development. Various searching 
techniques and strategies may be chosen (e.g., longest 
matching vs. all matches, local vs. full backtracking, etc.). 

 

  

Figure 8. GUI for the Regular Compiler. The buttons on  
the left side are used for automatically generating XML 
code for all provided operators. The tree-like structure 

representing the XML code can be seen in the 
window on the right side (Tree view). 

 
Finally, a tool for displaying detailed information 

about the characteristics of the resulting finite-state 
devices, including among others statistics about the 
number of nondeterministic moves, average number of 
outgoing transitions from a state, alphabet size etc. may 
support the language engineer in the process of optimally 
configuring the appropriate finite-state grammar 
interpreter and to ease the choice of an adequate storage 
model for the internal representation of the investigated 
finite-state device.  

3. Application 
 
Due to the user-friendly interface, parametrizable 

compilation and optimization options, Unicode 
compatibility, and various diagnostic tools, our tool 
proved to be an outstanding and reliable grammar 
development environment for multilingual pattern-based 



shallow grammars and pattern-based template filler rules 
in the field of information extraction. In particular, we 
used this tool for the implementation of a small-scale 
structure recognition component for Chinese, and an 
information extraction subsystem applied in the 
management succession domain. 

The major advantage of using the regular compiler in 
the process of Chinese grammar development (named-
entity grammars) is the fact, that the compiler allows the 
user not only to enter Chinese signs from the keyboard, 
but also to access the signs from a Unicode table. An 
example of such table is given in figure 10. Moreover, we 
could easily convert various existing resources in Chinese 
(e.g. gazetteers) from different sources, which were useful 
for increasing the coverage of the discussed component.  

 

Figure 9. Diagnostic window for testing defined patterns. 
 
 In the second task we used the regular compiler for 

the definition of simple template filling rules for German 
person names which looks like follows: 

 
‘Successor’ ‘of’ <PERSON NAME> 

�
  [Person_out: <PERSON NAME>] 

  
This rule matches expressions like ‘Successor of Helmut 
Kohl‘ which contains two string tokens Successor and of 
followed by a person name, and fills the slot “person_out” 
with the recognized person name Helmut Kohl. Such rules 
are encoded in the compiler as regular expressions over 
the feature structures representing the output of the 
shallow analysis. The task-specific constraints (the regular 
compiler may be restricted to allow only predefined 
feature structures in the patterns) facilitate the grammar 
development process enormously. 

4. Summary and Future Directions 
 
In this paper we presented a flexible XML-based 

regular compiler for creation, conversion and integration 
of existing linguistic resources, which provides direct 
database connection, diagnostic tools, and a user-friendly 
graphical interface which enables to transparently control 
the compilation process. This tool was implemented in 
Java except the Finite-State Machine Toolkit, which was 
implemented in C++. 

In order to improve the expressiveness capabilities of 
the tool we intend to integrate type definition system like 

TDL (Krieger, 1995), and extend the compiler by 
providing routines for the compilation of weighted 
context-dependent rules (Mohri, 2000) into corresponding 
optimized finite-state representations. Currently, we 
developed an extended experimental version of the 
compiler which handles unification-based regular 
grammars. Together with the intended enhanced driver 
capable of interpreting such grammars, the forthcoming 
version of the compiler will constitute an integrated 
grammar development and debugging environment for 
processing unification-based regular grammars. Finally, 
we aim at making the regular compiler publicly available 
and we also intend to perform usability test. 

 

 
 

Figure 10. Unicode Table in action 
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