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This paper presents an extended evaluation of tensor-based representations of
graph-based architectural room configurations. This experiment is a
continuation of examination of recognition of semantic architectural features by
contemporary standard deep learning methods. The main aim of this evaluation
is to investigate how the deep learning models trained using the relation tensors
as data representation means perform on data not available in the training
dataset. Using a straightforward classification task, stepwise modifications of the
original training dataset and manually created spatial configurations were fed
into the models to measure their prediction quality. We hypothesized that the
modifications that influence the class label will not decrease this quality, however,
this was not confirmed and most likely the latent non-class defining features make
up the class for the model. Under specific circumstances, the prediction quality
still remained high for the winning relation tensor type.
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INTRODUCTION
Deep learning (DL) is widely used for many research
areas of computer science, however, its application
to computer-aided architectural design (CAAD) is still
not as common as in other domains. Mainly this
is caused by missing a common representation of
spatial configurations that is fully compatible with
contemporary DL methods. While images of floor

plans can be an obvious choice, they do not explicitly
provide semantic information necessary for decision-
makingofmanyDLmethods, andmore suitableways
to represent architectural data in DL exist.

In the context of research onDL-based autocom-
pletion of room configurations, several data repre-
sentations in the form other than images were inves-
tigated (Eisenstadt et al., 2021). As a result, the data
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structure “relation map” was developed that uses a
specific adjacency matrix-based tensor to represent
semantic relations between the rooms in a spatial
configuration. Using a specifically configured convo-
lutional neural network (CNN), text-based, numerical
layer-based, and one-hot vector-based types of rela-
tion map were pre-evaluated using the task of classi-
fication based on a set of spatial relation classes. This
preliminary evaluation was performed automatically
by the DL framework, the winning one-hot vector-
based relation map type classified the samples with
approx. 98% validation accuracy.

In this paper, a more in-depth subsequent eval-
uation of these representations is presented that in-
vestigates how their corresponding deep learning
models evaluate spatial configuration samples not
present in the training dataset. It is intended to an-
swer the following research questions:

1. Which of the representation type models classi-
fies structurally unknown and manually created
samples correctly in the majority of cases?

2. When classifying data initially known but
slightly or heavymodified in relational structure,
will the predicted class remain appropriate?

Using a set of data augmentation rules to operate
on consistently modified datasets for the evaluation
and manually design multiple spatial configurations,
it is intended to simulate real-world classification us-
age. The main goal of this evaluation is to find the
relation map type that provides the best classifica-
tion response to changes in the semantic informa-
tion available in spatial configurations. Additionally,
we aim to find out which modifications are respon-
sible for significant changes in the overall classifica-
tion rate. The results of the evaluation are required
for improvement of the CNN-based approach for re-
trieval of contextually similar floor plans to support
early phases of architectural design (Eisenstadt et al.,
2020). In this approach, classification of spatial con-
figurations narrows down the set of relevant retrieval
candidates based on classes recognized in the query.
The winning type of relation map will also be used

in a sequential form in the upcoming segmentation-
based floor plan autocompletion approach.

RESEARCH CONTEXT & RELATEDWORK
During the currently running research project metis-
II (2020-2023, supported by the DFG - German Re-
search Foundation), we examine and develop DL-
based methods and approaches for support of the
early conceptual phases in architectural design. Tak-
ing into account the vagueness anduncertainty of ar-
chitectural design data in the form of graph-based
spatial configurations, we investigate how auto-
completion of floor plans (comparable to e.g., word
and sentence completion on keyboards of modern
mobile devices) can be achieved using artificial neu-
ral networks. Based on early sketches of the building
designs, rooms and the possible relations between
them are suggested to the architect to enhance the
early ideation process. The auto-completion meth-
ods are intended to be a helpful tool for archi-
tects during the early conceptual process supporting
them in working more efficiently, while being able
to focus on the creative aspects/tasks. Providing the
architects with the different design continuation op-
tions, it is intended to create interaction patterns to
assess their own design decisions and explore the
possible further developments of the current spatial
configuration state.

To represent the spatial configuration in the form
compatiblewith the deep learningmethods, but also
keep the relevant semantic information entered by
the architect, we use a number of Semantic Build-
ing Fingerprint graphs (SBF), where nodes represent
rooms and edges represent relations (connections)
between the rooms. The information encoded as an
SBF-based graph contains topological as well as non-
topological data distributed among several different
patterns (see figure 1). For use of these patterns in
DL methods, they are transformed into the numer-
ical tensor format “relation map” which represents
a modified adjacency matrix of the spatial configu-
ration graph using relations between the rooms of
the graph to encode semantic information. The re-
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Figure 1
Examples of
semantic building
fingerprints (SBF).
With topology (1-4):
semantic spatial
graph, through-
path-graph,
semantic spatial
connection graph,
spatial distance.
Without topology
(5, 6): envelope
area, center of
room.

lation map concept was designed using the idea of
reverse compatibility, i.e., the tensor can be trans-
formed back into spatial configuration and displayed
as such in the user interface. The early types of re-
lation maps were used for data augmentation (Arora
et al., 2020). The further developments of themwere
preliminary evaluated (see next section), but until
now not applied in any approach as they were not
extensively tested yet for unexpected classification
cases, this testing will be described in this paper.

Currently, deep learning approaches in architec-
ture use raster- or vector-based images of floor plans,
mostly due to their availability and as an obvious
choice for use in popular DL methods, such as CNNs,
for which many applicable and extendable applica-
tions examples from other domains already exist.
However, as examined during development of ap-
proaches for our research project, such entirely pixel-
or vector-based color data does not provide the nec-
essary semantic information. For example, for se-
mantic building fingerprint-based auto-completion,
the recognition of relational dependencies between
the rooms is required that is not possiblewith image-
based data. Nevertheless, successful approaches for
purposes other than ours use architectural image
data: as examples, search for similar designs (Sharma
et al., 2017), modification of the design style (New-
ton, 2019; Silvestre et al., 2016), or estimation of the
layout in 3D (Sun et al., 2019) can be named.

Anadditional problem, thatbecameevidentdur-
ing the research project, is that even when non-
image-baseddata samples (e.g., as graphs in XML for-
mat) are available, a suitable common representation
of spatial configurations for DL is missing, as the suf-
ficient amount of datamight be available fromdiffer-
ent sources that do not have common semantic rep-

resentation requirements and the pure XML-based
data is not a numerical tensor format required for the
contemporary DL frameworks e.g. TensorFlow or Py-
Torch. While it is also possible to use specific DL ab-
straction layers, such as Deep Graph Library (Wang et
al., 2019), they do not provide architecture-specific
DL representations and/or models and they have to
be additionally developed nevertheless.

DLREPRESENTATIONS&PRE-EVALUATION
To overcome the deep learning representation prob-
lems described above, a number of architecture-
specific tensor-based data structures were devel-
oped that canbeusedwith standardmethodsof con-
temporary DL frameworks. All these representations
are based on the common concept of “relation map”,
an adjacencymatrix modified to encode the relevant
semantic features detected in the topology of the
spatial configuration graph. Each row of such matrix
tensors stands for a particular room of the floor plan
and its outgoing connections to other rooms. Geo-
metrical parameters of the building design are not
considered. Relation maps are inspired by architec-
tural morphospaces (Steadman and Mitchell 2010)
and geometry maps (De Miguel et al., 2019), but also
by Hickman and Krolik (2009) who used the adja-
cency matrices to encode general availability of con-
nections in spatial configurations.

The essential semantic entity of a relationmap is
the relation code, that numerically encodes the con-
nection information in a triple <source room, target
room, connection type> in the cells of the matrix
rows using a specific typology in which each room
and connection type are assigned to the specific in-
teger numerical value (see Figure 2). For example, in
the relation code 562, the source room type Living
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(5) is connected to the target room type Bathroom (6)
by the connection typeDoor (2). Currently, five types
of the relation map exist. The simple relation map is
a 1D tensor and uses relation codes in the form de-
scribed above. The zoned relation map enriches the
relation codes with the information about architec-
tural room zones, the categorical taxonomy of room
types that groups them by their functionality (Lan-
genhan, 2017). For example, the relation code35162
represents the room type Kitchen (3) from the Habi-
tation zone (5) connected to the room type Corridor
(1) from the Service zone (6) by a Door (2). The zoned
connectionmapwasdeveloped toeliminatepossible
repetition of relation codes. Later, more advanced
types multilayer map, one-hot encoded map, and tex-
tual mapwere developed.

The multilayer map (see Figure 2, upper right
part) was developed for the situations where the ty-
pology of room and connection types is not explic-
itly available for the given dataset of spatial layouts.
To encode relevant semantic information in samples
from such datasets, the conversion methods of the
multilayer map use the cryptology method of hash-
ing of values detected as possible room and relation
types. Provided that the data was unified during
the creation of the dataset, the hashing will return
the same values for the same room and connection
types. The subsequent encoding into decimal frac-
tion will result in the 3-element relation code array
for source room, target room, and connection type.
For example, the connection Living <- Door -> Bath-
room can be encoded as an array [0.15383, 0.25237,
0.32474]. Inspired by the RGB scheme channels, a
multi-layered 3D map can then be constructed con-
sisting of the source room layer, target room layer,
and the connection type layer. Each layer will use the
values from the corresponding array index only.

The one-hot encoded map (see Figure 2, mid-
dle part) was designed to properly encode categor-
ical data instead of categorization of pure numerical
data, which is used in all previously presented maps.
Using the classic one-hot encoding technique for cat-
egorical data, the room and connection types are en-

coded as one-hot vectors, the position of 1 in the vec-
tor defines the corresponding type. All other posi-
tions are filled with 0. Each vector has as many ele-
ments as the overall number of types for the respec-
tive information type (i.e., room or connection type).
This method avoids summarization of semantic in-
formation in the form of source, target, and connec-
tion into one numerical value, where the order of the
numbers and the position further left or further right
in the relation code has a larger or smaller influence
on this value. Additionally, the one-hot represen-
tation eliminates the risk of assigning categories to
numbers which can be interpreted as ranking and/or
similarity measure. For example, using the typology
numbers of Figure 2, the difference between Toilet (7)
and Sleeping (2) would be greater than between Liv-
ing (5) and Corridor (1): 7-2=5 vs. 5-1=4.

Finally, the textual relation map (see Figure 2,
lower part) was developed for adaptation to the
changes in the number of room types or edge types
in the typology preserving the original shape of the
tensor and to solve the problemof sparsity (for exam-
ple, for spatial configurations with a small number of
connections in relation to the number of rooms). The
textual relation map is a variation of the simple rela-
tion map, that uses sentences to represent connec-
tions between rooms as relation codes. An example
of such a sentence is ‘living connects with sleeping
using wall’. To represent non-existing connections
between two rooms the textual placeholder ‘no con-
nection’ is used (instead of using 0 like the number-
or vector-based maps described above). Given that
this map representation is text-based, it can also be
used in a different form for multiple DL approaches
including sequence learning or text classification.

For the last three representations described
above, a preliminary evaluation (Eisenstadt et al.,
2021) was performed, that should provide an ini-
tial answer on the question if the relation map ten-
sors are able to properly encode the relevant se-
mantic information contained in the spatial config-
uration graphs, so that the DL models can under-
stand this information and meet the correct deci-
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Figure 2
Original floor plan
SBF and its
conversions into
multilayer map,
one-hot encoded
map, and textual
map. For selected
numerical
encodings of the
underlying
typology, their
corresponding
room and
connection types
are shown.

sion, e.g., correctly classify the spatial configuration.
An automated experiment using the straightforward
classification process was selected as the evaluation
method due to the availability of classification and
its validation techniques directly in the modern DL
frameworks. For training the DL models in the form
of CNNs, a dataset of 2544 housing floor plans was
used. It was based on the original 200 data samples
that were extended using a number of variation and
consistency rules. The measurement of training and
validation accuracy was performed automatically us-
ing thebuilt-inDL framework tools. The results of this
pre-evaluation indicated that the DLmodels are able
to process and understand the latent semantic struc-

ture of the selected relationmap types and the infor-
mation contained in them. A max. validation accu-
racy of 98% was achieved for the winning type, the
one-hot encoded map. The multilayer map and tex-
tual map could achieve a max. of 84% and 83% re-
spectively. These results are our current benchmarks
for validation of the prediction quality of themodels.

While the pre-evaluation provided satisfactory
results that confirmed the direction of our research
efforts, it was still not clear how the DL models
trained on the selected relation map types would re-
act when introduced spatial configurations not avail-
able in the training dataset. To answer this question,
an extended evaluation that involved again the mul-
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tilayer, one-hot encoded, and textual map was con-
ducted and will be described in the next section.

EXTENDED COMPARATIVE EVALUATION
The extended comparative evaluation of tensor-
based representations of semantic building informa-
tion was performed to finalize the initial exploration
of their suitability for standard DL tasks. While in the
pre-evaluation described above an initial hypothesis
on suitability should be tested using nomeans other
than the built-in tools of DL frameworks, in this eval-
uation, the selected relationmaps should prove their
potential for use in DL-based applications developed
in context of the research project. Identically to the
pre-evaluation, tests shall show which relation map
type provides the best performance.

To answer the question described above, a
double-phase evaluation scenario was developed
which was aimed at extensive testing of class pre-
diction quality of the relation map models. The tests
were conducted under different grades of modifica-
tionof theoriginal trainingdataset and spatial config-
uration samples not available in the original dataset,
but createdmanually using the same format and con-
sistency checking tools. The relation map DL models
from the preliminary evaluationwere reusedwithout
re-training them. The class labels were reused from
the pre-evaluation as well: each class indicated the
amount of habitable spaces, i.e., Sleeping, Living, Chil-
dren, Working, and Room (generic room label), and if
the spatial configuration is open or closed, identified
by whether there is a Passage between the kitchen
and the living room. An example of such a class label
is “3_closed”. Overall 10 classes were created.

The background idea of the evaluation was to
perform the classification of the manually created
spatial configurations first, in order to get an imme-
diate initial estimation on how good the models can
classify unknown cases. Based on the result of this
initial estimation, i.e. low or high prediction qual-
ity, the task would be to investigate what modifica-
tions might have caused it and if this result is a ran-
dom occurrence. That is, either themost likely failure

trail should be reconstructed (in case of low quality)
and/or the possible fluctuations in the classification
rate should be tracked (for both low and high rates).

In order to measure the sufficiency of the clas-
sification of unknown and modified samples by the
models, it was decided to calculate the percentage
of correctly predicted labels using following two spe-
cific metrics and then compare them to the bench-
marks from thepre-evaluation (seeprevious section):

• First result out of overall 10 possible class labels
outputs in order to follow the classic classifica-
tion accuracy measurement

• 3 first results in order to assess if the sufficient
coverage of correct classification was available
nevertheless

The reason to introduce the latter metrics was an ex-
isting research application use case. The semantic
building graph retrieval method developed for the
research project uses a max. of 3 class labels to make
up a set of contextually suitable retrieval candidates
for the subsequent graph isomorphism process.

In the next sections, the evaluation of manu-
ally created cases and the subsequent investigation
phase usingmodified spatial configurationdata sam-
ples will be described. For each of them, the corre-
sponding measurement of prediction quality using
the two metrics described above will be presented.

Phase 1: Evaluation ofManual Graphs
As explained above, the evaluation of manually cre-
ated spatial configuration graphs should provide
an immediate estimation of classification quality
of the convolutional neural networks trained us-
ing one-hot encoded, multilayer, and textual maps
on the same dataset and with the same model
configuration. Overall, 12 manual room graphs
based on a selection of already existing buildings
were created using a specific spatial configurations
editing tool RoomConf Editor (source code avail-
able at: github.com/cenetp/roomconf-editor) that al-
lows for creation of graphs in the format AGraphML,
which provides compatibility for conversion into re-
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lation maps. The converters are published under
github.com/metis-caad/roomconf-converter.

Table 1
Results of
prediction quality in
% (higher = better)
on manually
created spatial
configuration
graphs. These 12 manually created spatial configuration

graphs were then converted as well and fed as re-
lation map tensor queries into the corresponding
convolutional neural networks of the evaluated map
types. Table 1 shows the measured prediction qual-
ity in the form of classification rates achieved by each
map type in this evaluation phase.

The majority of the results did not provide a suf-
ficiently high percentage of correct predictions when
comparing them to the benchmarks from the pre-
evaluation. Considering the first result only (which
was the training and validation accuracy metrics in
the pre-evaluation) none of the map models per-
formed as good as in the pre-evaluation. Except for
the performance of the one-hot encodedmap, other
mapsdidnotprovideagoodperformanceon thefirst
3 results as well. That is, in the subsequent investi-
gation phase, it should be examined what modifica-
tionsmight lead to the decrease of prediction quality
and if the one-hot encodedmap’s result on the 3 first
samples is not just a randomly achieved high rate.

Table 2
Amounts of data
samples for each
evaluation step for
each evaluation
path of the
investigation phase.

Phase 2: Investigative Evaluation
Two investigative evaluation paths, SUBSUMED and
SEPARATED (see Figure 3), were introduced to exam-
ine findings of the manual graph evaluation. Both
paths used a set of 4 dataset modification steps.

Thefirstmodification stepwas identical for both in-
vestigation paths, however, the further application of
modifications differed between them:

1. SUBSUMED: each subsequent modification step
after the first step is performed on the already
modified dataset from the previous step

2. SEPARATED: eachmodification step is performed
on the original training dataset

All modification steps were defined by the archi-
tecture domain experts from the research project
metis-II. After each modification process performed
by a specific rule-based data augmentation tool, the
new modified dataset was checked for consistency
by a specific tool developed according to the rules
defined by the domain experts during the pre-
evaluation. The modified graphs that did not adhere
to the consistency rules were left out from the clas-
sification process. Following Listings show the mod-
ification rules for all 4 steps of the evaluation paths.
Table 2 shows the amounts of samples remained for
each step after modification and consistency check.

Step 1: Modification of access type
Replace ENTRANCE with DOOR
IF no ENTRANCE available THEN
↪→ PASSAGE and DOOR can be
↪→ interchanged between CORRIDOR
↪→ and LIVING

IF CORRIDOR and LIVING are not
↪→ connected THEN replace random
↪→ PASSAGE with DOOR (or other way
↪→ round) except the PASSAGE
↪→ between KITCHEN and LIVING

Step 2: Replacement of habitable and
↪→ non-habitable spaces

The room types ROOM and CHILDREN /
↪→ WORKING can be interchanged

IF no ROOM available , THEN one of
↪→ the following rules applies:
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Figure 3
Overview of the
investigation phase
of the extended
comparative
evaluation.

BATH or STORAGE are
↪→ interchangeable with TOILET
↪→ but not with each other

CHILDREN and WORKING are
↪→ interchangeable

Step 3: Adding / removing of non-
↪→ habitable rooms to keep the
↪→ current labels intact

Add one from {CORRIDOR , STORAGE ,
↪→ KITCHEN , TOILET, BATH}; this
↪→ will not change the amount of
↪→ habitable rooms

Randomly , one of {TOILET, KITCHEN ,
↪→ BATH} can be added and connected
↪→ to CORRIDOR

Step 4: Breaking the label (re-
↪→ labeling) by adding or removing
↪→ habitable rooms

Add one from {ROOM, LIVING, SLEEPING
↪→ , WORKING , CHILDREN}; this will
↪→ change the amount of habitable
↪→ rooms and break the label

IF there is CORRIDOR THEN add a new
↪→ ROOM to it with DOOR or PASSAGE

Randomly , one of {CHILDREN , ROOM,
↪→ WORKING} can be removed

As can be read from the list of modification steps, the
modification rules were defined with a specific goal

each, increasing the modification strength from step
to step. The idea behind this order was the inten-
tion to detect when it gets or starts to get better or
worse, to identify “good” or “bad” intermediatemod-
ifications. The main research question was to find
out what provided a bigger influence? “Hard facts”
that define the class label from the architectural point
of view (openness/closedness, number of habitable
spaces) or non-class-defining latent features? Maybe
the hard facts are in fact not what defines the class
for the DL model? Following two hypotheses were
defined for the investigative evaluation:

• Hypothesis 1: Prediction quality does not de-
crease if class-defining features are changed and
another class is the result of this modification
(Step 4)

• Hypothesis2: Predictionquality shouldnotheav-
ily decrease if “latent features” are changed
(Steps 1-3)

Results
The results of the investigative evaluation (see Fig-
ures 4 and 5) revealed a general pattern that all maps
react similarly to the changes to the data available
in the dataset they were trained on. The stronger the
modification the lower is the rate of correctly predicted
classes. The highest influence on the classification
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Figure 4
Results from the
SEPARATED
evaluation path. M
stands for the
prediction quality
on manual graphs,
‘all’ stands for ‘All 3
results’ (see Table
1).

Figure 5
Results from the
SUBSUMED
evaluation path.
Steps 12, 123, and
1234 indicate
modifications
subsumed from the
previous
modification
step(s).
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rate has the breaking of the class label, which does
not confirm Hypothesis 1. The CNNs seem to take the
latent features into account as well, and most likely
even build their classification decision on said features
and not on the label-defining ones.

Moreover, examining the SUBSUMED path, it can
be concluded that the application of further latent
modifications on already modified data has a stronger
andmore stable influence on prediction quality, result-
ing in mostly stable decrease in prediction quality.
For the SEPARATED path, this behavior could be de-
tected only partly, as the first 3 steps provide some-
what stable prediction rates, with a strong decline in
steps 4 and M (manual graphs). This partly confirms
Hypothesis 2, as at least for SEPARATED path heavy
and sudden decreases could not be recorded.

As an exception from the conclusions described
above, the performance of one-hot encoded map
can be seen. It increased its rate for the manually
created samples in the majority of cases. While the
number of 12 cannot be seen as a significant compar-
ison number, a clear tendency towards the stable per-
formance of one-hot encoded map can be seen when
considering all 3 first results. This is a clear answer
that the high classification rate of manual graphs for
this type of relation map is not random, and the se-
lection of 3 class labels most likely guarantees that
the correct label is available among the first 3 results.
This can be seen as improvement for the floor plan
retrieval application, as the determination of the suit-
able search contextwill bemoreprecise basedon the
results achieved by the investigative evaluation.

CONCLUSION & FUTUREWORK
In this paper, we presented an extended compar-
ative evaluation of deep learning models that use
the tensor-based data structure “relationmap” for se-
mantic building fingerprint data. Using a classifica-
tion task, three types of the relationmap were evalu-
ated to find out how themap-based DLmodels react
to data not available in the training dataset. The re-
sults revealed that the stronger modified data influ-
ences the decrease in prediction quality, except for

thewinning type, the one-hot encoded relationmap.
Investigating which modifications can be responsi-
ble for decline in prediction rate, we came to the con-
clusion that modification of features that influence
the class label is the most likely candidate. For the
future, a user study is planned, where the DL models
should justify and make transparent their classifica-
tion decision using different explainable AI methods.
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