
A Flexible XML-based Regular Compiler
for Creation and Conversion of Linguistic Resources

Jakub Piskorski, :LWROG�'UR G \ VNL, Oliver Scherf, Feiyu Xu

DFKI – German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66 123 Saarbrücken, Germany

{piskorsk, witold, scherf, feiyu}@dfki.de

Abstract
Finite-state devices are widely used to compactly model linguistic phenomena, whereas regular expressions are regarded as the
adequate level of abstraction for thinking about finite-state languages. In this paper we present a flexible XML-based and Unicode-
compatible regular compiler for creating, and integrating existing linguistic resources. Our tool provides user-friendly graphical
interface which enables the transparent control of the compilation process and allows for testing generated finite-state grammars with
several diagnostic tools. Through the direct database connection, existing linguistic resources can be converted into user-definable
finite-state representations.

1. Introduction

Finite-state devices are widely used to compactly

model interesting linguistic phenomena because of their
expressiveness and computational power. Regular
expressions are regarded as the adequate level of
abstraction for thinking about finite-state languages
(Karttunen et al., 1996). They are usually used to encode
linguistic resources like, for instance, definitions of token
classes, context-dependent rewrite rules (e.g., part-of-
speech filtering rules), grammars for the recognition of
small-scale structures (e.g., nominal phrases, verb groups,
named entities) and even high-level clausal patterns.
Regular compilers are tools for converting regular
expressions into their corresponding compressed finite-
state representation. A variety of regular compilers based
on advanced finite-state optimization toolkits have been
presented in (Noord and Gerdemann, 1999; Karttunen et.
al., 1997, Silberztein, 1997; Sproat, 1996) and has been
successfully applied for the creation of linguistic resources
in various domains of natural language processing,
including phonology, morphology, part-of-speech
filtering, shallow parsing and speech recognition.

In this paper we present a flexible XML-based regular
compiler for creation, conversion and integration of
existing linguistic resources. Both the definition of regular
expressions and the configuration of the transformation
process is done via XML which can be edited
transparently in a user-friendly graphical editor. This
allows for easy and straightforward extension (e.g.,
introduction of new operators and compilation options)
and rapid processing by emerging technologies (e.g.,
XML parsers). The language resources engineer may
flexibly define the way, in which the finite-state devices
are merged together, and bias the optimization process.
Further, distributed work is possible, since the compiler
provides direct database access, which allows to convert
existing linguistic resources stored in miscellaneous
databases into user-definable finite-state representation in
various formats. Additionally, diagnostic tools can be used
to provide a deeper insight into the characteristics of the
generated finite-state networks. Last but not least the
compiler supports the Unicode encoding standard.

2. Regular Compiler

2.1. Architecture

The regular compiler consists of four main modules:
(a) Graphical User Interface (GUI), (b) Compiler for
regular expressions, (c) Finite-State Machine Toolbox,
and (d) Driver for finite-state devices. The coarse-grained
architecture of the tool is presented in figure 1.

GUI

Patterns

Compiler

FSM
Toolbox

FSM

Driver Test Data

Test
Result

Figure 1. A coarse-grained architecture of the

regular compiler.

Grammar development is done by simply encoding the

regular patterns via XML, where the first part of the XML
code contains compilation and transformation options, and
the second part consists solely of pattern definitions. The
user creates or modifies pattern definitions via the GUI,
which is equipped with a kind of visual XML editor.
Contrary to solely DTD or XML-schemata based editors,
it has additional features helping the user to create valid
XML.

Subsequently, the grammar is compiled. This invokes
the Compiler module that takes the XML file generated
by the GUI and validates it for consistency (e.g., the type
of predicates in a certain scenario may be constrained). In

the next step, the patterns are converted into
corresponding, optimized finite-state devices according to
the defined compilation settings (e.g., type and output
format of the generated finite-state devices, various
optimization options). This task is fulfilled by an
interaction with the Finite-State Machine Toolbox which
is tightly coupled with the compiler. They exchange
information in form of FSM objects or descriptions of
them. Most of the regular operations are therefore realized
as direct calls of the corresponding operations (or
sequences of operations) of the FSM toolbox. Some of the
compilation steps are done by the compiler. The result of
the pattern transformation is then stored in one or more
FSM files. Since FSM Toolbox constitutes the core
component of the system, we describe it in some more
detail in section 2.2.

Finally, the compilation results can be directly tested
and explored via the Driver module. This includes testing
the resulting FSMs on data provided by the user, and
viewing their graphical representation and related
statistical information. All results and information are
uniformly visualized in the GUI.

The main advantage of the presented architecture is its
modularity, since basic and important functionality is
encapsulated as single modules. The FSM toolbox has a
clear interface (FSM) and can be used as a standalone
application or within other frameworks. The compiler
takes XML files as input and can therefore be used
without the GUI. Moreover, it can be combined with
another finite-state package, since its interface is only
based on an FSM model. Analogously, the driver can also
be seen as a standalone component, since its interfaces are
clear and well defined. Finally, the GUI may be deployed
as a standalone component, because its XML processing is
controled by a XML-based description and is not hard
encoded. This allows for adapting its functionality very
easily and quickly.

2.2. Finite-State Machine Toolkit

The Regular Compiler is based on the advanced Finite-

State Machine Toolkit developed at DFKI (Piskorski,
2002), which provides efficiency-oriented implementation
of state-of-the-art operations for constructing, combining
and optimizing weighted finite-state machines which are
generalizations of weighted finite-state automata and
weighted finite-state transducers. The architecture and
functionality of this toolkit is mainly based on tools
developed by AT&T (Mohri, Pereira, and Riley, 1996).
Analogously to the AT&T tools, the underlying finite-
state machine model allows only single alphabet symbols
as transition labels, since most of finite-state operations
and transformations require this feature and therefore time
consuming conversions may be avoided. The realization
of most of the operations including equivalence
transformations (e.g., determinization, removal of ε -
transitions, minimization, and trimming) and combination
operations (e.g., composition, intersection, union,
difference, complement etc.) is based on the recent
approaches proposed in (Mohri, 1997; Mohri, Pereira, and
Riley, 1996; Roche and Schabes, 1996). Most of the
provided operations work with arbitrary real-valued
semirings.

In contrast to the AT&T tools, we provide some new
operations relevant to NLP. For instance, the algorithm for
local extension, which is crucial for merging part-of-
speech filtering rules into a single finite-state transducer
has been realized and adopted for the case of weighted
finite-state transducers. Further, the toolkit provides an
efficient operation for incremental construction of
minimal deterministic acyclic finite-state automata from
word lists proposed in (Daciuk, 1998), which is heavily
used by the regular compiler. Finally, we also improved
the general algorithm for removing ε - transitions (Mohri,
Pereira and Riley, 1996) which is based on the
computation of the transitive closure of the entire graph
representing ε - moves. Instead of computing the
transitive closure of the entire graph, we firstly remove all
simple ε - transitions (a transition is considered simple if
its target state does not have any outgoing ε -arcs) and
then compute the transitive closure for each connected
component in the graph representing the remaining ε -
transitions.

The FSM Tools are divided into two levels: an user-
program level consisting of a stand-alone application that
manipulates FSMs by reading from and writing to files,
and a C++-library level consisting of a library of C++
classes and functions which implement the user-program
level operations. The latter level allows for an easy
embedding of single elements of the toolkit into any other
applications. Currently, the FSM Tools run on UNIX, MS
Windows and Linux platform. Detailed information
concerning the tools can be found in (Piskorski, 2002).

2.3. Features

2.3.1. Regular Operators

The compiler provides circa 20 standard regular operators
(Noord and Gerdemann, 1999). Some of the major regular
operators are listed in figure 2. For the sake of clarity, we
explain the semantics of the range, n-times and prefix
operators. The operator n-times(E,num) corresponds to
num concatenations of the regular expression E (Enum),
whereas range(E,min,max) corresponds to the disjunction
of Emin, Emin+1, …, and Emax. The operator prefix(E)
corresponds to the concatenation of E with Σ*, where Σ
denotes the alphabet used in the given set of patterns
(suffix and infix are defined in an analogous way).

union(E1,E2,…,En) concatenation(E1,E2,…,En)
star(E) plus(E)
zero-one(E) intersection(E1,E2)
complement(E) difference(E1,E2)
range(E,min,max) n-times(E,num)
prefix(E) suffix(E)
infix(E) sigma()
char-set(first,last)

Figure 2. Basic regular operators.

New regular operators may be defined in terms of the

existing ones, where such new operators are called
functions. Let us consider as an example the definition of
a simple regular-expression pattern for the recognition of
date expressions in free-text document:

[0…9]1-2
WS

+
>µJanuary’,…,’December’] WS

+
>�«�@

4,

where WS denotes any whitespace. Since only month
names have to be modified if one switches from one
language to another, it would be convenient to define a
generic parametrizable pattern which takes as an argument
a list of month names. The XML definition of a
corresponding general regular expression operator is
presented in figure 3. The tag <ARG> denotes the
argument of the operator, which is expected to be a
regular expression representing names of the months,
whereas the tag <PRE-DEF> denotes a call to a macro (e.g.,
‘Digit’ is a macro representing a regular expression for
recognition of digits).

<FUNCTION>
 <NAME> General Date Expression </NAME>
 <PARAM_COUNT> 1 </PARAM_COUNT>
 <REG-EXP>
 <CONCAT>
 <PRE-DEF>Digit</PRE-DEF>

 <ZERO-ONE><PRE-DEF>Digit</PRE-DEF></ZERO-ONE>
 <PLUS><PRE-DEF>WhiteSpace</PRE-DEF></PLUS>
 <ARG id=”1”>
 <PLUS><PRE-DEF>WhiteSpace</PRE-DEF></PLUS>
 <N-TIMES>
 <END> 4 </END>
 <REG-EXP>
 <PRE-DEF>Digit</PRE-DEF>
 </REG-EXP>
 </N-TIMES>
 </CONCAT>
 </REG-EXP>
</FUNCTION>

Figure 3. A one-argument regular operator representing a
family of simple patterns for the recognition

of date expressions

2.3.2. Importing Data from External Sources

External linguistic resources stored in databases or

simple text files may be easily imported and converted
into corresponding optimized finite-state devices. For
instance, figure 4 shows a pattern for the recognition of
date expressions in English, which is defined in terms of
the general pattern for date expressions defined previously
(see figure 3), where the list of the month names is
imported from a textual file (the <INCLUDE> tag). In order
to speed up the compilation process our tool also allows
for importing regular expressions, which have previously
been converted into optimized finite-state devices.

<PATTERN>
 <NAME> English Date Expression <NAME>
 <ID> 2 </ID>
 <REG-EXP>
 <FUNCTION>
 <NAME> General Date Expression </NAME>
 <ARGS>
 <INCLUDE>
 <FILE> month_names_English.txt </FILE >
 </INCLUDE>
 </ARGS>
 </FUNCTION>
 </REG-EXP>
</PATTERN>

Figure 4.A simple pattern for the recognition
of English date expression

In order to import data from a database, an SQL-query
must be formulated, where an additional user-defined
pattern (combination pattern) determines how different
fields of the database entries should be combined together
into a desired format. In this sense, the tool may be used
for merging existing linguistic data from miscellaneous
sources into uniform compressed finite-state
representations. An example of importing lexical entries
from a database is presented in figure 5. The SQL-query is
defined within the <SQL QUERY> tag (select all nouns with
their corresponding stem and inflection information),
whereas the code fragment tagged with
<ROW_STRUCTURE> represents the combination pattern.

<INCLUDE>
 <DATABASE_ENTRY>
 <DB_WORD_LIST>
 <DB_NAME> VarLex </DB_NAME>
 <USER_NAME> UserName </USER_NAME>
 <SQL_QUERY>

 SELECT surface, stem, infl
 FROM lexicon1
 WHERE POS='noun'

 </SQL_QUERY>
 <ROW_STRUCTURE>
 <DB_FIELD> surface </DB_FIELD>
 <SEPARATOR> : </SEPARATOR>
 <DB_FIELD> stem </DB_FIELD>
 <SEPARATOR> : </SEPARATOR>
 <DB_FIELD> infl </DB_FIELD>
 </ROW_STRUCTURE>
 </DB_WORD_LIST>
 </DATABASE_ENTRY>
</INCLUDE>

Figure 5. A fragment of a pattern definition for importing
lexical entries from a database.

2.4. Compilation Settings

The compiler provides several options which

determine the compilation process. First of all, the user
may switch between ASCII or Unicode mode, which
determines what character set may be used in the grammar
writing process and simultaneously specifies the encoding
style for the generated finite-state devices. Further, the
user may decide whether the input data will be interpreted
as scanner definitions (e.g., token class definitions) or
general regular expressions. The finite-state devices
generated by the compiler may be returned in various
formats, including XML, compressed binary format
optimized for processing, database entry or simple textual
format, which enables to use the result in an arbitrary
finite-state framework. Furthermore, there is an option of
merging all patterns into a single optimized finite-state
network instead of producing single finite-state devices
for each defined pattern. The way in which patterns are
merged may also be configured. For instance, the
intermediate finite-state devices generated by the compiler
may be optimized on demand (local optimization) in order
to simplify global optimization.

Additionally, there are two alternative ways in which
the ambiguities are handled. The first option is to resolve
the ambiguities by assigning weights (<ID> tag in figure
4) to the patterns which represent their priorities (pattern
prioritization). In the process of pattern merging, the

tropical semiring (Mohri, 1997) is applied in order to
resolve potential ambiguities (i.e., the identifier of the
matching pattern can be computed by combining the
weight on the accepting path). The second option is to
preserve all ambiguities by introducing appropriate final
emissions representing pattern identifiers in the
corresponding finite-state devices. The usage of the latter
option is illustrated in figure 6 (the arcs labeled with the
symbols “#1” and “#2” encode the pattern identifier).

(a) pattern for matching two-digit numbers

(b) pattern for matching all natural numbers

(c) automaton resulting by merging the

automata in (a) and (b)

Figure 6. Merging finite-state devices representing
ambiguous patterns.

A simplified example of compiler settings encoded in
XML is illustrated in figure 7.

<COMPILER_SETTINGS>
 <UNICODE> true </UNICODE >
 <INPUT_SETTINGS>
 <INPUT_TYPE> scanner </INPUT_TYPE>

 </INPUT_SETTINGS>
 <OUTPUT_SETTINGS>
 <FILE>
 <FILE_FORMAT> xml </FILE_FORMAT>
 <OUTPUT_DIR> d:\tmp </OUTPUT_DIR>
 <EPSILON_CODE> EPS </EPSILON_CODE>
 </FILE>
 <SEPARATED_FSM> false </SEPARATED_FSM>
 <AMBIGUITIES> true </AMBIGUITIES>
 </OUTPUT_SETTINGS>
 <OPTIMIZATION_SETTINGS>
 <LOCAL_OPT> true </LOCAL_OPT>
 </OPTIMIZATION_SETTINGS>
 <COMPILER_SETTINGS>

Figure 7. Compiler Settings

2.5. Graphical User Interface

Our tool is equipped with a graphical user interface

shown in figure 8, which provides an intelligent XML
editor. The user can switch between pure XML code view
and tree view for defining patterns and configuration
purposes. Both of the views can be modified. In the tree
view no manual XML code writing is necessary, since the
XML code is automatically generated by clicking buttons
which correspond to all supported regular operators (user-
defined operators too). Even for accessing special hard-to-
find symbols, which have to be included in regular

expressions, simple drag-and-drop mechanisms are
provided (Unicode tables). At any point in the input
window the user can choose new tags from a list of valid
tags which obviously reduces potential mismatch errors.

The AT&T dot-Tool (Koustofios, 1996) was
integrated in the GUI for the visualization of generated
finite-state devices corresponding to single or merged set
of patterns. Moreover, the patterns may be tested in a
diagnostic window by using a simple finite-state driver
and a text sample provided by the user (either ASCII or
Unicode). The test results are displayed in an user-friendly
way by the GUI, i.e., the part of the input that matches
some pattern is highlighted and the list of all patterns that
match with any prefix of the highlighted text passage may
be displayed by simply clicking the mouse pointing at this
marked passage (see figure 9). In this way, the user can
easily and directly validate his pattern definitions, which
facilitates grammar development. Various searching
techniques and strategies may be chosen (e.g., longest
matching vs. all matches, local vs. full backtracking, etc.).

Figure 8. GUI for the Regular Compiler. The buttons on
the left side are used for automatically generating XML
code for all provided operators. The tree-like structure

representing the XML code can be seen in the
window on the right side (Tree view).

Finally, a tool for displaying detailed information

about the characteristics of the resulting finite-state
devices, including among others statistics about the
number of nondeterministic moves, average number of
outgoing transitions from a state, alphabet size etc. may
support the language engineer in the process of optimally
configuring the appropriate finite-state grammar
interpreter and to ease the choice of an adequate storage
model for the internal representation of the investigated
finite-state device.

3. Application

Due to the user-friendly interface, parametrizable

compilation and optimization options, Unicode
compatibility, and various diagnostic tools, our tool
proved to be an outstanding and reliable grammar
development environment for multilingual pattern-based

shallow grammars and pattern-based template filler rules
in the field of information extraction. In particular, we
used this tool for the implementation of a small-scale
structure recognition component for Chinese, and an
information extraction subsystem applied in the
management succession domain.

The major advantage of using the regular compiler in
the process of Chinese grammar development (named-
entity grammars) is the fact, that the compiler allows the
user not only to enter Chinese signs from the keyboard,
but also to access the signs from a Unicode table. An
example of such table is given in figure 10. Moreover, we
could easily convert various existing resources in Chinese
(e.g. gazetteers) from different sources, which were useful
for increasing the coverage of the discussed component.

Figure 9. Diagnostic window for testing defined patterns.

 In the second task we used the regular compiler for

the definition of simple template filling rules for German
person names which looks like follows:

‘Successor’ ‘of’ <PERSON NAME>

�
 [Person_out: <PERSON NAME>]

This rule matches expressions like ‘Successor of Helmut
Kohl‘ which contains two string tokens Successor and of
followed by a person name, and fills the slot “person_out”
with the recognized person name Helmut Kohl. Such rules
are encoded in the compiler as regular expressions over
the feature structures representing the output of the
shallow analysis. The task-specific constraints (the regular
compiler may be restricted to allow only predefined
feature structures in the patterns) facilitate the grammar
development process enormously.

4. Summary and Future Directions

In this paper we presented a flexible XML-based

regular compiler for creation, conversion and integration
of existing linguistic resources, which provides direct
database connection, diagnostic tools, and a user-friendly
graphical interface which enables to transparently control
the compilation process. This tool was implemented in
Java except the Finite-State Machine Toolkit, which was
implemented in C++.

In order to improve the expressiveness capabilities of
the tool we intend to integrate type definition system like

TDL (Krieger, 1995), and extend the compiler by
providing routines for the compilation of weighted
context-dependent rules (Mohri, 2000) into corresponding
optimized finite-state representations. Currently, we
developed an extended experimental version of the
compiler which handles unification-based regular
grammars. Together with the intended enhanced driver
capable of interpreting such grammars, the forthcoming
version of the compiler will constitute an integrated
grammar development and debugging environment for
processing unification-based regular grammars. Finally,
we aim at making the regular compiler publicly available
and we also intend to perform usability test.

Figure 10. Unicode Table in action

5. References

Daciuk, J., 1998. Incremental Construction of Finite-State

Automata and Transducers, and their Use in the
Natural Language Processing. Dissertation - Technical
University of Gdansk.

Kaplan, R.M., Kay, Martin 94. Regular Models of
Phonological Rule Systems. In Computational
Linguistics, 20(3).

Kartunen, L., Chanod, J-P., Grefenstette, G., and Schiller,
A., 1996. Regular Expressions for Language
Engineering. Natural Language Engineering, 2:2:305-
328.

Karttunen, L., Gaal, T., and Kempe, A., 1997. Xerox
Finite-state Tool. Technical Report, Xerox Research
Centre Europe, Grenoble, France.

Koustofios, E., North, S. C., 1996. Drawing Graphs with
Dot. AT&T Bell Laboratories, Murray Hill, NJ,
Technical Report.

Krieger, H.U., 1995. TDL - A Type Description Language
for Constraint-Based Grammars. Foundations,
Implementation, and Applications, Saarbrücken
Dissertations in Computational Linguistics and
Language Technology. Vol. 2.

Mohri, M., Pereira, F., Riley, M., 1996. A Rational Design
for a Weighted Finite-State Transducer Library.
Technical report, AT&T Labs - Research.

Mohri, M., Sproat, R., 1996. An Efficient Compiler for
Weighted Rewrite Rules. In Proceedings of the 34th
Annual Meeting of the ACL.

Mohri, M., 1997. Finite-state Transducers in Language
and Speech Processing. Computational Linguistics 23.

Mohri, M., 2000. Weighted Grammar Tools: The GRM
Library, in J.-C. Junqua and G. van Noord (eds),
Robustness in Language and Speech Technology,
Kluwer Academic Publishers.

van Noord, G., Gerdemann, D., 1999. An Extendible
Regular Expression Compiler for Finite-State
Approaches in Natural Language Processing.
Workshop on Implementing Automata, Potsdam,
Germany.

van Noord, G., 2000. FSA6 - manual, TR, URL:
http://odur.let.rug.nl/vannoord/Fsa/Manual/.

Piskorski, J., 2002. DFKI Finite-State Machine Toolkit,
Technical Report, DFKI GmbH, Saarbrücken,
Germany.

Roche, E., and Schabes, Y., 1996. Introduction to Finite-
State Devices in Natural Language Processing.
Technical report, Mitsubishi Electric Research
Laboratories, TR-96-13, 1996.

Silberztein, M., 1997. INTEX: A Finite State Transducer
toolbox. In Theoretical Computer Science 231:1,
Elsevier Science.

Sproat, R., 1996. Multilingual Text Analysis for Text-to-
Speech Synthesis. In the Proceedings of the 12th
European Conference on Artificial Intelligence.

